349 research outputs found

    Orbital Instabilities in a Triaxial Cusp Potential

    Full text link
    This paper constructs an analytic form for a triaxial potential that describes the dynamics of a wide variety of astrophysical systems, including the inner portions of dark matter halos, the central regions of galactic bulges, and young embedded star clusters. Specifically, this potential results from a density profile of the form ρ(m)m1\rho (m) \propto m^{-1}, where the radial coordinate is generalized to triaxial form so that m2=x2/a2+y2/b2+z2/c2m^2 = x^2/a^2 + y^2/b^2 + z^2/c^2 . Using the resulting analytic form of the potential, and the corresponding force laws, we construct orbit solutions and show that a robust orbit instability exists in these systems. For orbits initially confined to any of the three principal planes, the motion in the perpendicular direction can be unstable. We discuss the range of parameter space for which these orbits are unstable, find the growth rates and saturation levels of the instability, and develop a set of analytic model equations that elucidate the essential physics of the instability mechanism. This orbit instability has a large number of astrophysical implications and applications, including understanding the formation of dark matter halos, the structure of galactic bulges, the survival of tidal streams, and the early evolution of embedded star clusters.Comment: 50 pages, accepted for publication in Ap

    A novel albumin gene mutation (R222I) in familial dysalbuminemic hyperthyroxinemia

    Get PDF
    Context: Familial dysalbuminemic hyperthyroxinemia, characterized by abnormal circulating albuminwith increased T4 affinity, causes artefactual elevation of free T4 concentrations in euthyroid individuals. Objective: Four unrelated index cases with discordant thyroid function tests in different assay platforms were investigated. Design and Results: Laboratory biochemical assessment, radiolabeled T4 binding studies, and ALB sequencing were undertaken. 125I-T4 binding to both serum and albumin in affected individuals was markedly increased, comparable with known familial dysalbuminemic hyperthyroxinemia cases. Sequencing showed heterozygosity for a novel ALB mutation (arginine to isoleucine at codon 222, R222I) in all four cases and segregation of the genetic defect with abnormal biochemical phenotype in one family. Molecular modeling indicates that arginine 222 is located within a high-affinity T4 binding site in albumin, with substitution by isoleucine, which has a smaller side chain predicted to reduce steric hindrance, thereby facilitating T 4 and rT3 binding. When tested in current immunoassays, serum free T4 values from R222I heterozygotes were more measurably abnormal in one-step vs two-step assay architectures. Total rT3 measurements were also abnormally elevated. Conclusions: A novel mutation (R222I) in the ALB gene mediates dominantly inherited dysalbuminemic hyperthyroxinemia. Susceptibility of current free T4 immunoassays to interference by this mutant albumin suggests likely future identification of individuals with this variant binding protein

    Interpretation of DAS28 and its components in the assessment of inflammatory and non-inflammatory aspects of rheumatoid arthritis

    Get PDF
    Background: DAS28 is interpreted as the inflammatory disease activity of RA. Non-inflammatory pain mechanisms can confound assessment. We aimed to examine the use of DAS28 components or DAS28-derived measures that have been published as indices of non-inflammatory pain mechanisms, to inform interpretation of disease activity. Methods: Data were used from multiple observational epidemiology studies of people with RA. Statistical characteristics of DAS28 components and derived indices were assessed using baseline and follow up data from British Society for Rheumatology Biologics Registry participants [1] commencing anti-TNF therapy (n = 10813), or [2] changing between non-biologic DMARDs (n=2992), [3] Early Rheumatoid Arthritis Network participants (n=813), and [4] participants in a cross-sectional study exploring fibromyalgia and pain thresholds (n=45). Repeatability was tested in 34 patients with active RA. Derived indices were the proportion of DAS28 attributable to patient-reported components (DAS28-P), tender-swollen difference and tender:swollen ratio. Pressure pain detection threshold (PPT) was used as an index of pain sensitisation. Results: DAS28, tender joint count, visual analogue scale, DAS28-P, tender-swollen difference and tender:swollen ratio were more strongly associated with pain, PPT and fibromyalgia status than were swollen joint count or erythrocyte sedimentation rate. DAS28-P, tender-swollen difference and tender:swollen ratio better predicted pain over 1 year than did DAS28 or its individual components. Conclusions: DAS28 is strongly associated both with inflammation and with patient-reported outcomes. DAS28-derived indices such as tender-swollen difference are associated with non-inflammatory pain mechanisms, can predict future pain and should inform how DAS28 is interpreted as an index of inflammatory disease activity in RA

