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Summary

Sandwich structures are subjected to imperfect bonding or debonding caused

by defects during the manufacturing process, by fatigue, or by impact loads.

In this context, their safety and functionality can be improved with the imple-

mentation of vibration‐based structural damage assessment methodologies.

These methodologies involve the computation of second or higher order dis-

placement derivatives, which are often obtained using the central difference

method. Nevertheless, this method propagates and amplifies the measurement

errors and noise. Therefore, a Gaussian process (GP) regression model to build

smoothed (noise‐free) curvature mode shapes from noisy experimental mode

shape displacements is presented in this paper. The proposed baseline‐free

debonding assessment approach combines the gapped smoothing (GS) method,

curvature mode shapes estimated using a GP regression, and the valley‐

emphasis method to automatically find damaged regions. Experimental results

indicate that our approach performs better than the conventional GS method

in the presence of experimental noise.
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1 | INTRODUCTION

Sandwich structures have become very popular in recent years mainly due to their low weight and high stiffness. Nev-
ertheless, these structures are subjected to imperfect bonding or debonding caused by defects during the manufacturing
process, by fatigue, or by impact loads.1 This type of damage may severely deteriorate the mechanical properties of sand-
wich structures and could ultimately lead to a catastrophic failure.

The functionality and safety of these systems can be improved with the use of structural damage assessment meth-
odologies, which are employed to identify any damage before it becomes a failure. Among the different methodologies
to assess damage, vibration‐based methods have become very popular in the past few years.2 Modifications to the
mechanical properties of a structure caused by damage lead to detectable variations in the vibrational properties. There-
fore, by monitoring the vibrational properties, such as the resonant frequencies, mode shape displacements, modal
damping, and the frequency response functions, it is possible to identify the damage.

Different response parameters have been employed to assess damage in plate‐like structures based on their vibration
properties. The modal strain energy (MSE) was applied by Cornwell et al.3 to localize damage in plate structures; the
strain energy of the plate in damaged and undamaged conditions is used to build the damage indices. Li et al.4 presented
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two damage indices derived from a strain mode technique to characterize damage of 2D structures: a residual strain
mode shape index and a bending moment index. The variations in the uniform load surface curvature were employed
by Wu and Law to localize damage in plate structures.5,6 Moreno‐García et al.7 studied the performance of high‐order
mode shape derivatives in damage localization of 2D structures. They concluded that the fourth‐order derivative pro-
vides better results.

The previous methods help identify damage by comparing the measured characteristics from damaged and undam-
aged structures. Therefore, reference data from an undamaged structure are a prerequisite, and pairing the damaged
and undamaged modes is necessary. In some cases, useful damaged modes might not be used because they would not
have been paired with the undamaged ones. To solve this problem, new types of baseline‐free damage assessment
algorithms have been proposed, among which gapped smoothing (GS) and wavelet‐based approach stand out. Yoon
et al.8 implemented a reference‐free algorithm that uses mode shape curvatures and the GS method to identify dam-
age in plate‐like structures. Qiao et al.9 implemented three experimental methodologies to identify damage in com-
posite laminates: generalized fractal dimension, MSE, and GS. Their results show that the GS method outperforms
the others in identifying the delamination of the composite plate. Rucevskis et al.11 proposed a damage detection algo-
rithm for plates that uses the same principle as the GS method. In their algorithm, the damage index is computed as
the difference between the measured curvature of the damaged panel and the smoothed polynomial representing the
undamaged case. Chang and Chen10 developed a damage detection algorithm for plates using the spatial wavelet
technique. The mode shape wavelet coefficients, computed by a one‐dimensional continuous wavelet transform
(CWT), are used to identify local variations due to damage. Douka et al.12 applied the one‐dimensional CWT with
different wavelets to detect cracks in plates. Different investigations have implemented a 2D CWT to identify damage
in 2D structures.12-15 Katunin16 introduced a damaged localization technique that uses B‐splines wavelets along with
the discrete wavelet transform. He demonstrated that compared with CWT approaches, their approach yields better
results with lower computational times. Katunin17 focused on finding the best wavelet parameters selection, whereas
in his other study,18 damage was localized in a sandwich composite panel using a fractional discrete wavelet
transform.

