55 research outputs found

    The salivary secretome of the biting midge, Culicoides sonorensis

    Get PDF
    Culicoides biting midges (Diptera: Ceratopogonidae) are hematophagous insects with over 1400 species distributed throughout the world. Many of these species are of particular agricultural importance as primary vectors of bluetongue and Schmallenberg viruses, yet little is known about Culicoides genomics and proteomics. Detailed studies of members from other blood-feeding Dipteran families, including those of mosquito (Culicidae) and black fly (Simuliidae), have shown that protein components within the insect’s saliva facilitate the blood feeding process. To determine the protein components in Culicoides sonorensis midges, secreted saliva was collected for peptide sequencing by tandem mass spectrometry. Forty-five secreted proteins were identified, including members of the D7 odorant binding protein family, Kunitz-like serine protease inhibitors, maltase, trypsin, and six novel proteins unique to C. sonorensis. Identifying the complex myriad of proteins in saliva from blood-feeding Dipteran species is critical for understanding their role in blood feeding, arbovirus transmission, and possibly the resulting disease pathogenesis

    Dynamics of epizootic hemorrhagic disease virus infection within the vector, Culicoides sonorensis (Diptera: Ceratopogonidae)

    Get PDF
    Citation: Mills, M. K., Ruder, M. G., Nayduch, D., Michel, K., & Drolet, B. S. (2017). Dynamics of epizootic hemorrhagic disease virus infection within the vector, Culicoides sonorensis (Diptera: Ceratopogonidae). PLOS ONE, 12(11), e0188865. https://doi.org/10.1371/journal.pone.0188865Culicoides sonorensis biting midges are confirmed vectors of epizootic hemorrhagic disease virus (EHDV), which causes mortality in white-tailed deer and ruminant populations. Currently, of the seven EHDV serotypes, only 1, 2, and 6 are detected in the USA, and very few studies have focused on the infection time course of these serotypes within the midge. The objective of this current research was to characterize EHDV-2 infection within the midge by measuring infection prevalence, virus dissemination, and viral load over the course of infection. Midges were fed a blood meal containing 106.9 PFU/ml EHDV-2, collected every 12 h from 0–2 days post feeding (dpf) and daily from 3–10 dpf, and cohorts of 20 C. sonorensis were processed using techniques that assessed EHDV infection and dissemination. Cytopathic effect assays and quantitative (q)PCR were used to determine infection prevalence, revealing a 50% infection rate by 10 dpf using both methods. Using immunohistochemistry, EHDV-2 infection was detectable at 5 dpf, and shown to disseminate from the midgut to other tissues, including fat body, eyes, and salivary glands by 5 dpf. Stain intensity increased from 5–8 dpf, indicating replication of EHDV-2 in secondary infection sites after dissemination. This finding is also supported by trends in viral load over time as determined by plaque assays and qPCR. An increase in titer between 4–5 dpf correlated with viral replication in the midgut as seen with staining at day 5, while the subsequent gradual increase in viral load from 8–10 dpf suggested viral replication in midges with disseminated infection. Overall, the data presented herein suggest that EHDV-2 disseminates via the hemolymph to secondary infection sites throughout the midge and demonstrate a high potential for transmission at five days at 25°C after an infective blood-meal

    Rift Valley fever virus structural and nonstructural proteins: recombinant protein expression and immunoreactivity against antisera from sheep

    Get PDF
    The Rift Valley fever virus (RVFV) encodes the structural proteins nucleoprotein (N), aminoterminal glycoprotein (Gn), carboxyterminal glycoprotein (Gc), and L protein, 78-kD, and the nonstructural proteins NSm and NSs. Using the baculovirus system, we expressed the full-length coding sequence of N, NSs, NSm, Gc, and the ectodomain of the coding sequence of the Gn glycoprotein derived from the virulent strain of RVFV ZH548. Western blot analysis using anti-His antibodies and monoclonal antibodies against Gn and N confirmed expression of the recombinant proteins, and in vitro biochemical analysis showed that the two glycoproteins, Gn and Gc, were expressed in glycosylated form. Immunoreactivity profiles of the recombinant proteins in western blot and in indirect enzyme-linked immunosorbent assay against a panel of antisera obtained from vaccinated or wild type (RVFV)-challenged sheep confirmed the results obtained with anti-His antibodies and demonstrated the suitability of the baculo-expressed antigens for diagnostic assays. In addition, these recombinant proteins could be valuable for the development of diagnostic methods that differentiate infected from vaccinated animals (DIVA)

    EHDV-2 Infection Prevalence Varies in Culicoides sonorensis after Feeding on Infected White-Tailed Deer over the Course of Viremia

