67 research outputs found
Neurodevelopmental abnormalities in children with PHACE syndrome.
Prior case reports have identified neurodevelopmental abnormalities in children with PHACE syndrome, a neurocutaneous disorder first characterized in 1996. In this multicenter, retrospective study of a previously identified cohort of 93 children diagnosed with PHACE syndrome from 1999 to 2010, 29 children had neurologic evaluations at â„ 1 year of age (median age: 4 years, 2 months). In all, 44% had language delay, 36% gross motor delay, and 8% fine motor delay; 52% had an abnormal neurological exam, with speech abnormalities as the most common finding. Overall, 20 of 29 (69%) had neurodevelopmental abnormalities. Cerebral, but not posterior fossa, structural abnormalities were identified more often in children with abnormal versus normal neurodevelopmental outcomes (35% vs. 0%, P = .04). Neurodevelopmental abnormalities in young children with PHACE syndrome referred to neurologists include language and gross motor delay, while fine motor delay is less frequent. Prospective studies are needed to understand long-term neurodevelopmental outcomes
Stroke in children with posterior fossa brain malformations, hemangiomas, arterial anomalies, coarctation of the aorta and cardiac defects, and eye abnormalities (PHACE) syndrome: a systematic review of the literature.
Background and purposePHACE is an acronym for posterior fossa brain malformations, hemangiomas, arterial anomalies, coarctation of the aorta and cardiac defects, and eye abnormalities. Several case reports of arterial ischemic stroke (AIS) in individuals with PHACE have been published, but risk factors for AIS in PHACE have not been clearly defined. The objective of this article is to review all cases of stroke in PHACE in children and describe clinical characteristics that may be associated with an increased risk of AIS.MethodsA literature and registry search was conducted to identify patients with PHACE who had experienced AIS. Data were analyzed to determine age of onset, presenting signs and symptoms, and clinical features among this cohort compared with PHACE without AIS.ResultsTwenty-two individuals with PHACE and AIS were identified. Imaging of the arteries of the head and neck was reported in 20 of 22. Narrowing or nonvisualization of at least 1 great cerebral vessel was present in 19 of 20 and of those, 15 had â„ 2 vessels involved. Aortic arch anomalies were reported in 13 of 22 individuals.ConclusionsAplasia, hypoplasia, or occlusion of a major cerebral artery appears to be a significant risk factor for AIS in children with PHACE, especially when >1 vessel is involved or if there is coarctation of the aorta
From Your Nose to Your Toes: A Review of Severe Acute Respiratory Syndrome Coronavirus 2 PandemicâAssociated Pernio
Despite thousands of reported patients with pandemic-associated pernio, low rates of seroconversion and PCR positivity have defied causative linkage to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pernio in uninfected children is associated with monogenic disorders of excessive IFN-1 immunity, whereas severe COVID-19 pneumonia can result from insufficient IFN-1. Moreover, SARS-CoV-2 spike protein and robust IFN-1 response are seen in the skin of patients with pandemic-associated pernio, suggesting an excessive innate immune skin response to SARS-CoV-2. Understanding the pathophysiology of this phenomenon may elucidate the host mechanisms that drive a resilient immune response to SARS-CoV-2 and could produce relevant therapeutic targets
A global effort to dissect the human genetic basis of resistance to SARS-CoV-2 infection
SARS-CoV-2 infections display tremendous interindividual variability, ranging from asymptomatic infections to life-threatening disease. Inborn errors of, and autoantibodies directed against, type I interferons (IFNs) account for about 20% of critical COVID-19 cases among SARS-CoV-2-infected individuals. By contrast, the genetic and immunological determinants of resistance to infection per se remain unknown. Following the discovery that autosomal recessive deficiency in the DARC chemokine receptor confers resistance to Plasmodium vivax, autosomal recessive deficiencies of chemokine receptor 5 (CCR5) and the enzyme FUT2 were shown to underlie resistance to HIV-1 and noroviruses, respectively. Along the same lines, we propose a strategy for identifying, recruiting, and genetically analyzing individuals who are naturally resistant to SARS-CoV-2 infection.The Laboratory of Human Genetics of Infectious Diseases is supported by the National Institutes of Health (NIH) (R01AI088364), the National Center for Advancing Translational Sciences (NCATS), NIH Clinical and Translational Science Award (CTSA) program (UL1TR001866), a Fast Grant from Emergent Ventures, Mercatus Center at George Mason University, the Yale Center for Mendelian Genomics and the GSP Coordinating Center funded by the National Human Genome Research Institute (NHGRI) (UM1HG006504 and U24HG008956), the Fisher Center for Alzheimerâs Research Foundation, the Meyer Foundation, the French National Research Agency (ANR) under the Investments for the Future program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), the French Foundation for Medical Research (FRM) (EQU201903007798), the FRM and ANR GENCOVID project (ANR-20-COVI-0003), ANRS-COV05, the Fondation du Souffle, the Square Foundation, Grandir - Fonds de solidaritĂ© pour lâenfance, the SCOR Corporate Foundation for Science, the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, Institut National de la SantĂ© et de la Recherche MĂ©dicale (INSERM), and the University of Paris. E.A. is supported by research grants from the European Commissionâs Horizon 2020 research and innovation program (IMMUNAID, grant no. 779295, CURE, grant no. 767015 and TO_AITION grant no. 848146) and the Hellenic Foundation for Research and Innovation (INTERFLU, no. 1574). C.O.F. is supported in part by the Science Foundation Ireland COVID-19 Program. G.N. is supported by a grant awarded to Regione Lazio (Research Group Projects 2020) no. A0375-2020-36663, GecoBiomark. A.P. is supported in part by the Horizon 2020 program under grant no. 824110 (EasiGenomics grant no. COVID-19/PID12342) and the CERCA Program/Generalitat de Catalunya. H.S. is supported in part by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, National Institutes of Health. A.S. is supported in part by the European Unionâs Horizon 2020 research and innovation program (Marie Sklodowska-Curie grant no. 789645)
PTPN11 mosaicism causes a spectrum of pigmentary and vascular neurocutaneous disorders and predisposes to melanoma
Phakomatosis pigmentovascularis (PPV) is a diagnosis which denotes the coexistence of pigmentary and vascular birthmarks of specific types, accompanied by variable multisystem involvement including central nervous system disease, asymmetrical growth and a predisposition to malignancy. Using a tightly phenotyped group and high depth next generation sequencing of affected tissues we discover here clonal mosaic variants in gene PTPN11 encoding SHP2 phosphatase as a cause of PPV type III or spilorosea. Within an individual the same variant is found in distinct pigmentary and vascular birthmarks and is undetectable in blood. We go on to demonstrate that the same variants can cause either the specific pigmentary or vascular phenotypes alone, as well as driving melanoma development within the pigmentary lesion. Protein conformational modelling highlights that while variants lead to loss of function at the level of the phosphatase domain, resultant conformational changes promote longer ligand binding. In vitro modelling of the missense variants confirms downstream MAPK pathway overactivation, and widespread disruption of human endothelial cell angiogenesis. Importantly, PTPN11-mosaic patients theoretically risk passing on the variant to their children as the germline RASopathy Noonan syndrome with lentigines. These findings improve our understanding of the pathogenesis and biology of naevus spilus and capillary malformation syndromes, paving the way for better clinical management
Management of infantile hemangiomas during the COVID pandemic
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The COVIDâ19 pandemic has caused significant shifts in patient care including a steep decline in ambulatory visits and a marked increase in the use of telemedicine. Infantile hemangiomas (IH) can require urgent evaluation and risk stratification to determine which infants need treatment and which can be managed with continued observation. For those requiring treatment, prompt initiation decreases morbidity and improves longâterm outcomes. The Hemangioma Investigator Group has created consensus recommendations for management of IH via telemedicine. FDA/EMAâapproved monitoring guidelines, clinical practice guidelines, and relevant, upâtoâdate publications regarding initiation and monitoring of betaâblocker therapy were used to inform the recommendations. Clinical decisionâmaking guidelines about when telehealth is an appropriate alternative to inâoffice visits, including medication initiation, dosage changes, and ongoing evaluation, are included. The importance of communication with caregivers in the context of telemedicine is discussed, and online resources for both hemangioma education and propranolol therapy are provided
Autoantibodies against type I IFNs in patients with critical influenza pneumonia
In an international cohort of 279 patients with hypoxemic influenza pneumonia, we identified 13 patients (4.6%) with autoantibodies neutralizing IFN-alpha and/or -omega, which were previously reported to underlie 15% cases of life-threatening COVID-19 pneumonia and one third of severe adverse reactions to live-attenuated yellow fever vaccine. Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-alpha 2 alone (five patients) or with IFN-omega (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-alpha 2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-omega. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients 70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-alpha 2 and IFN-omega (OR = 11.7, P = 1.3 x 10(-5)), especially those <70 yr old (OR = 139.9, P = 3.1 x 10(-10)). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for similar to 5% of cases of life-threatening influenza pneumonia in patients <70 yr old
Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-Ï auto-Abs in children
We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2
Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs
Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population
- âŠ