153 research outputs found

    Revue sur l’état actuel des connaissances des procĂ©dĂ©s utilisĂ©s pour l’élimination des cyanobactĂ©ries et cyanotoxines lors de la potabilisation des eaux

    Get PDF
    Les toxines cyanobactĂ©riennes sont des contaminants importants des Ă©cosystĂšmes aquatiques et constituent un risque pour la santĂ© humaine. Les cyanobactĂ©ries peuvent libĂ©rer des toxines dans l’eau, particuliĂšrement lors de la lyse des cellules qui se produit souvent au moment de leur passage Ă  travers la filiĂšre conventionnelle de potabilisation des eaux. Dans cet article de revue de la littĂ©rature, les normes sur la qualitĂ© de l’eau concernant les toxines ainsi que les principales mĂ©thodes de dĂ©tection des toxines sont d’abord prĂ©sentĂ©es. Les mĂ©thodes d’élimination des cyanobactĂ©ries et des cyanotoxines sont ensuite dĂ©crites et leur performance discutĂ©e. Les procĂ©dĂ©s conventionnels prĂ©sentĂ©s sont la coagulation/floculation, la clarification, la filtration sur sable, l’utilisation du charbon actif ainsi que l’oxydation chimique par chloration ou par le permanganate de potassium. Les mĂ©thodes alternatives prĂ©sentement en dĂ©veloppement pour optimiser les systĂšmes actuels de potabilisation des eaux ou remplacer les technologies conventionnelles trop peu efficaces pour l’élimination des polluants Ă©mergents (par ex., les procĂ©dĂ©s d’oxydation avancĂ©e et la filtration membranaire) sont Ă©galement prĂ©sentĂ©es. Des procĂ©dĂ©s conventionnels tels que la chloration peuvent s’avĂ©rer inadĂ©quats, notamment par leur manque de fiabilitĂ© pour l’oxydation des cyanotoxines et par le risque encouru suite Ă  la formation de sous-produits toxiques (par ex., les organochlorĂ©s). Des mĂ©thodes alternatives telles que la combinaison d’ozone et de peroxyde d’hydrogĂšne permettent une oxydation fiable des cyanotoxines en assurant un effet rĂ©manent Ă  la sortie du contacteur. Ce type de traitement peut ĂȘtre facilement mis en oeuvre dans les usines de potabilisation des eaux possĂ©dant dĂ©jĂ  une unitĂ© d’ozonation. L’utilisation du charbon actif, notamment sous forme de poudre, peut ĂȘtre efficace lors de contaminations ponctuelles par les fleurs d’eau de cyanobactĂ©ries. Ce document fait ainsi une synthĂšse de ces procĂ©dĂ©s chimiques, physiques ou physico-chimiques contribuant Ă  l’élimination des cyanotoxines et des cyanobactĂ©ries lors de la potabilisation des eaux.Cyanobacterial toxins are important contaminants of aquatic ecosystems and present a risk for human health. Cyanobacteria can release toxins in water, particularly following cell lysis, which often happens during their passage through a conventional water treatment plant. In this literature review, water quality guidelines for the elimination of cyanotoxins and major detection methods of cyanotoxins are briefly presented. The processes used for cyanobacteria and cyanotoxin removal from drinking water are then reviewed and their performance discussed. The conventional methods presented are: coagulation/flocculation, clarification, sand filtration, activated carbon and chemical oxidation with chlorination or potassium permanganate. Alternative methods that are presently developed to enhance existing treatment plants or to replace conventional technologies that are less effective in removing emergent pollutants (e.g., advanced oxidation processes and membrane filtration) are also presented. Conventional methods such as chlorination can be inappropriate, notably because of their inability to fully oxidize cyanotoxins and the associated risk of formation of toxic by-products (e.g., organochlorinated compounds). Alternative methods such as the combination of ozone and hydrogen peroxide are more reliable to eliminate cyanotoxins, with a residual effect downstream from the treatment contactor. In addition, this type of treatment can be easily implemented in water treatment plants that are already using ozonation. The use of activated carbon, notably in the form of powder, can be efficient in the case of point contamination by cyanobacterial blooms. This document aims to synthesize these chemical, physical and physico-chemical methods to eliminate cyanotoxins and cyanobacteria during the treatment of drinking water

    ProcĂ©dĂ©s d’oxydation avancĂ©e dans le traitement des eaux et des effluents industriels: Application Ă  la dĂ©gradation des polluants rĂ©fractaires

