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We report the first hybrid matter-photon implementation of verifiable blind quantum computing. We use
a trapped-ion quantum server and a client-side photonic detection system networked via a fiber-optic
quantum link. The availability of memory qubits and deterministic entangling gates enables interactive
protocols without postselection—key requirements for any scalable blind server, which previous
realizations could not provide. We quantify the privacy at ≲0.03 leaked classical bits per qubit. This
experiment demonstrates a path to fully verified quantum computing in the cloud.
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Quantum computers are poised to outperform the
world’s most powerful supercomputers, with applications
ranging from drug discovery to cybersecurity. These com-
puters harness quantum phenomena such as entanglement
and superposition to perform calculations that are believed
to be intractable with classical computers. As quantum
processors control delicate quantum states, they are nec-
essarily complex and physical access to high-performance
systems is limited. Cloud-based approaches, where users
can remotely access quantum servers, are likely to be the
working model in the near term and beyond; many users
already perform computations on commercially available
devices for state-of-the-art research [1–5].
However, delegating quantum computations to a server

carries the same privacy and security concerns that bedevil
classical cloud computing. Users are currently unable to
hide their work from the server or to independently verify
their results in the regime where classical simulations
become intractable. Remarkably, the same phenomena that
enable quantum computing can leave the server “blind”
in a way that conceals the client’s input, output, and
algorithm [6–8]; because quantum information cannot be
copied and measurements irreversibly change the quantum
state, information stored in these systems can be protected
with information-theoretic security, and incorrect operation
of the server or attempted attacks can be detected—a
surprising possibility which has no equivalent in classical

computing. Blind quantum computing (BQC) requires not
only a universal quantum computer as the server, but also a
quantum link connecting it to the client [9,10]. Photons are
a natural choice to provide that link, and indeed the first
demonstrations of BQC were performed in purely photonic
systems [11–14]. However, unavoidable photon loss, either
due to limited photon detection efficiencies or absorption in
the link, results in potential security risks [11,13] and
places hard limits on the scalability of this approach due to
the resource overhead incurred by postselection [15].
Ideally, quantum information at the server should be stored
in a stable quantum memory that can be manipulated with
high fidelity, yet readily interfaced to a photonic link. The
ability to retain quantum information on the server then
enables the client to perform adaptive midcircuit adjust-
ments in order to execute the target computation deter-
ministically and securely. Combining two completely
different platforms at the single-quantum level is techni-
cally challenging [16,17]; so far, quantum network nodes
with integrated memory qubits have been realized with
solid-state systems [18,19] and trapped atoms [20,21].
Here, we demonstrate BQC using a trapped-ion quantum

processor (server) that integrates a robust memory qubit
encoded in 43Caþ with a single-photon interface based on
88Srþ to establish a quantum link to the client (photon
detection system). We implement an interactive protocol,
where the client can remotely prepare single-qubit states on
the server adaptively from shot to shot using real-time
classical feedforward control. The complexity needed for
universal quantum computation is contained entirely within
the server, while the client is a simple photon polarization
measurement device that is independent of the size and
complexity of the algorithm and supports near-perfect
blindness by construction. The client and the server are
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controlled by independent hardware and connected only by
a classical signaling bus and an optical fiber. Our system
achieves noise levels below a certain threshold for which
arbitrary improvements to the protocol security and success
rate (robustness) are theoretically possible [22].
Protocol.—Quantum algorithms can be described in

the measurement-based quantum computing model,
which prescribes a sequence of measurements on a highly
entangled resource state [23,24]. Information-theoretic
blindness can be achieved, even against maliciously oper-
ating servers, if either the state preparation or the mea-
surements are performed by the client [6,25–27].
In the presence of noise, even a faithfully operating

server produces erroneous results that are indistinguishable
from nefarious modifications to the honest protocol
[7,8,28,29]. Blindness allows the client to secretly test
the quantum resources provided by the server. The protocol
implemented here achieves this by interleaving “compu-
tation” and “test” rounds. A statistical argument provides
bounds for the security and robustness of this protocol for
the important class of bounded-error quantum polynomial
time (BQP) decision problems [22]. The client accepts a
result if the observed fraction of failed test rounds pfail is
below a chosen threshold ω. If ω is below the theoretical
threshold ωmax, the overhead due to repetition is low: the
probability of accepting an incorrect result decreases
exponentially with the number of rounds. The minimum
value for ω depends on the amount of noise in the devices.
The client assumes a maximum expected test round failure
rate pmax and chooses ω > pmax such that the probability of
rejecting any result also decreases exponentially with the
number of rounds, making the protocol robust to a limited
amount of noise.
For universal quantum computation, particular graph

