138 research outputs found
Cutting edges at random in large recursive trees
We comment on old and new results related to the destruction of a random
recursive tree (RRT), in which its edges are cut one after the other in a
uniform random order. In particular, we study the number of steps needed to
isolate or disconnect certain distinguished vertices when the size of the tree
tends to infinity. New probabilistic explanations are given in terms of the
so-called cut-tree and the tree of component sizes, which both encode different
aspects of the destruction process. Finally, we establish the connection to
Bernoulli bond percolation on large RRT's and present recent results on the
cluster sizes in the supercritical regime.Comment: 29 pages, 3 figure
Patterns in rational base number systems
Number systems with a rational number as base have gained interest
in recent years. In particular, relations to Mahler's 3/2-problem as well as
the Josephus problem have been established. In the present paper we show that
the patterns of digits in the representations of positive integers in such a
number system are uniformly distributed. We study the sum-of-digits function of
number systems with rational base and use representations w.r.t. this
base to construct normal numbers in base in the spirit of Champernowne. The
main challenge in our proofs comes from the fact that the language of the
representations of integers in these number systems is not context-free. The
intricacy of this language makes it impossible to prove our results along
classical lines. In particular, we use self-affine tiles that are defined in
certain subrings of the ad\'ele ring and Fourier
analysis in . With help of these tools we are able to
reformulate our results as estimation problems for character sums
The grand canonical ABC model: a reflection asymmetric mean field Potts model
We investigate the phase diagram of a three-component system of particles on
a one-dimensional filled lattice, or equivalently of a one-dimensional
three-state Potts model, with reflection asymmetric mean field interactions.
The three types of particles are designated as , , and . The system is
described by a grand canonical ensemble with temperature and chemical
potentials , , and . We find that for
the system undergoes a phase transition from a
uniform density to a continuum of phases at a critical temperature . For other values of the chemical potentials the system
has a unique equilibrium state. As is the case for the canonical ensemble for
this model, the grand canonical ensemble is the stationary measure
satisfying detailed balance for a natural dynamics. We note that , where is the critical temperature for a similar transition in
the canonical ensemble at fixed equal densities .Comment: 24 pages, 3 figure
Controlled non uniform random generation of decomposable structures
Consider a class of decomposable combinatorial structures, using different
types of atoms \Atoms = \{\At_1,\ldots ,\At_{|{\Atoms}|}\}. We address the
random generation of such structures with respect to a size and a targeted
distribution in of its \emph{distinguished} atoms. We consider two
variations on this problem. In the first alternative, the targeted distribution
is given by real numbers \TargFreq_1, \ldots, \TargFreq_k such that 0 <
\TargFreq_i < 1 for all and \TargFreq_1+\cdots+\TargFreq_k \leq 1. We
aim to generate random structures among the whole set of structures of a given
size , in such a way that the {\em expected} frequency of any distinguished
atom \At_i equals \TargFreq_i. We address this problem by weighting the
atoms with a -tuple \Weights of real-valued weights, inducing a weighted
distribution over the set of structures of size . We first adapt the
classical recursive random generation scheme into an algorithm taking
\bigO{n^{1+o(1)}+mn\log{n}} arithmetic operations to draw structures from
the \Weights-weighted distribution. Secondly, we address the analytical
computation of weights such that the targeted frequencies are achieved
asymptotically, i. e. for large values of . We derive systems of functional
equations whose resolution gives an explicit relationship between \Weights
and \TargFreq_1, \ldots, \TargFreq_k. Lastly, we give an algorithm in
\bigO{k n^4} for the inverse problem, {\it i.e.} computing the frequencies
associated with a given -tuple \Weights of weights, and an optimized
version in \bigO{k n^2} in the case of context-free languages. This allows
for a heuristic resolution of the weights/frequencies relationship suitable for
complex specifications. In the second alternative, the targeted distribution is
given by a natural numbers such that
where is the number of undistinguished atoms.
The structures must be generated uniformly among the set of structures of size
that contain {\em exactly} atoms \At_i (). We give
a \bigO{r^2\prod_{i=1}^k n_i^2 +m n k \log n} algorithm for generating
structures, which simplifies into a \bigO{r\prod_{i=1}^k n_i +m n} for
regular specifications
The Supremum Norm of the Discrepancy Function: Recent Results and Connections
A great challenge in the analysis of the discrepancy function D_N is to
obtain universal lower bounds on the L-infty norm of D_N in dimensions d \geq
3. It follows from the average case bound of Klaus Roth that the L-infty norm
of D_N is at least (log N) ^{(d-1)/2}. It is conjectured that the L-infty bound
is significantly larger, but the only definitive result is that of Wolfgang
Schmidt in dimension d=2. Partial improvements of the Roth exponent (d-1)/2 in
higher dimensions have been established by the authors and Armen Vagharshakyan.
We survey these results, the underlying methods, and some of their connections
to other subjects in probability, approximation theory, and analysis.Comment: 15 pages, 3 Figures. Reports on talks presented by the authors at the
10th international conference on Monte Carlo and Quasi-Monte Carlo Methods in
Scientific Computing, Sydney Australia, February 2011. v2: Comments of the
referee are incorporate
Kinetic models with randomly perturbed binary collisions
We introduce a class of Kac-like kinetic equations on the real line, with
general random collisional rules, which include as particular cases models for
wealth redistribution in an agent-based market or models for granular gases
with a background heat bath. Conditions on these collisional rules which
guarantee both the existence and uniqueness of equilibrium profiles and their
main properties are found. We show that the characterization of these
stationary solutions is of independent interest, since the same profiles are
shown to be solutions of different evolution problems, both in the econophysics
context and in the kinetic theory of rarefied gases
Verifiable blind quantum computing with trapped ions and single photons
We report the first hybrid matter-photon implementation of verifiable blind quantum computing. We use a trapped-ion quantum server and a client-side photonic detection system networked via a fiber-optic quantum link. The availability of memory qubits and deterministic entangling gates enables interactive protocols without postselection—key requirements for any scalable blind server, which previous realizations could not provide. We quantify the privacy at ≲0.03 leaked classical bits per qubit. This experiment demonstrates a path to fully verified quantum computing in the cloud
Verifiable blind quantum computing with trapped ions and single photons
We report the first hybrid matter-photon implementation of verifiable blind quantum computing. We use a trapped-ion quantum server and a client-side photonic detection system networked via a fiber-optic quantum link. The availability of memory qubits and deterministic entangling gates enables interactive protocols without postselection - key requirements for any scalable blind server, which previous realizations could not provide. We quantify the privacy at ≲0.03 leaked classical bits per qubit. This experiment demonstrates a path to fully verified quantum computing in the cloud
- …