According to Moreno‐García et al.7 and Rucevskis et al.,11 damage localization is more effective when more degrees
of freedom are measured. A large arrangement of triaxial accelerometers or a scanning laser vibrometer (SLV) are usual
methods for full‐field vibration measurements. Nonetheless, in the first case, the structure is affected by the mass added
by the accelerometers, and the number of available accelerometers restricts the number of measurement locations. On
the other hand, SLVs can be used to obtain 3D data at several points, but only asynchronous measurements can be
made. Furthermore, the presence of large rigid‐body motions affects the SLV performance. In the last few years, the
high‐speed 3D digital image correlation (DIC) technique has emerged as an attractive technique for full‐field vibration
measurements.19 This technique determines the geometry and displacement of an object with the use of a pair of high‐
speed cameras, allowing to measure the displacement of thousands of points in a very short time. Seguel and Meruane20

were the first to investigate the application of 3D DIC measurements in debonding assessment of sandwich composite
panels, demonstrating that a high‐speed 3D system can be employed effectively to locate damage in sandwich panels.
Meruane et al.21 implemented a damage localization and quantification algorithm for composite panels that uses a lin-
ear approximation with a maximum entropy algorithm and damage indices obtained from the MSE method. The panel
vibration mode shapes were measured with the use of a high‐speed 3D DIC system.

The aforementioned damage assessment methods involve the computation of second or higher‐order displacement
derivatives, which are often obtained using the central difference method. Nevertheless, this method propagates and
amplifies the measurement noise and error present in the experimental data. To solve this problem, Moreno‐García
et al.7 developed a methodology that determines the best spatial sampling based on the minimization of the total numer-
ical differentiation error. Wu and Law5 followed a different approach to reduce the effect of noise. They proposed a new
methodology to compute the derivatives based on a Chebyshev polynomial approximation instead of the central differ-
ence formulation. Cao et al.22 adopted a Laplacian of Gaussian filter to remove experimental noise from the mode shape
displacements before using a central differences formulation to estimate the mode shape curvatures.

In the field of strain estimation based on DIC measurements, there has been recent progress in methodologies to
reduce experimental noise in displacement data (smoothing techniques). Smoothing techniques are generally classified
as parametric or nonparametric. In the parametric methods, it is necessary to select analytical functions that character-
ize the data; some examples of parametric functions used to smoothen the experimental data are the radial basis23 and
finite element shape33 functions. In the nonparametric case, it is not necessary to make assumptions about the data; the
most frequently used approach is based on least squares.34 Recently, researchers have introduced a nonparametric
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approach based on Gaussian process (GP) regression models.25 This powerful nonparametric technique can be used to
build regressions from training data.26 Herein, it is demonstrated that this technique can be used to build smoothed
(noise‐free) curvature mode shapes from noisy experimental mode shape displacements.

Once the damage indices have been computed, it is important to define the range of damage index values corre-
sponding to damaged and nondamaged states. A statistical approach has been proposed for damage assessment.8,20 This
approach assumes a normal distribution for the damage indices located in the undamaged regions. Therefore, statisti-
cally significant characteristics such as damage will appear as outliers. In the field of machine vision, automatic
thresholding techniques have been widely used for defects visual inspection, among which the Otsu method has been
proven to be most effective.27 Ng28 proposed an upgrading to the Otsu method, called the valley‐emphasis method,
which works with bimodal distributions. The main advantage of this method over the statistical approach is that the
segmentation is made automatically, without requiring parameter selection.

