218 research outputs found

    (16) Psyche: A mesosiderite-like asteroid?

    Full text link
    Asteroid (16) Psyche is the target of the NASA Psyche mission. It is considered one of the few main-belt bodies that could be an exposed proto-planetary metallic core and that would thus be related to iron meteorites. Such an association is however challenged by both its near- and mid-infrared spectral properties and the reported estimates of its density. Here, we aim to refine the density of (16) Psyche to set further constraints on its bulk composition and determine its potential meteoritic analog. We observed (16) Psyche with ESO VLT/SPHERE/ZIMPOL as part of our large program (ID 199.C-0074). We used the high angular resolution of these observations to refine Psyche's three-dimensional (3D) shape model and subsequently its density when combined with the most recent mass estimates. In addition, we searched for potential companions around the asteroid. We derived a bulk density of 3.99\,±\pm\,0.26\,g\cdotcm3^{-3} for Psyche. While such density is incompatible at the 3-sigma level with any iron meteorites (\sim7.8\,g\cdotcm3^{-3}), it appears fully consistent with that of stony-iron meteorites such as mesosiderites (density \sim4.25\,\cdotcm3^{-3}). In addition, we found no satellite in our images and set an upper limit on the diameter of any non-detected satellite of 1460\,±\pm\,200}\,m at 150\,km from Psyche (0.2\%\,×\times\,RHill_{Hill}, the Hill radius) and 800\,±\pm\,200\,m at 2,000\,km (3\%\,×\times\,RHillR_{Hill}). Considering that the visible and near-infrared spectral properties of mesosiderites are similar to those of Psyche, there is merit to a long-published initial hypothesis that Psyche could be a plausible candidate parent body for mesosiderites.Comment: 16 page

    Collapse of the N=28 shell closure in 42^{42}Si

    Get PDF
    The energies of the excited states in very neutron-rich 42^{42}Si and 41,43^{41,43}P have been measured using in-beam γ\gamma-ray spectroscopy from the fragmentation of secondary beams of 42,44^{42,44}S at 39 A.MeV. The low 2+^+ energy of 42^{42}Si, 770(19) keV, together with the level schemes of 41,43^{41,43}P provide evidence for the disappearance of the Z=14 and N=28 spherical shell closures, which is ascribed mainly to the action of proton-neutron tensor forces. New shell model calculations indicate that 42^{42}Si is best described as a well deformed oblate rotor.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. let

    Absorbing photonic crystals for thin film photovoltaics

    Full text link
    The absorption of thin hydrogenated amorphous silicon layers can be efficiently enhanced through a controlled periodic patterning. Light is trapped through coupling with photonic Bloch modes of the periodic structures, which act as an absorbing planar photonic crystal. We theoretically demonstrate this absorption enhancement through one or two dimensional patterning, and show the experimental feasibility through large area holographic patterning. Numerical simulations show over 50% absorption enhancement over the part of the solar spectrum comprised between 380 and 750nm. It is experimentally confirmed by optical measurements performed on planar photonic crystals fabricated by laser holography and reactive ion etching.Comment: 6 pages. SPIE Photonics Europe pape

    Nucleic Acids Res

    Get PDF
    In plants, the voltage-dependent anion-selective channel (VDAC) is a major component of a pathway involved in transfer RNA (tRNA) translocation through the mitochondrial outer membrane. However, the way in which VDAC proteins interact with tRNAs is still unknown. Potato mitochondria contain two major mitochondrial VDAC proteins, VDAC34 and VDAC36. These two proteins, composed of a N-terminal α-helix and of 19 β-strands forming a β-barrel structure, share 75% sequence identity. Here, using both northwestern and gel shift experiments, we report that these two proteins interact differentially with nucleic acids. VDAC34 binds more efficiently with tRNAs or other nucleic acids than VDAC36. To further identify specific features and critical amino acids required for tRNA binding, 21 VDAC34 mutants were constructed and analyzed by northwestern. This allowed us to show that the β-barrel structure of VDAC34 and the first 50 amino acids that contain the α-helix are essential for RNA binding. Altogether the work shows that during evolution, plant mitochondrial VDAC proteins have diverged so as to interact differentially with nucleic acids, and this may reflect their involvement in various specialized biological functions

    A tryptophan-rich peptide acts as a transcription activation domain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic transcription activators normally consist of a sequence-specific DNA-binding domain (DBD) and a transcription activation domain (AD). While many sequence patterns and motifs have been defined for DBDs, ADs do not share easily recognizable motifs or structures.</p> <p>Results</p> <p>We report herein that the N-terminal domain of yeast valyl-tRNA synthetase can function as an AD when fused to a DNA-binding protein, LexA, and turn on reporter genes with distinct LexA-responsive promoters. The transcriptional activity was mainly attributed to a five-residue peptide, WYDWW, near the C-terminus of the N domain. Remarkably, the pentapeptide <it>per se </it>retained much of the transcriptional activity. Mutations which substituted tryptophan residues for both of the non-tryptophan residues in the pentapeptide (resulting in W<sub>5</sub>) significantly enhanced its activity (~1.8-fold), while mutations which substituted aromatic residues with alanine residues severely impaired its activity. Accordingly, a much more active peptide, pentatryptophan (W<sub>7</sub>), was produced, which elicited ~3-fold higher activity than that of the native pentapeptide and the N domain. Further study indicated that W<sub>7 </sub>mediates transcription activation through interacting with the general transcription factor, TFIIB.</p> <p>Conclusions</p> <p>Since W<sub>7 </sub>shares no sequence homology or features with any known transcription activators, it may represent a novel class of AD.</p

    The \u3cem\u3eChlamydomonas\u3c/em\u3e Genome Reveals the Evolution of Key Animal and Plant Functions

    Get PDF
    Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the ∼120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella

    In-beam spectroscopic studies of 44^{44}S nucleus

    Get PDF
    The structure of the 44^{44}S nucleus has been studied at GANIL through the one proton knock-out reaction from a 45^{45}Cl secondary beam at 42 A\cdotMeV. The γ\gamma rays following the de-excitation of 44^{44}S were detected in flight using the 70 BaF2{_2} detectors of the Ch\^{a}teau de Cristal array. An exhaustive γγ\gamma\gamma-coincidence analysis allowed an unambiguous construction of the level scheme up to an excitation energy of 3301 keV. The existence of the spherical 22+^+_2 state is confirmed and three new γ\gamma-ray transitions connecting the prolate deformed 21+^+_1 level were observed. Comparison of the experimental results to shell model calculations further supports a prolate and spherical shape coexistence with a large mixing of states built on the ground state band in 44^{44}S.Comment: 6 pages, 5 figures, accepted for publication in Physical Review
    corecore