77 research outputs found

    Hubble Space Telescope Counts of Elliptical Galaxies: Constraints on Cosmological Models ?

    Full text link
    The interpretation of galaxy number counts in terms of cosmological models is fraught with difficulty due to uncertainties in the overall galaxy population (mix of morphological types, luminosity functions etc.) and in the observations (loss of low surface brightness images, image blending etc.). Many of these can be overcome if we use deep high resolution imaging of a single class of high surface brightness galaxies, whose evolution is thought to be fairly well understood. This is now possible by selecting elliptical and S0 galaxies using Hubble Space Telescope images from the Medium Deep Survey and other ultradeep WFPC2 images. In the present paper, we examine whether such data can be used to discriminate between open and closed universes, or between conventional cosmological models and those dominated by a cosmological constant. We find, based on the currently available data, that unless elliptical galaxies undergo very strong merging since z1z \sim 1 (and/or very large errors exist in the morphological classifications), then flat models dominated by a cosmological constant are ruled out. However, both an Einstein-de Sitter (Ω0=1\Omega_{0}=1) model with standard passive stellar evolution and an open (Ω0=0.05\Omega_{0}=0.05) model with no net evolution ({\it i.e.} cancelling stellar and dynamical evolution) predict virtually identical elliptical and S0 galaxy counts. Based on these findings and the recent reportings of Ho80H_{o} \simeq 80 km/s Mpc/s, we find that the maximum acceptable age of the universe is 13.3 Gyrs and a value of 9\leq 9 Gyrs favored. A flat---Λ0\Lambda \neq 0---universe is therefore {\it not} a viable solution to the HoH_{o}/globular cluster age problem.Comment: Accepted for publication in the Astrophysical Journal (April, 1996). 34 pages (including 4 figures) of gzip compressed and uuencoded PS. Also available at http://www.phys.unsw.edu.au/~spd/bib.htm

    The Millennium Galaxy Catalogue: morphological classification and bimodality in the colour-concentration plane

    Full text link
    Using 10 095 galaxies (B < 20 mag) from the Millennium Galaxy Catalogue, we derive B-band luminosity distributions and selected bivariate brightness distributions for the galaxy population. All subdivisions extract highly correlated sub-sets of the galaxy population which consistently point towards two overlapping distributions. A clear bimodality in the observed distribution is seen in both the rest-(u-r) colour and log(n) distributions. The rest-(u-r) colour bimodality becomes more pronounced when using the core colour as opposed to global colour. The two populations are extremely well separated in the colour-log(n) plane. Using our sample of 3 314 (B < 19 mag) eyeball classified galaxies, we show that the bulge-dominated, early-type galaxies populate one peak and the bulge-less, late-type galaxies occupy the second. The early- and mid-type spirals sprawl across and between the peaks. This constitutes extremely strong evidence that the fundamental way to divide the luminous galaxy population is into bulges and discs and that the galaxy bimodality reflects the two component nature of galaxies and not two distinct galaxy classes. We argue that these two-components require two independent formation mechanisms/processes and advocate early bulge formation through initial collapse and ongoing disc formation through splashback, infall and merging/accretion. We calculate the B-band luminosity-densities and stellar-mass densities within each subdivision and estimate that the z ~ 0 stellar mass content in spheroids, bulges and discs is 35 +/- 2 per cent, 18 +/- 7 and 47 +/- 7 per cent respectively. [Abridged]Comment: Accepted for publication in MNRAS, 23 pages, 17 figures. Comments welcome. MGC website is at: http://www.eso.org/~jliske/mgc