This paper presents a new baseline‐free damage assessment algorithm for composite sandwich panels. In this algo-
rithm, the GS method, curvature mode shapes estimated using a GP methodology, and the valley‐emphasis method
are combined to automatically find damaged regions. Experimental and numerical data of sandwich panels made of alu-
minum skins and an aluminum honeycomb core are used to validate the algorithm. Full‐field vibration measurements
of the sandwich panels are acquired by means of a high‐speed 3D system.

To determine the benefits of our approach over an existing method, the results obtained using the proposed approach
are contrasted with those of a conventional GS method with curvatures computed via a central difference approxima-
tion, for which mode shape displacements previously smoothed by a least squares approach are used.
2 | GS METHOD

As proposed by Yoon et al.,8 the mode shapes are first normalized by its root mean square values, as follows:

φr xi; yj
� �

¼ ϕr xi; yj
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NxNy

∑Nx
i¼1∑

Ny

j¼1ϕ
2
r xi; yj
� �vuut ; (1)

where Nx and Ny are the numbers of grid points in the corresponding directions, and φr(xi, yj) is the normalized rth mode
shape at point (xi, yj).

The mode shape curvatures can be estimated using central differences as follows:

∇2φr xi; yj
� �

¼
φr xiþ1; yj
� �

− 2φr xi; yj
� �

þ φr xi−1; yj
� �

h2x
þ
φr xi; yjþ1

� �
− 2φr xi; yj

� �
þ φr xi; yj−1

� �
h2y

; (2)

where hx and hy are the grid spacings in the x and y directions, respectively. Accordingly, the undamaged mode shape
curvatures can be approximated using

∇2φr xi; yj
� �

¼ gTi; jθi; j; (3)

where gi,j and θi,j correspond to a vector of base functions and their coefficients, respectively. In particular, first‐order
base functions are used here. This leads to

gTi; j ¼ 1; xi; yj
h i

; θTi; j ¼ a0; a1; a2½ �: (4)

Note that this approximation has been previously employed for similar problems.8 Now, Equation 3 can be arranged
in matrix form by considering the neighboring points of (xi, yj), as follows:

λr xi; yj
� �

¼ GT
r xi; yj
� �

θi; j; (5)

where
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λTr xi; yj
� �

¼ ∇2φr xi−1; yj−1
� �

;∇2φr xi; yj−1
� �

;∇2φr xiþ1; yj−1
� �

;⋯;∇2φr xiþ1; yjþ1

� �h i
GT

r xi; yj
� �

¼ gi−1; j−1; gi; j−1;giþ1; j−1;⋯; giþ1; jþ1

h i
The estimation of the parameters by least squares is given as follows:

bθri; j¼ GT
r xi; yj
� �

Gr xi; yj
� �� �−1

GT
r xi; yj
� �

λr xi; yj
� �

; (6)

and the undamaged mode shape curvature is calculated as follows:

Cr xi; yj
� �

¼ gTi; jbθri; j: (7)

Ultimately, the damage indices can be calculated using

dr xi; yj
� �

¼ ∇2φr xi; yj
� �

− Cr xi; yj
� ���� ���: (8)

This expression can be expanded to consider different modes, for example, the damage index at the test point (xi, yj)
considering m modes can be obtained using the following equation:

d xi; yj
� �

¼ ∑
m

r¼1
dr xi; yj
� �

: (9)

3 | ESTIMATION OF CURVATURES USING GP REGRESSION

We represent the rth experimental mode shape by a set of training data D = 〈X,ϕr〉, where X = [(x1, y1), (x2, y2), … , (xn,
yn)] are the coordinates of the points in the grid, and ϕr = [ϕr(x1, y1),ϕr(x2, y2), … ,ϕr(xn, yn)] are the mode shape displace-
ments corresponding to each point. The observed mode shape vector is obtained from a noisy process, expressed by

ϕr xi; yið Þ ¼ f xi; yið Þ þ ϵ; (10)

where ϵ corresponds to an additive Gaussian noise with zero mean and variance σ2n. Given the training data D = 〈X,ϕr〉,
the GP prediction for the mean of the mode shape displacement at point (x*, y*) is