    Get PDF
    Cette synthĂšse traite des procĂ©dĂ©s d’oxydation avancĂ©e (POA) pour le traitement des eaux et des effluents industriels. Ces procĂ©dĂ©s mettent pour la plupart en combinaison deux ou trois rĂ©actifs (oxydants) afin de produire des radicaux hydroxyles. Les radicaux libres sont des espĂšces hautement actives capables de rĂ©agir rapidement et de maniĂšre non sĂ©lective sur la plupart des composĂ©s organiques, rĂ©putĂ©s difficilement oxydables par voie biologique ou par des traitements chimiques conventionnels. Les POA peuvent ĂȘtre subdivisĂ©s en quatre groupes : les procĂ©dĂ©s d’oxydation chimique en phase homogĂšne (H2O2/Fe2+ et H2O2/O3), les procĂ©dĂ©s photocatalytiques en phase homogĂšne et/ou hĂ©tĂ©rogĂšne (H2O2/UV, O3/UV et Fe2+/H2O2/UV; TiO2/UV), les procĂ©dĂ©s d’oxydation sonochimique et les procĂ©dĂ©s d’oxydation Ă©lectrochimique. Le couplage H2O2/Fe2+ reprĂ©sente le systĂšme d’oxydation avancĂ©e le plus connu et le moins complexe, lequel est souvent employĂ© dans le traitement des effluents industriels. Cependant, dans le domaine de la potabilisation des eaux, le systĂšme le plus utilisĂ© et le plus Ă©prouvĂ© est le couplage H2O2/O3 couramment employĂ© pour l’élimination des composĂ©s phytosanitaires (pesticides). Les procĂ©dĂ©s d’oxydation Ă©lectrochimiques, photocatalytiques et sonochimiques sont des technologies qui nĂ©cessitent en gĂ©nĂ©ral moins de rĂ©actif et sont faciles d’automatisation par comparaison aux autres POA. Ces procĂ©dĂ©s sont prĂ©sentement en pleine expansion dans le domaine des technologies environnementales, ceci afin d’amĂ©liorer les systĂšmes existants de traitement des eaux usĂ©es municipales et industrielles, ou Ă  remplacer les technologies conventionnelles peu efficaces pour l’enlĂšvement de contaminants organiques rĂ©fractaires, inorganiques et microbiens. De nombreuses Ă©tudes rĂ©alisĂ©es Ă  l’échelle laboratoire ont clairement prouvĂ© l’efficacitĂ© des POA pour le traitement de divers effluents. Cependant, le dĂ©veloppement de ces procĂ©dĂ©s dans les filiĂšres de traitement des eaux reste encore limitĂ© en raison des coĂ»ts d’investissement et des coĂ»ts opĂ©ratoires associĂ©s. Des solutions et stratĂ©gies sont proposĂ©es dans ce document, telles que le dĂ©veloppement de procĂ©dĂ©s hybrides et leur couplage avec des traitements biologiques conventionnels, et ce, afin de pallier certaines contraintes spĂ©cifiques des POA et faciliter ainsi leur insertion dans les filiĂšres de traitement des eaux et des effluents industriels. Ce document a pour objectif de faire une synthĂšse des diffĂ©rents POA, d’en expliquer leur principe de fonctionnement, de dĂ©terminer les diffĂ©rents paramĂštres les gouvernant, ainsi que leurs applications dans le traitement des eaux et des effluents.This review deals with advanced oxidation processes (AOP) for water and wastewater treatment. Most AOPs combine two or three chemical oxidants in order to produce hydroxyl radicals. These free radicals are species capable of oxidizing numerous complex organic, non-chemically oxidizable or difficulty oxidizable compounds. They efficiently react with carbon-carbon double bonds and attack the aromatic nucleus, which are prevalent features of refractory organic compounds. The AOPs can be divided into four groups: homogenous chemical oxidation processes (H2O2/Fe2+ and H2O2/O3), homogenous/heterogeneous photocatalytic processes (H2O2/UV, O3/UV and Fe2+/H2O2/UV; TiO2/UV), sonification oxidation processes (ultrasound oxidation) and electrochemical oxidation processes. The H2O2/Fe2+ system represents the most common and simplest AOP, which is often employed for the treatment of industrial effluents. However for drinking water treatment, the H2O2/O3 system is commonly used for pesticide removal. Electrochemical, photo-catalytic and sonification oxidation processes require fewer chemicals and are more easily automated than other AOPs. These technologies are effective in improving the treatment of industrial wastes, wastewater and drinking water, for example after their integration into a treatment plant or after their replacement of conventional processes that are found to less effectively eliminate specific organic and inorganic pollutants. The goal of this paper is to review published literature on the use of AOPs for water and wastewater treatment and the removal of refractory pollutants. Specifically, the objectives are: (i) to understand the theory and mechanisms of pollutant removal in AOPs, (ii) to provide a database for AOP applications, and (iii) to suggest new research directions for the development of AOPs