    Get PDF
    Epizootic hemorrhagic disease viruses (EHDVs) are arboviral pathogens of white-tailed deer and other wild and domestic ruminants in North America. Transmitted by various species of Culicoides, EHDVs circulate wherever competent vectors and susceptible ruminant host populations co-exist. The impact of variation in the level and duration of EHDV viremia in white-tailed deer (Odocoileus virginianus) on Culicoides infection prevalence is not well characterized. Here we examined how infection prevalence in a confirmed North American vector of EHDV-2 (Culicoides sonorensis) varies in response to fluctuations in deer viremia. To accomplish this, five white-tailed deer were experimentally infected with EHDV-2 and colonized C. sonorensis were allowed to feed on deer at 3, 5, 7, 10, 12, 14, 18, and 24 days post infection (dpi). Viremia profiles in deer were determined by virus isolation and titration at the same time points. Blood-fed Culicoides were assayed for virus after a 10-day incubation (27 ◩C) period. We found that increases in deer EHDV blood titers significantly increased both the likelihood that midges would successfully acquire EHDV and the proportion of midges that reached the titer threshold for transmission competence. Unexpectedly, we identified four infected midge samples (three individuals and one pool) after feeding on one deer 18 and 24 dpi, when viremia was no longer detectable by virus isolation. The ability of ruminants with low-titer viremia to serve as a source of EHDV for blood-feeding Culicoides should be explored further to better understand its potential epidemiological significance

    Experimental infection of calves by two genetically-distinct strains of rift valley fever virus

    Get PDF
    Citation: Wilson, W. C., Davis, A. S., Gaudreault, N. N., Faburay, B., Trujillo, J. D., Shivanna, V., . . . Richt, J. A. (2016). Experimental infection of calves by two genetically-distinct strains of rift valley fever virus. Viruses, 8(5). doi:10.3390/v8050145Additional Authors: McVey, D. S.Recent outbreaks of Rift Valley fever in ruminant livestock, characterized by mass abortion and high mortality rates in neonates, have raised international interest in improving vaccine control strategies. Previously, we developed a reliable challenge model for sheep that improves the evaluation of existing and novel vaccines in sheep. This sheep model demonstrated differences in the pathogenesis of Rift Valley fever virus (RVFV) infection between two genetically-distinct wild-type strains of the virus, Saudi Arabia 2001 (SA01) and Kenya 2006 (Ken06). Here, we evaluated the pathogenicity of these two RVFV strains in mixed breed beef calves. There was a transient increase in rectal temperatures with both virus strains, but this clinical sign was less consistent than previously reported with sheep. Three of the five Ken06-infected animals had an early-onset viremia, one day post-infection (dpi), with viremia lasting at least three days. The same number of SA01-infected animals developed viremia at 2 dpi, but it only persisted through 3 dpi in one animal. The average virus titer for the SA01-infected calves was 1.6 logs less than for the Ken06-infected calves. Calves, inoculated with either strain, seroconverted by 5 dpi and showed time-dependent increases in their virus-neutralizing antibody titers. Consistent with the results obtained in the previous sheep study, elevated liver enzyme levels, more severe liver pathology and higher virus titers occurred with the Ken06 strain as compared to the SA01 strain. These results demonstrate the establishment of a virulent challenge model for vaccine evaluation in calves. © 2016 by the authors; licensee MDPI, Basel, Switzerland

    Impact of Gut Bacteria on the Infection and Transmission of Pathogenic Arboviruses by Biting Midges and Mosquitoes

    Get PDF
    Tripartite interactions among insect vectors, midgut bacteria, and viruses may determine the ability of insects to transmit pathogenic arboviruses. Here, we investigated the impact of gut bacteria on the susceptibility of Culicoides nubeculosus and Culicoides sonorensis biting midges for Schmallenberg virus, and of Aedes aegypti mosquitoes for Zika and chikungunya viruses. Gut bacteria were manipulated by treating the adult insects with antibiotics. The gut bacterial communities were investigated using Illumina MiSeq sequencing of 16S rRNA, and susceptibility to arbovirus infection was tested by feeding insects with an infectious blood meal. Antibiotic treatment led to changes in gut bacteria for all insects. Interestingly, the gut bacterial composition of untreated Ae. aegypti and C. nubeculosus showed Asaia as the dominant genus, which was drastically reduced after antibiotic treatment. Furthermore, antibiotic treatment resulted in relatively more Delftia bacteria in both biting midge species, but not in mosquitoes. Antibiotic treatment and subsequent changes in gut bacterial communities were associated with a significant, 1.8-fold increased infection rate of C. nubeculosus with Schmallenberg virus, but not for C. sonorensis. We did not find any changes in infection rates for Ae. aegypti mosquitoes with Zika or chikungunya virus. We conclude that resident gut bacteria may dampen arbovirus transmission in biting midges, but not so in mosquitoes. Use of antimicrobial compounds at livestock farms might therefore have an unexpected contradictory effect on the health of animals, by increasing the transmission of viral pathogens by biting midges.</p

    Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children

    Full text link
    We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs) neutralizing type I IFNs (IFN-alpha 2 in 10 patients: IFN-alpha 2 only in three, IFN-alpha 2 plus IFN-omega in five, and IFN-alpha 2, IFN-omega plus IFN-beta in two; IFN-omega only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other 12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also detected auto-Abs neutralizing 100 pg/ml IFN-alpha 2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-omega in 45 children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs neutralizing IFN-alpha 2 only (OR [95% CI] = 67.6 [5.7-9,196.6]) than for auto-Abs neutralizing IFN-. only (OR [95% CI] = 2.6 [1.2-5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6-35.9]) than for those neutralizing low concentrations (OR [95% CI] = 5.5 [3.1-9.6]) of IFN-omega and/or IFN-alpha 2
    • 

    corecore