ϕs
r x*; y*ð Þ ¼ k*

TK−1ϕr; (11)

where k* is a vector containing the kernel values between the test point (x*, y*) and the points in the grid X and is
expressed as

k* i½ � ¼ k x*; y*ð Þ; xi; yið Þð Þ: (12)

The function k corresponds to the autocorrelation function of the GP. The matrix K is the kernel matrix of the grid
points:

K i; j½ � ¼ k xi; yið Þ; xj; yj
� �� �

: (13)

The most widely used kernel is the Gaussian kernel with additive noise:

k xi; yið Þ; xj; yj
� �� �

¼ e−
1
2

xi−xj
� �2

s2x
þ

yi−yj
� �2

s2y

0B@
1CAþ σ2

nδij; (14)

where s2x and s2y are the length scales that reflect the relative smoothness of the process along the x and y directions,

respectively. The parameter σ2n accounts for the global noise of the process, and δij corresponds to the Kronecker delta.
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The smoothed mode shape displacements ϕs
r are estimated by evaluating Equation 11 at the grid points. The mode

shape curvatures can be obtained from the analytical expression of the mode shape displacements, thus avoiding
numerical differentiation. The smoothed mode shape curvatures are given by

∂2ϕs
r x*; y*ð Þ
∂x2

¼ k*xx½ �TK−1ϕr; (15)

and

∂2ϕs
r x*; y*ð Þ
∂y2

¼ k*yy
� 	T

K−1ϕr; (16)

where k*xx and k*yy are the vectors containing the second‐order derivatives of the kernel function evaluated between the
test point (x*, y*) and the points in the grid X. The second‐order derivatives of the kernel function are given by

∂2k
∂x2

xi; yið Þ; xj; yj
� �� �

¼ xi−xj
s2x


 �2

−
1
s2x

" #
k xi; yið Þ; xj; yj:

� �� �
(17)

and

∂2k
∂y2

xi; yið Þ; xj; yj
� �� �

¼ yi−yj
s2y

 !2

−
1
s2x

" #
k xi; yið Þ; xj; yj

� �� �
: (18)

4 | AUTOMATIC THRESHOLDING METHOD

A grayscale image can be characterized by an intensity function with a total of L levels. Automatic thresholding
methods separate objects of interest with the use of threshold values, thus each family of objects is designated to a cer-
tain range of levels in the grayscale. Let us assume that the image contains a total of n pixels, and ni corresponds to the
number of pixels in level i. Therefore, the probability of level i is

pi ¼
ni

n
: (19)

In the single thresholding case, the pixels are separated into two classes C1 = {1,2, … ,q} and C2 = {q+1,q+2, … ,L},
where q is the threshold value. The probabilities for each class are

P1 qð Þ ¼ ∑
q

i¼1
pi and P2 qð Þ ¼ ∑

L

i¼qþ1
pi : (20)

The mean levels in each class are given by

μ1 ¼ ∑q
i¼1ipi; =P1 and μ2 ¼ ∑L

i¼qþ1ipi; =P2 : (21)

The valley‐emphasis method maximizes the variance between the two groups while minimizing the probability of
occurrence at the threshold value:

q* ¼ argmax
0 < q ≤ L

1 − pq
� �

P1 qð Þμ21 þ P2 qð Þμ22
� �� �

: (22)

5 | PROPOSED APPROACH

The proposed approach comprises the next steps:

1. Obtain the experimental mode shape displacements and normalize them by their root mean square values accord-
ing to Equation 1.



6 of 16 MERUANE ET AL.
2. Select the length scale parameter s2x and the noise variance σ2
n and estimate the smooth mode shape curvatures using

the procedure described in Section 3. As the grid size is the same in the x and y directions, the parameter s2y is set

equal to s2x .
3. Compute the damage indices following Equations 3–9.
4. Identify the damaged region using the automatic thresholding method described in Section 4.

