15 research outputs found

    Uav-based bridge inspection via transfer learning

    Get PDF
    As bridge inspection becomes more advanced and more ubiquitous, artificial intelligence (AI) techniques, such as machine and deep learning, could offer suitable solutions to the nation’s problems of overdue bridge inspections. AI coupling with various data that can be captured by unmanned aerial vehicles (UAVs) enables fully automated bridge inspections. The key to the success of automated bridge inspection is a model capable of detecting failures from UAV data like images and films. In this context, this paper investigates the performances of state-of-the-art convolutional neural networks (CNNs) through transfer learning for crack detection in UAV-based bridge inspection. The performance of different CNN models is evaluated via UAV-based inspection of Skodsberg Bridge, located in eastern Norway. The low-level features are extracted in the last layers of the CNN models and these layers are trained using 19,023 crack and non-crack images. There is always a trade-off between the number of trainable parameters that CNN models need to learn for each specific task and the number of non-trainable parameters that come from transfer learning. Therefore, selecting the optimized amount of transfer learning is a challenging task and, as there is not enough research in this area, it will be studied in this paper. Moreover, UAV-based bridge inception images require specific attention to establish a suitable dataset as the input of CNN models that are trained on homogenous images. However, in the real implementation of CNN models in UAV-based bridge inspection images, there are always heterogeneities and noises, such as natural and artificial effects like different luminosities, spatial positions, and colors of the elements in an image. In this study, the effects of such heterogeneities on the performance of CNN models via transfer learning are examined. The results demonstrate that with a simplified image cropping technique and with minimum effort to preprocess images, CNN models can identify crack elements from non-crack elements with 81% accuracy. Moreover, the results show that heterogeneities inherent in UAV-based bridge inspection data significantly affect the performance of CNN models with an average 32.6% decrease of accuracy of the CNN models. It is also found that deeper CNN models do not provide higher accuracy compared to the shallower CNN models when the number of images for adoption to a specific task, in this case crack detection, is not large enough; in this study, 19,023 images and shallower models outperform the deeper models.publishedVersio

    Uav-based bridge inspection via transfer learning

    No full text
    As bridge inspection becomes more advanced and more ubiquitous, artificial intelligence (AI) techniques, such as machine and deep learning, could offer suitable solutions to the nation’s problems of overdue bridge inspections. AI coupling with various data that can be captured by unmanned aerial vehicles (UAVs) enables fully automated bridge inspections. The key to the success of automated bridge inspection is a model capable of detecting failures from UAV data like images and films. In this context, this paper investigates the performances of state-of-the-art convolutional neural networks (CNNs) through transfer learning for crack detection in UAV-based bridge inspection. The performance of different CNN models is evaluated via UAV-based inspection of Skodsberg Bridge, located in eastern Norway. The low-level features are extracted in the last layers of the CNN models and these layers are trained using 19,023 crack and non-crack images. There is always a trade-off between the number of trainable parameters that CNN models need to learn for each specific task and the number of non-trainable parameters that come from transfer learning. Therefore, selecting the optimized amount of transfer learning is a challenging task and, as there is not enough research in this area, it will be studied in this paper. Moreover, UAV-based bridge inception images require specific attention to establish a suitable dataset as the input of CNN models that are trained on homogenous images. However, in the real implementation of CNN models in UAV-based bridge inspection images, there are always heterogeneities and noises, such as natural and artificial effects like different luminosities, spatial positions, and colors of the elements in an image. In this study, the effects of such heterogeneities on the performance of CNN models via transfer learning are examined. The results demonstrate that with a simplified image cropping technique and with minimum effort to preprocess images, CNN models can identify crack elements from non-crack elements with 81% accuracy. Moreover, the results show that heterogeneities inherent in UAV-based bridge inspection data significantly affect the performance of CNN models with an average 32.6% decrease of accuracy of the CNN models. It is also found that deeper CNN models do not provide higher accuracy compared to the shallower CNN models when the number of images for adoption to a specific task, in this case crack detection, is not large enough; in this study, 19,023 images and shallower models outperform the deeper models

    Big Machinery Data Preprocessing Methodology for Data-Driven Models in Prognostics and Health Management

    No full text
    Sensor monitoring networks and advances in big data analytics have guided the reliability engineering landscape to a new era of big machinery data. Low-cost sensors, along with the evolution of the internet of things and industry 4.0, have resulted in rich databases that can be analyzed through prognostics and health management (PHM) frameworks. Several data-driven models (DDMs) have been proposed and applied for diagnostics and prognostics purposes in complex systems. However, many of these models are developed using simulated or experimental data sets, and there is still a knowledge gap for applications in real operating systems. Furthermore, little attention has been given to the required data preprocessing steps compared to the training processes of these DDMs. Up to date, research works do not follow a formal and consistent data preprocessing guideline for PHM applications. This paper presents a comprehensive step-by-step pipeline for the preprocessing of monitoring data from complex systems aimed for DDMs. The importance of expert knowledge is discussed in the context of data selection and label generation. Two case studies are presented for validation, with the end goal of creating clean data sets with healthy and unhealthy labels that are then used to train machinery health state classifiers

    Condition-Based Maintenance with Reinforcement Learning for Dry Gas Pipeline Subject to Internal Corrosion

    No full text
    Gas pipeline systems are one of the largest energy infrastructures in the world and are known to be very efficient and reliable. However, this does not mean they are prone to no risk. Corrosion is a significant problem in gas pipelines that imposes large risks such as ruptures and leakage to the environment and the pipeline system. Therefore, various maintenance actions are performed routinely to ensure the integrity of the pipelines. The costs of the corrosion-related maintenance actions are a significant portion of the pipeline’s operation and maintenance costs, and minimizing this large cost is a highly compelling subject that has been addressed by many studies. In this paper, we investigate the benefits of applying reinforcement learning (RL) techniques to the corrosion-related maintenance management of dry gas pipelines. We first address the rising need for a simulated testbed by proposing a test bench that models corrosion degradation while interacting with the maintenance decision-maker within the RL environment. Second, we propose a condition-based maintenance management approach that leverages a data-driven RL decision-making methodology. An RL maintenance scheduler is applied to the proposed test bench, and the results show that applying the proposed condition-based maintenance management technique can reduce up to 58% of the maintenance costs compared to a periodic maintenance policy while securing pipeline reliability

    Gapped Gaussian smoothing technique for debonding assessment with automatic thresholding

    Get PDF
    Sandwich structures are subjected to imperfect bonding or debonding caused by defects during the manufacturing process, by fatigue, or by impact loads. In this context, their safety and functionality can be improved with the implementation of vibration‐based structural damage assessment methodologies. These methodologies involve the computation of second or higher order displacement derivatives, which are often obtained using the central difference method. Nevertheless, this method propagates and amplifies the measurement errors and noise. Therefore, a Gaussian process (GP) regression model to build smoothed (noise‐free) curvature mode shapes from noisy experimental mode shape displacements is presented in this paper. The proposed baseline‐free debonding assessment approach combines the gapped smoothing (GS) method, curvature mode shapes estimated using a GP regression, and the valleyemphasis method to automatically find damaged regions. Experimental results indicate that our approach performs better than the conventional GS method in the presence of experimental noise
    corecore