    GAMA/DEVILS: Cosmic star formation and AGN activity over 12.5 billion years

    Get PDF
    We use the Galaxy and Mass Assembly (GAMA) and the Deep Extragalactic Visible Legacy Survey (DEVILS) observational data sets to calculate the cosmic star formation rate (SFR) and active galactic nuclei (AGN) bolometric luminosity history (CSFH/CAGNH) over the last 12.5 billion years. SFRs and AGN bolometric luminosities were derived using the spectral energy distribution fitting code ProSpect, which includes an AGN prescription to self consistently model the contribution from both AGN and stellar emission to the observed rest-frame ultra-violet to far-infrared photometry. We find that both the CSFH and CAGNH evolve similarly, rising in the early Universe up to a peak at look-back time 10\approx 10~Gyr (z2z \approx 2), before declining toward the present day. The key result of this work is that we find the ratio of CAGNH to CSFH has been flat (1042.5ergs1M1yr\approx 10^{42.5}\mathrm{erg \, s^{-1}M_{\odot}^{-1}yr}) for 1111~Gyr up to the present day, indicating that star formation and AGN activity have been coeval over this time period. We find that the stellar masses of the galaxies that contribute most to the CSFH and CAGNH are similar, implying a common cause, which is likely gas inflow. The depletion of the gas supply suppresses cosmic star formation and AGN activity equivalently to ensure that they have experienced similar declines over the last 10 Gyr. These results are an important milestone for reconciling the role of star formation and AGN activity in the life cycle of galaxies.Comment: 16 pages, 10 figures. Figures 9 and 10 are the main results. Accepted for publication in Monthly Notices of the Royal Astronomical Societ

    GAMA: towards a physical understanding of galaxy formation

    Full text link
    The Galaxy And Mass Assembly (GAMA) project is the latest in a tradition of large galaxy redshift surveys, and is now underway on the 3.9m Anglo-Australian Telescope at Siding Spring Observatory. GAMA is designed to map extragalactic structures on scales of 1kpc - 1Mpc in complete detail to a redshift of z~0.2, and to trace the distribution of luminous galaxies out to z~0.5. The principal science aim is to test the standard hierarchical structure formation paradigm of Cold Dark Matter (CDM) on scales of galaxy groups, pairs, discs, bulges and bars. We will measure (1) the Dark Matter Halo Mass Function (as inferred from galaxy group velocity dispersions); (2) baryonic processes, such as star formation and galaxy formation efficiency (as derived from Galaxy Stellar Mass Functions); and (3) the evolution of galaxy merger rates (via galaxy close pairs and galaxy asymmetries). Additionally, GAMA will form the central part of a new galaxy database, which aims to contain 275,000 galaxies with multi-wavelength coverage from coordinated observations with the latest international ground- and space-based facilities: GALEX, VST, VISTA, WISE, HERSCHEL, GMRT and ASKAP. Together, these data will provide increased depth (over 2 magnitudes), doubled spatial resolution (0.7"), and significantly extended wavelength coverage (UV through Far-IR to radio) over the main SDSS spectroscopic survey for five regions, each of around 50 deg^2. This database will permit detailed investigations of the structural, chemical, and dynamical properties of all galaxy types, across all environments, and over a 5 billion year timeline.Comment: GAMA overview which appeared in the October 2009 issue of Astronomy & Geophysics, ref: Astron.Geophys. 50 (2009) 5.1

    A BURST-BAUS consensus document for best practice in the conduct of scrotal exploration for suspected testicular torsion : the Finding consensus for orchIdopeXy In Torsion (FIX-IT) study

    Get PDF
    Acknowledgements The authors would like to thank Jacqueline Emkes and Rachel Jury for their contribution to our protocol development with respect to patient and public involvement. Similarly, the authors would like to thank Dr Matthew Coward, Department of Urology, University of North Carolina, and Dr Selcuk Sarikaya, Department of Urology, University of Ankara, for their international perspectives and input to our study protocol. We would like to acknowledge the BAUS Trustees for allowing this collaboration. Unrelated to this work, The BURST Research Collaborative would like to acknowledge funding from the BJUI, the Urology Foundation, Ferring Pharmaceuticals Ltd, Rosetrees Trust and Action Bladder Cancer UK. Veeru Kasivisvanathan is an Academic Clinical Lecturer funded by the United Kingdom National Institute for Health Research (NIHR). The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. PubMed Indexed Collaborative Authors: Matthew Coward, Selcuk Sarikaya, Jacqueline Emkes, Rachel Jury. Research Funding Department of Health National Institute for Health Research National Institute for Health Research Rosetrees Trust Ferring Pharmaceuticals Urology Foundation University of North CarolinaPeer reviewedPublisher PD