The results of the proposed approach were compared with those of conventional GS methods with curvatures com-
puted via the central difference approximation, for which the mode shape displacements previously smoothed by a least
squares approach were employed. The algorithm consists of the next steps:

1. Obtain the experimental mode shape displacements and smooth them using a penalized least squares method via
discrete cosine transform29 (one parameter needs to be selected).

2. Compute the damage indices as explained in Section 2 (Equations 1–9).
3. Identify the damaged region using the automatic thresholding method described in Section 4.

The performances of the two approaches were evaluated in terms of the intersection over union (IoU) metric, which
has been widely used to evaluate object detection and image segmentation algorithms.30 For damage identification, this
metric was computed by dividing the area of overlap between the predicted and true damaged regions by the area of the
union of the two regions (see Figure 1) and is expressed as follows:

IoU ¼ Area of overlap
Area of union

¼ TP
TP þ FP þ FN

; (23)

where TP, FN, and FP are the true positives, false negatives, and false positives, respectively.
6 | APPLICATION CASE

The application case presented in Figure 2 is an aluminum sandwich panel with a honeycomb core. One of the skins is
painted with a speckle pattern, which is necessary for the DIC measurements. The dimensions of the panel are
0.35 m × 0.25 m × 0.021 m. The characteristics of the skins and core are presented in Tables 1 and 2.
FIGURE 1 Scheme of predicted and true damaged regions

FIGURE 2 Aluminum sandwich with the speckle pattern



TABLE 1 Characteristics of the skin

Thickness 0.8 mm

Elastic modulus 6.9 × 1010 Pa

Poisson's ratio 0.33

Density 2,700 kg/m3

TABLE 2 Characteristics of the aluminum honeycomb core

Cell size 19.1 mm

Foil thickness 5 × 10−5 m

Thickness 10 mm

Density 20.8 kg/m3

Compressive strength 0.448 MPa

Longitudinal shear strength (σxy) 0.345 MPa

Longitudinal shear modulus (Gxy) 89.63 MPa

Transversal shear strength (σyz) 0.241 MPa

Transversal shear modulus (Gyz) 41.37 MPa
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The aluminum honeycomb core is joined to the two skins by means of an epoxy resin that cures at ambient temper-
ature and can be used for bonding aluminum to a variety of materials. Figure 3a presents one of the aluminum skins
with a layer of epoxy resin, in this case debonding is introduced as a circular region without adhesive. Figure 3b shows
the vacuum bagging system used during curing to ensure a perfect bonding.

Panels with four different damage scenarios were built, as shown in Figure 4. The damage is characterized by circular
and square shapes with normalized sizes varying between 0.07 and 0.17. Table 3 lists a summary of the damage scenar-
ios with dimensions. In Cases 3 and 4, there are two debonded regions in the panel.
6.1 | Numerical results

The performances of the damage assessment algorithms were first evaluated using a finite element model of the panel,
which was first built in Meruane et al.31 A three‐layer shell model represents the honeycomb sandwich panel; the skins
FIGURE 3 Manufacturing of experimental panel: (a) layer of epoxy resin over the skin, the circle without adhesive corresponds to the

debonded region, and (b) vacuum bagging curing



FIGURE 4 Scheme of the debonded

regions introduced to the experimental

panels, which are indicated by the red

lines

TABLE 3 Damage scenarios introduced to the experimental panels

Case

Normalized damage size

ShapeDamage 1 Damage 2

1 0.09 — Circular

2 0.12 — Circular

3 0.14 0.07 Square

4 0.11 0.17 Circular
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and the core are connected through linear springs that represent the epoxy adhesive layer. As illustrated in Figure 5,
debonding damage is introduced by reducing the stiffness of the springs in that zone.

The finite element model, which is shown in Figure 6, was built with the Structural Dynamics Toolbox32 of
MATLAB®. Standard isotropic four‐node shell element were used to model the skins and honeycomb core.

