4,524 research outputs found

    The cutaneous 'rabbit' illusion affects human primary sensory cortex somatopically

    Get PDF
    We used functional magnetic resonance imaging (fMRI) to study neural correlates of a robust somatosensory illusion that can dissociate tactile perception from physical stimulation. Repeated rapid stimulation at the wrist, then near the elbow, can create the illusion of touches at intervening locations along the arm, as if a rabbit hopped along it. We examined brain activity in humans using fMRI, with improved spatial resolution, during this version of the classic cutaneous rabbit illusion. As compared with control stimulation at the same skin sites (but in a different order that did not induce the illusion), illusory sequences activated contralateral primary somatosensory cortex, at a somatotopic location corresponding to the filled-in illusory perception on the forearm. Moreover, the amplitude of this somatosensory activation was comparable to that for veridical stimulation including the intervening position on the arm. The illusion additionally activated areas of premotor and prefrontal cortex. These results provide direct evidence that illusory somatosensory percepts can affect primary somatosensory cortex in a manner that corresponds somatotopically to the illusory percept

    All-Electron Path Integral Monte Carlo Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas

    Full text link
    We develop an all-electron path integral Monte Carlo (PIMC) method with free-particle nodes for warm dense matter and apply it to water and carbon plasmas. We thereby extend PIMC studies beyond hydrogen and helium to elements with core electrons. PIMC pressures, internal energies, and pair-correlation functions compare well with density functional theory molecular dynamics (DFT-MD) at temperatures of (2.5-7.5)×105\times10^5 K and both methods together form a coherent equation of state (EOS) over a density-temperature range of 3--12 g/cm3^3 and 104^4--109^9 K

    Mission Control Center - Houston

    Get PDF
    The Mission Control Center - Houston (MCC-H) was designed to control all NASA manned space flights from the first Gemini rendezvous through the Apollo program. The MCC-H is a three-story building which contains 112,000 square feet, and which required 30 months to implement. It has a capability to control a live mission and a simulation simultaneously, or two simulations simultaneously. This capability was provided by locating duplicate operational areas on separate floors. The facility layout is shown in Figures 1, 2, and 3. The MCC-H is comprised of five basic systems: the Display/Control System, the Real Time Computer Complex (RTCC), the Communications System, the Command System, and the Simulation, Checkout, and Training System (SCATS). These systems are designed to provide the flight operations team with the necessary real-time data and associated reference data for rapid assessment of mission progress, and for rapid decisions in the event of abnormal or emergency situations. The reference data are the result of the enormous effort that is spent prior to the mission in analyzing every possible contingency situation that may occur, and contains predicted trend data, mission rules and carefully planned, detailed operational procedures for regulating the mission

    Object-guided Spatial Attention in Touch: Holding the Same Object with Both Hands Delays Attentional Selection

    Get PDF
    Abstract Previous research has shown that attention to a specific location on a uniform visual object spreads throughout the entire object. Here we demonstrate that, similar to the visual system, spatial attention in touch can be object guided. We measured event-related brain potentials to tactile stimuli arising from objects held by observers' hands, when the hands were placed either near each other or far apart, holding two separate objects, or when they were far apart but holding a common object. Observers covertly oriented their attention to the left, to the right, or to both hands, following bilaterally presented tactile cues indicating likely tactile target location(s). Attentional modulations for tactile stimuli at attended compared to unattended locations were present in the time range of early somatosensory components only when the hands were far apart, but not when they were near. This was found to reflect enhanced somatosensory processing at attended locations rather than suppressed processing at unattended locations. Crucially, holding a common object with both hands delayed attentional selection, similar to when the hands were near. This shows that the proprioceptive distance effect on tactile attentional selection arises when distant event locations can be treated as separate and unconnected sources of tactile stimulation, but not when they form part of the same object. These findings suggest that, similar to visual attention, both space- and object-based attentional mechanisms can operate when we select between tactile events on our body surface.</jats:p

    Can the Future Influence the Present?

    Get PDF
    One widely accepted model of classical electrodynamics assumes that a moving charged particle produces both retarded and advanced fields. This formulation first appeared at least 75 years ago. It was popularized in the 1940\u27s by work of Wheeler and Feynman. But the most fundamental question associated with the model has remained unanswered: When (if ever) does the two-body problem have a unique solution? The present paper gives an answer in one special case. Imagine two identical charged particles alone in the universe moving symmetrically along the x axis. One is at x(t) and the other is at −x(t). Their motion is then governed by a system of functional differential equations involving both retarded and advanced arguments. This system together with the Newtonian initial data x(0)=x0\u3e0 and x′(0)=0 has a unique solution for all time provided x0 is sufficiently large. Perhaps the existence and uniqueness proof given for this special case will pave the way for more general results on this curious two-body problem

    Does the Locally-Adaptive Model of Archaeological Potential (LAMAP) work for hunter-gatherer sites? A test using data from the Tanana Valley, Alaska

    Get PDF
    We report an assessment of the ability of the Locally-Adaptive Model of Archaeological Potential (LAMAP) to estimate archaeological potential in relation to hunter-gatherer sites. The sample comprised 182 known sites in the Tanana Valley, Alaska, which was occupied solely by hunter-gatherers for about 14,500 years. To estimate archaeological potential, we employed physiographic variables such as elevation and slope, rather than variables that are known to vary on short time scales, like vegetation cover. Two tests of LAMAP were carried out. In the first, we used the location of a random selection of 90 sites from all time periods to create a LAMAP model. We then evaluated the model with the remaining 92 sites. In the second test, we built a LAMAP model from 12 sites that pre-date 10,000 cal BP. This model was then tested with sites that post-date 10,000 cal BP. In both analyses, areas predicted to have higher archaeological potential contained higher frequencies of validation sites. The performance of LAMAP in the two tests was comparable to its performance in previous tests using archaeological sites occupied by agricultural societies. Thus, the study extends the use of LAMAP to the task of estimating archaeological potential of landscapes in relation to hunter-gatherer sites

    An earth pole-sitter using hybrid propulsion

    Get PDF
    In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the Earth's poles, by means of a continuous thrust. Optimal orbits, that minimize propellant mass consumption, are found both through a shape-based approach, and solving an optimal control problem, using a direct method based on pseudo-spectral techniques. Both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft
    corecore