    Galaxy And Mass Assembly (GAMA): Linking star formation histories and stellar mass growth

    Get PDF
    WWe present evidence for stochastic star formation histories in low-mass (M* <1010M⊙) galaxies from observations within the Galaxy And Mass Assembly (GAMA) survey. For ̃73 000 galaxies between 0.05 < z < 0.32, we calculate star formation rate

    Galaxy And Mass Assembly (GAMA): stellar mass estimates

    Get PDF
    This paper describes the first catalogue of photometrically derived stellar mass estimates for intermediate-redshift (z < 0.65; median z= 0.2) galaxies in the Galaxy And Mass Assembly (GAMA) spectroscopic redshift survey. These masses, as well as the full set of ancillary stellar population parameters, will be made public as part of GAMA data release 2. Although the GAMA database does include near-infrared (NIR) photometry, we show that the quality of our stellar population synthesis fits is significantly poorer when these NIR data are included. Further, for a large fraction of galaxies, the stellar population parameters inferred from the optical-plus-NIR photometry are formally inconsistent with those inferred from the optical data alone. This may indicate problems in our stellar population library, or NIR data issues, or both; these issues will be addressed for future versions of the catalogue. For now, we have chosen to base our stellar mass estimates on optical photometry only. In light of our decision to ignore the available NIR data, we examine how well stellar mass can be constrained based on optical data alone. We use generic properties of stellar population synthesis models to demonstrate that restframe colour alone is in principle a very good estimator of stellar mass-to-light ratio, M*/Li. Further, we use the observed relation between restframe (g−i) and M*/Li for real GAMA galaxies to argue that, modulo uncertainties in the stellar evolution models themselves, (g−i) colour can in practice be used to estimate M*/Li to an accuracy of ≲0.1 dex (1σ). This ‘empirically calibrated' (g−i)-M*/Li relation offers a simple and transparent means for estimating galaxies' stellar masses based on minimal data, and so provides a solid basis for other surveys to compare their results to z≲0.4 measurements from GAM

    Galaxy and Mass Assembly: FUV, NUV, ugrizYJHK Petrosian, Kron and Sérsic photometry

    Get PDF
    In order to generate credible 0.1-2 μm spectral energy distributions, the Galaxy and Mass Assembly (GAMA) project requires many gigabytes of imaging data from a number of instruments to be reprocessed into a standard format. In this paper, we discuss the software infrastructure we use, and create self-consistent ugrizYJHK photometry for all sources within the GAMA sample. Using UKIDSS and SDSS archive data, we outline the pre-processing necessary to standardize all images to a common zero-point, the steps taken to correct for the seeing bias across the data set and the creation of gigapixel-scale mosaics of the three 4 × 12 deg2 GAMA regions in each filter. From these mosaics, we extract source catalogues for the GAMA regions using elliptical Kron and Petrosian matched apertures. We also calculate Sérsic magnitudes for all galaxies within the GAMA sample using sigma, a galaxy component modelling wrapper for galfit 3. We compare the resultant photometry directly and also calculate the r-band galaxy luminosity function for all photometric data sets to highlight the uncertainty introduced by the photometric method. We find that (1) changing the object detection threshold has a minor effect on the best-fitting Schechter parameters of the overall population (M*± 0.055 mag, α± 0.014, ϕ*± 0.0005 h3 Mpc−3); (2) there is an offset between data sets that use Kron or Petrosian photometry, regardless of the filter; (3) the decision to use circular or elliptical apertures causes an offset in M* of 0.20 mag; (4) the best-fitting Schechter parameters from total-magnitude photometric systems (such as SDSS modelmag or Sérsic magnitudes) have a steeper faint-end slope than photometric systems based upon Kron or Petrosian measurements; and (5) our Universe's total luminosity density, when calculated using Kron or Petrosian r-band photometry, is underestimated by at least 15 per cen