The numerical mode shapes were polluted with 10% random noise to simulate experimental measurements. As an
example, the first three mode shapes of an undamaged panel are illustrated in Figure 7. A database with 500 damage
scenarios is created to evaluate the damage assessment algorithms. The debonded regions have circular shapes and
are placed randomly throughout the panel with random diameters ranging between 1 and 10 cm.
FIGURE 5 Side view of the numerical

panel: (a) undamaged and (b) with a

debonded region



FIGURE 6 Three‐layer shell model representing the sandwich panel

FIGURE 7 First three undamaged numerical mode shapes with 10% random noise
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The performance of the proposed damage assessment methodology was evaluated as a function of the length scale
parameter sx and the noise variance σ2n. The length scale parameter was varied between 4dx and 7dx, where dx is the
distance between the two points on the grid. The results, shown in Figure 8, confirm that the best combination of
parameters is sx = 5dx and σ2

n = 1, which will be used hereinafter.
In the case of the conventional GS method with curvatures computed using a central difference approximation, the

only parameter to be selected is the smoothing factor. Figure 9 shows the performance of the conventional GS method
with central differences as a function of the smoothing factor. In this case, the results are very sensitive to the smoothing
FIGURE 8 Performance of the proposed damage assessment methodology as a function of the length scale parameter s2x and the noise

variance σ2n

FIGURE 9 Performance of the conventional gapped smoothing (GS) with central differences as a function of the smoothing factor
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factor. The best results are obtained with a factor of 100. When a lower factor is used, the performance decreases dras-
tically. In the subsequent implementations of this algorithm, a smoothing factor of 100 is used.

The panels in the database were categorized into five groups according to their size, and the mean performance indi-
cator IoU was calculated for each group. Figure 10 shows the results. In all the cases, the proposed Gaussian‐based algo-
rithm outperforms the method based on the central differences. Regarding the damage size, both algorithms cannot
identify the damage when the normalized size is lower than 0.05 and are ineffective when the damage size is lower than
0.1 or higher than 0.2. The best performance is obtained for normalized damage sizes in the range [0.15–0.2].

Figures 11 and 12 show some examples of damage identified using the conventional GS method with central differ-
ence approximation and the proposed approach, respectively. The images on the left show the damage indices, and
those on the right show the damage detected using the automatic threshold algorithm. The red circles/squares indicate
the true damage.

In the three examples presented in Figures 11 and 12, the GS method with the central difference approximation
exhibits a large background noise, whereas the proposed algorithm significantly reduces the effects of noise. Although
in Figure 10, the difference in the mean IoU between both algorithms is not much, it is clear from the damage indices
FIGURE 10 Damage assessment performance as a function of the normalized damage size

FIGURE 11 Damage identified using

the gapped smoothing (GS) method with

central difference approximation.

Normalized damage sizes: (a) 0.08, (b)

0.12, and (c) 0.17



FIGURE 12 Damage identified using

the proposed approach. Normalized

damage sizes: (a) 0.08, (b) 0.12, and (c)

0.17

FIGURE 13 Schematic of the

experimental setup

FIGURE 14 Experimental setup: (a) front view showing the panel with the speckle pattern, (b) back view showing the shaker attachment

MERUANE ET AL. 11 of 16
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that the proposed method is less sensitive to the experimental noise and almost does not detect false damage, whereas
the conventional method based on central differences tends to detect false damage due to the experimental noise.
6.2 | Experimental results

Figure 13 shows the schematic of the experimental setup. Soft springs hang the panel to represent a “free–free” bound-
ary condition, which is driven by an electrodynamic shaker. Two high‐speed synchronized cameras connected to the
DIC software capture the panel displacements. The DIC system consists of the Q450 high‐speed DIC system
(a) (b) (c)

FIGURE 15 First three experimental mode shapes identified for Case 1

FIGURE 16 Experimental damage

identified using the gapped smoothing

(GS) method with central difference

approximation. Normalized damage sizes:

(a) 0.09, (b) 0.12, (c) 0.14 and 0.07, and (d)

0.11 and 0.17
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manufactured by Dantec Dynamics, which is composed by the cameras, data acquisition, and DIC software. The max-
imum acquisition frequency at a resolution of 1 MP is 7,530 fps. The actual experimental setup is shown in Figure 14,
where front and back views of the panel are presented.