states, and a discrete set of single-qubit measurements,
fB̂α ¼ cosðαÞXþ sinðαÞYgα∈Θ, are sufficient [30], where
Θ ¼ f0; π=4;…; 7π=4g, and X, Y are Pauli operators.
Graph states are specific multiqubit states in which vertices
represent qubits initialized in jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

and
edges represent entanglement created by two-qubit CZ gates
(Fig. 1), where CZ ¼ j0ih0j ⊗ 1þ j1ih1j ⊗ Z. The qubits
are measured in a fixed order, using the basis B̂αl at node l,
where αl depends on the algorithm and on previous
measurement outcomes.
To blindly run the above protocol with measurement

angles αl, the client performs remote state preparation
(RSP) into jθli ¼ exp½−iðθl=2ÞZ�jþi, with secret phase
shift θl ∈Θ for every qubit l ¼ 1; 2;…; q, and shifts the
measurement angles accordingly. This way, θl act as a
classical encryption key such that αl remain private to the
client. To ensure that the corresponding measurement out-
comes ml ∈ f0; 1g are uninformative, the client hides bit
flips in half of the measurement angles that are indicated by
secret key bits, rl ∈ f0; 1g [Eq. (1)]. The client can recover
the unencrypted measurement outcomes as ml ⊕ rl.

Here we implement BQC on linear cluster states (Fig. 2).
Two physical qubits are sufficient to implement linear
clusters of arbitrary length, as qubits can be reinitialized
after every midcircuit measurement. The first qubit—the
network qubit—can be steered into an arbitrary state by the
client using RSP [31], while the second qubit—the memory
qubit—carries the information encoded in the leading node
of the expanding linear cluster state. We break the cluster
state into discrete interaction steps between the server and
the client, starting with the initialization step (Fig. 2), which
prepares the memory qubit in jθ1i. At each interaction of a
computation round, the client performs RSP to steer the
network qubit into jθlþ1i and communicates

δl ¼ ð−1ÞRl−1αl þ θl þ πrl ð1Þ

to the server, where Rl ¼⊕1≤j<l=2 ðml−2j ⊕ rl−2jÞ is the
adaptive feedforward correction from decrypted previous
measurements. After applying the CZ gate and a SWAP gate,
the server measures the network qubit in the B̂δl basis and
returns the result ml to the client (interaction blocks in

FIG. 1. Verifiable blind quantum computing in the measure-
ment-based model. The computation is expressed as a sequence
of measurements on a brickwork state (two-dimensional graph
with vertices representing virtual qubits, and edges indicating CZ

gates). The server holds m physical memory qubits (orange
atoms) and one physical network qubit (violet atom). The server
can entangle these qubits deterministically with each other. The
network qubit can also be entangled with a photon; by measuring
this photon, the client can steer the network qubit in the server
remotely without the server learning about its state. This allows
the client to hide the computation (inputs, outputs, and circuit)
from the server. Moreover, the client can verify that the
computation has not been tampered with by (randomly) inter-
leaving test rounds, which produce classically simulatable out-
comes and cannot be distinguished from the actual computation
by the server.
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Fig. 2). This process leaves the leading cluster state node on
the memory qubit, encrypted by Rl [32], while the network
qubit is available for further RSP.
The client randomly assigns each round a secret label

identifying them as a computation or a test. In test rounds,
the client prepares every second qubit in a Z eigenstate jrli,
which are called “dummy qubits.” This step leaves the
remaining, so-called “trap qubits,” in a separable state.
The outcome ml ¼! rl of measuring these trap qubits with
δl ¼ θl þ πrl can thus be predicted efficiently by the
client.
Server.—The server controls an ion trap quantum proc-