    EPOCHS Paper II: The Ultraviolet Luminosity Function from 7.5<z<13.57.5<z<13.5 using 110 square arcminutes of deep, blank-field data from the PEARLS Survey and Public Science Programmes

    Full text link
    We present an analysis of the ultraviolet luminosity function (UV LF) and star formation rate density of distant galaxies (7.5<z<13.57.5 < z < 13.5) in the `blank' fields of the Prime Extragalactic Areas for Reionization Science (PEARLS) survey combined with Early Release Science (ERS) data from the CEERS, GLASS and NGDEEP surveys/fields. We use a combination of SED fitting tools and quality cuts to obtain a reliable selection and characterisation of high-redshift (z>6.5z>6.5) galaxies from a consistently processed set of deep, near-infrared imaging. Within an area of 110 arcmin2^{2}, we identify 214 candidate galaxies at redshifts z>6.5z>6.5 and we use this sample to study the ultraviolet luminosity function (UV LF) in four redshift bins between 7.5<z<13.57.5<z<13.5. The measured number density of galaxies at z=8z=8 and z=9z=9 match those of past observations undertaken by the em Hubble Space Telescope (HST). However, towards higher redshifts we find that the evolution of the UV LF is mild, resulting in higher measured number densities of UV luminous galaxies at z=10.5z=10.5 and z=12.5z=12.5 compared to predictions from simulations and past HST observations. When examining the star formation rate density of galaxies at this time period, our observations are still consistent with a constant star formation efficiency, are slightly lower than previous early estimations using JWST and support galaxy driven reionization at z8z\sim8.Comment: 28 Pages, 4 Tables, 9 Figures, Submitted to Ap

    Impact of glucocorticoid receptor density on ligand-independent dimerization, cooperative ligand-binding and basal priming of transactivation: a cell culture model

    Get PDF
    Glucocorticoid receptor (GR) levels vary between tissues and individuals and are altered by physiological and pharmacological effectors. However, the effects and implications of differences in GR concentration have not been fully elucidated. Using three statistically different GR concentrations in transiently transfected COS-1 cells, we demonstrate, using co-immunoprecipitation (CoIP) and fluorescent resonance energy transfer (FRET), that high levels of wild type GR (wtGR), but not of dimerization deficient GR (GRdim), display ligand-independent dimerization. Whole-cell saturation ligand-binding experiments furthermore establish that positive cooperative ligand-binding, with a concomitant increased ligand-binding affinity, is facilitated by ligand-independent dimerization at high concentrations of wtGR, but not GRdim. The down-stream consequences of ligand-independent dimerization at high concentrations of wtGR, but not GRdim, are shown to include basal priming of the system as witnessed by ligand-independent transactivation of both a GRE-containing promoter-reporter and the endogenous glucocorticoid (GC)-responsive gene, GILZ, as well as ligand-independent loading of GR onto the GILZ promoter. Pursuant to the basal priming of the system, addition of ligand results in a significantly greater modulation of transactivation potency than would be expected solely from the increase in ligand-binding affinity. Thus ligand-independent dimerization of the GR at high concentrations primes the system, through ligand-independent DNA loading and transactivation, which together with positive cooperative ligand-binding increases the potency of GR agonists and shifts the bio-character of partial GR agonists. Clearly GR-levels are a major factor in determining the sensitivity to GCs and a critical factor regulating transcriptional programs
    corecore