The procedure to identify the experimental modes shapes is described in Seguel and Meruane20 and can be summa-
rized as follows:

1. Identify the panel natural frequencies from an impact test.
2. Add a speckle pattern to the panel.
3. Tune the shaker to the natural frequency and excite the panel.
4. Record the panel vibration with high‐speed cameras and determine the displacements using a DIC software.
5. Export the displacements to MATLAB, estimate the operational mode shape, and smoothen it.
6. Select another natural frequency and go to step 3.

For each panel, all the mode shapes in the frequency range of 1–2,000 Hz were identified. The number of identified
modes is between 6 and 11, depending on the panel. As an example, Figure 15 shows the first three modes identified for
the first panel (Case 1).

Figures 16 and 17 show the damage identification results obtained using the GS method with central difference
approximation and the proposed approach, respectively. The images on the left show the damage indices, and those
on the right show the damage detected using the automatic threshold algorithm. The red circles/squares indicate the
FIGURE 17 Experimental damage

identified using the proposed approach.

Normalized damage sizes: (a) 0.09, (b) 0.12,

(c) 0.14 and 0.07, and (d) 0.11 and 0.17



TABLE 4 Performance of the algorithms for the experimental panels

Case

IoU

GS with central difference approximation Proposed approach

1 0.23 0.47

2 0.39 0.46

3 0.39 0.46

4 0.52 0.65

Abbreviations: GS, gapped smoothing; IoU, intersection over union.
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true damage. In the four cases, the proposed approach outperforms the existing method, proving to be more robust to
experimental noise. Table 4 summarizes the performance of the two algorithms.

The results, shown in Figures 16 and 17, confirm that both algorithms fail to detect the smaller damage in Case 3,
wherein the normalized size is 0.07, whereas they correctly identify the damage in Case 1, wherein the normalized size
is 0.09. Damage scenarios with a normalized size lower than 0.08 are not well identified. This was expected, as it was
demonstrated in the numerical analysis that the algorithms are ineffective when it comes to identifying small damage.
7 | CONCLUSIONS

A new baseline‐free algorithm to assess the damage in composite sandwich panels was proposed in this paper. In the
proposed algorithm, the GS method, curvature mode shapes estimated using a GP methodology, and valley‐emphasis
method are combined to automatically find damage regions. The algorithm was applied to assess the debonding of sand-
wich composite panels made of aluminum skins and an aluminum honeycomb core using high‐speed DIC measure-
ments. Further, the numerical and experimental results were compared with those of a conventional GS approach,
wherein the central difference approximation is employed to compute mode shape curvatures.

The results show that the conventional method is more sensitive to experimental noise because the curvatures are
calculated using the central difference approximation, which amplifies the experimental noise. In contrast, the proposed
approach identifies the damage more clearly and is not affected by experimental noise, as the GP methodology imple-
mented to estimate the curvatures was found to be robust against experimental noise. As such, the proposed approach is
more suitable for damage identification in the presence of experimental noise.

Both algorithms fail to identify damage with a normalized size lower than 0.08. This is related to the sensitivity of the
curvature modes shapes to small damage. Therefore, the proposed approach can be used to identify moderate to large
damage with a normalized size greater than 0.08. To identify smaller damage, local inspection methods, such as ultra-
sonic techniques, can be employed.

In the future, this approach will be applied to more complex and realistic structures and will be combined with deep
learning models to improve the algorithm performance.
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