essor containing one 88Srþ and one 43Caþ ion. Ion-photon
entanglement needed for RSP is generated by fast excita-
tion and spontaneous decay [37] on the 422 nm transition
of 88Srþ. The single photons are collected by free-space
optics and coupled into a single-mode optical fiber [38],
which forms the quantum link with the client. The memory
qubit is encoded in 43Caþ, which provides a long coherence
time (∼10 s) and is unaffected by concurrent manipulation
of 88Srþ [21]. Thus, 88Srþ can be used for midcircuit
measurements and sympathetic cooling between interaction
steps. The CZ gate required to build the cluster state is
combined with the SWAP gate into an ISWAP gate. This
enables reuse of 88Srþ for RSP while the current state of the
computation is retained on the memory qubit. Errors during
the initialization step are detected in real time (merr ¼ 1 in
Fig. 2), in which case this step is repeated.
Client.—The client receives single photons from the

server through an optical fiber. The quantum capability of
the client is reduced to projective polarization measure-
ments of these photons in a basis that can be dynamically
reconfigured by changing the voltages on two electro-optic
modulators (EOMs) [32] (Fig. 3). This measurement
remotely steers the network qubit into a state that depends
only on the polarization measurement basis and the

measurement outcome obtained, information known exclu-
sively to the client (θ̃l and cl in Fig. 2). Birefringence in the
optical fiber transforms the photonic state before reaching
the client by an unknown unitary operation, which drifts on

FIG. 2. Protocol used to generate a linear cluster state using a trapped-ion quantum server and a photonic client. The client can steer the
network qubit into jθli ¼ jθ̃l þ clπi by measuring the polarization of the photon in the basis B̂θ̃l

and obtaining cl ∈ f0; 1g as outcome.
In the initialization step, the server transfers this state onto a memory qubit such that the network qubit can be steered again [21]. Every
subsequent interaction step extends the size of the cluster state; the client steers the network qubit remotely into jθlþ1i, the server
entangles it (CZ gates), and performs a measurement in the basis B̂δl , where δl is provided by the client. See text for details.

FIG. 3. The client performs remote state preparation (RSP)
using a fast-switching polarization analyzer. (a) The control
voltages (Ua, Ub) of two EOMs separated by a λ=4 wave plate
enable the client to arbitrarily rotate the measurement basis given
by the PBS. (b) Laser light is used to reconstruct this basis for
different Ua, Ub. Polarization ellipses are shown for the basis
states heralded by detector p, where the color represents their
phase. (c) To find Ua, Ub which maximize the fidelity F to each
target state needed during the protocol, we perform tomography
on the network qubit after RSP. The averaged results from 36
calibrations over 2 weeks are shown in the Bloch sphere
representation of the network qubit. Values indicate F, with
standard deviations obtained from bootstrapping.
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a timescale of ∼10 min due to thermal effects. To com-
pensate for this drift, the client periodically recalibrates the
EOM voltages [32] [Fig. 3(c)].
Blindness.—We consider information that could leak to

an adversarial server, concerning the client’s polarization
measurement, via the network qubit, which is controlled by
the server, and through classical signals, which are con-
trolled by the client. We quantify the information that the
server could gain from measuring the network qubit at
0.031(4) bits per interaction step using quantum state
tomography and find good agreement with independent
estimates [32]. In our demonstration, mismatched elec-
tronic delays between different polarization measurement
outcomes are the dominant cause for information leakage.
However, as the client controls the relevant classical
signals, these delays could be matched. The remaining
leakage of ∼0.001 bits per interaction step would be
dominated by imperfections in the polarizing optics used
by the client.
Results.—We realize different quantum computations

with one and two interaction steps; see Figs. 4(a) and
4(b), respectively. We could use the output qubit in further
interaction steps, or make a final measurement in the basis
B̂δqþ1

to complete the (qþ 1)-node cluster computation. In
this demonstration, however, the output qubit is always
measured in the Z basis. Since this measurement commutes

with the CZ gate preceding it, the computation is equivalent
to a cluster state with one fewer node. The one- and two-
step interactions therefore implement the computations
HZðα1Þjþi and Xðα2ÞZðα1Þjþi, respectively, where H
is the Hadamard gate, XðαÞ ¼ exp½−iðα=2ÞX� and ZðαÞ ¼
exp½−iðα=2ÞZ� are single-qubit rotations, and α1 and α2 are
encrypted using Eq. (1) during the protocol. From the
server’s perspective, the outcomes appear random [squares
in Fig. 4(a)] as a result of the bit-flip encryption, δl ∝ rlπ,
which is applied by the client in both the computation and
test rounds. The client, on the other hand, can use the round
type (computation or test) and encryption key (rl) to
decode the outcomes. The decoded computation outcomes,
indicated by the circles in Fig. 4(a) and the color map in
Fig. 4(b), match the expected fringe pattern as a function of
the blind measurement angles α1 and α2. Experimental
imperfections lead to a reduction in contrast and to phase