    The Effects of Herbivory by a Mega- and Mesoherbivore on Tree Recruitment in Sand Forest, South Africa

    Get PDF
    Herbivory by megaherbivores on woody vegetation in general is well documented; however studies focusing on the individual browsing effects of both mega- and mesoherbivore species on recruitment are scarce. We determined these effects for elephant Loxodonta africana and nyala Tragelaphus angasii in the critically endangered Sand Forest, which is restricted to east southern Africa, and is conserved mainly in small reserves with high herbivore densities. Replicated experimental treatments (400 m2) in a single forest patch were used to exclude elephant, or both elephant and nyala. In each treatment, all woody individuals were identified to species and number of stems, diameter and height were recorded. Results of changes after two years are presented. Individual tree and stem densities had increased in absence of nyala and elephant. Seedling recruitment (based on height and diameter) was inhibited by nyala, and by elephant and nyala in combination, thereby preventing recruitment into the sapling stage. Neither nyala or elephant significantly reduced sapling densities. Excluding both elephant and nyala in combination enhanced recruitment of woody species, as seedling densities increased, indicating that forest regeneration is impacted by both mega- and mesoherbivores. The Sand Forest tree community approached an inverse J-shaped curve, with the highest abundance in the smaller size classes. However, the larger characteristic tree species in particular, such as Newtonia hildebrandtii, were missing cohorts in the middle size classes. When setting management goals to conserve habitats of key importance, conservation management plans need to consider the total herbivore assemblage present and the resulting browsing effects on vegetation. Especially in Africa, where the broadest suite of megaherbivores still persists, and which is currently dealing with the ‘elephant problem’, the individual effects of different herbivore species on recruitment and dynamics of forests and woodlands are important issues which need conclusive answers

    Amplicon-Based Detection and Sequencing of SARS-CoV-2 in Nasopharyngeal Swabs from Patients With COVID-19 and Identification of Deletions in the Viral Genome That Encode Proteins Involved in Interferon Antagonism

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). Sequencing the viral genome as the outbreak progresses is important, particularly in the identification of emerging isolates with different pathogenic potential and to identify whether nucleotide changes in the genome will impair clinical diagnostic tools such as real-time PCR assays. Although single nucleotide polymorphisms and point mutations occur during the replication of coronaviruses, one of the biggest drivers in genetic change is recombination. This can manifest itself in insertions and/or deletions in the viral genome. Therefore, sequencing strategies that underpin molecular epidemiology and inform virus biology in patients should take these factors into account. A long amplicon/read length-based RT-PCR sequencing approach focused on the Oxford Nanopore MinION/GridION platforms was developed to identify and sequence the SARS-CoV-2 genome in samples from patients with or suspected of COVID-19. The protocol, termed Rapid Sequencing Long Amplicons (RSLAs) used random primers to generate cDNA from RNA purified from a sample from a patient, followed by single or multiplex PCRs to generate longer amplicons of the viral genome. The base protocol was used to identify SARS-CoV-2 in a variety of clinical samples and proved sensitive in identifying viral RNA in samples from patients that had been declared negative using other nucleic acid-based assays (false negative). Sequencing the amplicons revealed that a number of patients had a proportion of viral genomes with deletions
    corecore