    Contribution Ă  la dĂ©pollution d’un rejet textile par adsorption sur un coagulant Ă  base du mĂ©lange fer/aluminium prĂ©parĂ© par Ă©lectrocoagulation

    Get PDF
    L’industrie textile consomme une grande quantité d’eau, générant ainsi des rejets liquides à charge élevée en divers types de polluants. Ces derniers produisent des effets nocifs sur l’environnement. Ce travail s’intéresse à la dépollution d’un rejet d’une industrie textile, par addition d’un coagulant synthétique à base de fer et d’aluminium, préparé par le procédé d’électrocoagulation. Les résultats ont montré que le traitement de ce rejet par ce coagulant, a permis d’atteindre un rendement d’élimination des matières colorantes de 83.37% en terme de demande chimique en oxygène (DCO).Mots clés: traitement, hydroxyde, coagulation, demande chimique en oxygèn

    Simultaneous phosphates and nitrates removal from waste-waters by electrochemical process: Techno-economical assessment through response surface methodology

    Get PDF
    In this study, a new multiobjective optimization of the simultaneous removal of phosphates and nitrates by electrocoagulation was studied using the Box-Behnken design. Ten aluminium electrodes, connected in a monopolar configuration in a batch reactor, were immersed in synthetic wastewater and then in real wastewater. The optimal conditions and the effects of parameters (current intensity, electrolysis time and initial pH) on phosphate and nitrate removal, the formation of by-products, and the operating cost were assessed in the case of synthetic wastewater. This optimization allowed to eliminate 89.21 % of phos­phates, 69.06 % of nitrates with an operating cost of 3.44 USD m-3 against 13.67 mg L-1 of ammonium generated. Optimal conditions applied to real domestic wastewater made it possible to remove 93 % of phosphates and 90.3 % of nitrates with an ammonium residual of 30.9 mg L-1. The addition of sodium chloride reduced the residual ammonium content to 2.95 mg L-1. Further, XRD analysis of the sludge showed poor crystal structure and the FTIR spectrum suggested that the phosphate is removed by adsorption and co-precipitation

    Photosonochemical degradation of butyl-paraben: Optimization, toxicity and kinetic studies

    Get PDF
    The objective of the present work is to evaluate the potential of a photosonolysis process for the degradation of butyl-paraben (BPB). After 120 min of treatment time, high removal of BPB was achieved by the photosonolysis (US/UV) process (88.0 ± 0.65%) compared to the photochemical (UV) and the conventional ultrasonication (US) processes. Several factors such as calorimetric power, treatment time, pH and initial concentration of BPB were investigated. Using a 24 factorial matrix, the treatment time and the calorimetric power are the main parameters influencing the degradation rate of BPB. Subsequently, a central composite design methodology has been investigated to determine the optimal experimental parameters for BPB degradation. The US/UV process applied under optimal operating conditions (at a calorimetric power of 40 W during 120 min and under pH 7) is able to oxidize around 99.2 ± 1.4% of BPB and to record 43.3% of mineralization. During the US/UV process, BPB was mainly transformed into 1 hydroxy BPB, dihydroxy BPB, hydroquinone and 4-hydroxybenzoic acid. Microtox biotests (Vibrio fisheri) showed that the treated effluent was not toxic. The pseudo-first order kinetic model (k = 0.0367 min− 1) described very well the oxidation of BPB

    Electroosmotically generated disinfectant from urine as a by-product of electricity in microbial fuel cell for the inactivation of pathogenic species

    Get PDF
    This work presents a small scale and low cost ceramic based microbial fuel cell, utilising human urine into electricity, while producing clean catholyte into an initially empty cathode chamber through the process of electro-osmostic drag. It is the first time that the catholyte obtained as a by-product of electricity generation from urine was transparent in colour and reached pH>13 with high ionic conductivity values. The catholyte was collected and used ex situ as a killing agent for the inactivation of a pathogenic species such as Salmonella typhimurium, using a luminometer assay. Results showed that the catholyte solutions were efficacious in the inactivation of the pathogen organism even when diluted up to 1:10, resulting in more than 5 log-fold reduction in 4 min. Long-term impact of the catholyte on the pathogen killing was evaluated by plating Salmonella typhimurium on agar plates and showed that the catholyte possesses a long-term killing efficacy and continued to inhibit pathogen growth for 10 days
    • 

    corecore