shifts. The client observes an error rate of pð1Þ
fail ¼ 0.201ð3Þ

on the first qubit and pð2Þ
fail ¼ 0.095ð2Þ on the second qubit

[bottom panel in Fig. 4(a)], which are consistent with
known error sources [32]. By changing the final measure-
ment basis from Z to B̂δqþ1

with an additional π=2 pulse,
which would have no significant impact on the error
budget, and randomly choosing one qubit as trap qubit
in every test round, we find that a two-node cluster
computation could be verified using our apparatus [32];
the expected average test round failure probability of ∼0.18
would be significantly below ωmax ¼ 0.25 required for
secure and robust verification of this state. The correspond-
ing test round results for the three-node cluster computation
are shown in the Supplemental Material [32]; the observed
failure rates indicate that verification is not possible in this
case, largely due to technical limitations (motional heating)
on the ≈ 0.91 fidelity of the ISWAP gate [21].
Conclusion.—We have implemented a protocol for

blindly delegating quantum computations to a trapped-ion
quantum processor, using a client apparatus that requires
only single-photon polarization measurements and classical
communication. We have established bounds on informa-
tion leakage through both the classical and quantum
channels that are present in our implementation. We have
shown that the size of the cluster state can be increased
without increasing the number of physical qubits in the
server and without modifications to the client hardware. If
more memory qubits were added to the server [39,40], the
computational space could be extended to higher-dimen-
sional cluster states. We have taken steps to include
verification into the protocol, and the measured test round
error indicates that computations on two-node cluster states
could be verified robustly and reliably. We predict that for a
BQP decision problemwith small inherent algorithmic error
and pmax ¼ 0.185, the probability of accepting an incorrect
result and that of rejecting any result would both be 10−5
after 24 000 repetitions, including 14 400 test rounds; every

FIG. 4. Experimental results on an expanding linear cluster
state, where the leading qubit is measured in the Z basis after
(a) one and (b) two interaction steps between the client and the
server. (a) While the server observes mixed outcomes (squares,
∼2000 test and computation rounds each), for each α1, the client
can decode the results using the secret keys. A fit to the decoded
computation outcomes (circles) is shown to guide the eye. Error
intervals indicate the binomial standard error. The test round
errors are significantly below the threshold for verification of a
two-node cluster state (dashed line). (b) The decoded outcome is
shown for different blind measurement settings, (α1, α2), each
comprising ∼3100 computation rounds (see Supplementary
Material [32] for interleaved test round results).
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additional 1200 repetitions would halve this likelihood [32].
This approach is expected to provide both security and
robustness for larger cluster states and other algorithms as
long as the errors remain below the size-dependent thresh-
old, ωmax ≈ 1 − ð3=4Þ2=q, where q is the total number of
qubits in the cluster state. The protocol that we have
implemented does not incorporate error correction; to verify
larger cluster states, the error per interaction stepwould need
to be reduced. The infidelity of the ISWAP gate is the leading
error source [21], but we note that in other systems, CZ gates
between 88Srþ and 43Caþ with fidelity 0.998 have been
demonstrated [41]. The state-of-the-art ion-photon entan-
glement fidelity of 0.979(1) (this apparatus) is limited
primarily by technical imperfections in the optical setup
(alignment).
In comparison with previous experimental implementa-

tions [11–14], which were based on purely photonic
platforms without quantum memory, this Letter overcomes
several major challenges associated with real-world BQC
deployments. As quantum logic operations in the server are
deterministic and the interaction with the client is heralded,
our implementation eliminates the need for postselection,
avoiding the associated efficiency, scalability, and security
issues [11,12,14]. Here, photon losses in particular do not
present a security threat, and the use of a memory qubit
combined with fast and adaptive hardware facilitates true
shot-by-shot randomization of all protocol parameters in
real time.
Future realizations could involve a complex network of

servers and clients. Photons could be routed to a number of
clients using optical switches, and the distance to the server
increased using frequency conversion of the photons to
telecommunication wavelengths [42] or using recent
developments in fiber technology [43]. The photonically
interfaced trapped-ion quantum information platform dem-
onstrated here paves the way for secure delegation of
confidential quantum computations from a client with
minimal quantum resources to a fully capable, but untrusted,
quantum server.
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