173 research outputs found

    Most small cerebral cortical veins demonstrate significant flow pulsatility: a human phase contrast MRI study at 7T

    Get PDF
    Phase contrast MRI has been used to investigate flow pulsatility in cerebral arteries, larger cerebral veins and the cerebrospinal fluid. Such measurements of intracranial pulsatility and compliance are beginning to inform understanding of the pathophysiology of conditions including normal pressure hydrocephalus, multiple sclerosis and dementias. We demonstrate the presence of flow pulsatility in small cerebral cortical veins, for the first time using phase contrast MRI at 7 Tesla, with the aim of improving our understanding of the haemodynamics of this little-studied vascular compartment. A method for establishing where venous flow is pulsatile is introduced, revealing significant pulsatility in 116 out of 146 veins, across 8 healthy participants, assessed in parietal and frontal regions. Distributions of pulsatility index and pulse waveform delay were characterized, indicating a small, but statistically significant (p<0.05), delay of 59±41 ms in cortical veins with respect to the superior sagittal sinus, but no differences between veins draining different arterial supply territories. Measurements of pulsatility in smaller cortical veins, a hitherto unstudied compartment closer to the capillary bed, could lead to a better understanding of intracranial compliance and cerebrovascular (patho)physiology

    Global intravascular and local hyperoxia contrast phase-based blood oxygenation measurements

    Get PDF
    AbstractThe measurement of venous cerebral blood oxygenation (Yv) has potential applications in the study of patient groups where oxygen extraction and/or metabolism are compromised. It is also useful for fMRI studies to assess the stimulus-induced changes in Yv, particularly since basal Yv partially accounts for inter-subject variation in the haemodynamic response to a stimulus. A range of MRI-based methods of measuring Yv have been developed recently. Here, we use a method based on the change in phase in the MR image arising from the field perturbation caused by deoxygenated haemoglobin in veins. We build on the existing phase based approach (Method I), where Yv is measured in a large vein (such as the superior sagittal sinus) based on the field shift inside the vein with assumptions as to the vein's shape and orientation. We demonstrate two novel modifications which address limitations of this method. The first modification (Method II), maps the actual form of the vein, rather than assume a given shape and orientation. The second modification (Method III) uses the intra and perivascular phase change in response to a known change in Yv on hyperoxia to measure normoxic Yv in smaller veins. Method III can be applied to veins whose shape, size and orientation are not accurately known, thus allowing more localised measures of venous oxygenation. Results demonstrate that the use of an overly fine spatial filter caused an overestimation in Yv for Method I, whilst the measurement of Yv using Method II was less sensitive to this bias, giving Yv=0.62±0.03. Method III was applied to mapping of Yv in local veins across the brain, yielding a distribution of values with a mode of Yv=0.661±0.008

    The venous contribution to sodium MRI in the human brain

    Get PDF
    Purpose: Sodium MRI shows great promise as a marker for cerebral metabolic dysfunction in stroke, brain tumor, and neurodegenerative pathologies. However, cerebral blood vessels, whose volume and function are perturbed in these pathologies, have elevated sodium concentrations relative to surrounding tissue. This study aims to assess whether this fluid compartment could bias measurements of tissue sodium using MRI. Methods: Density‐weighted and B1 corrected sodium MRI of the brain was acquired in 9 healthy participants at 4.7T. Veins were identified using co‐registered 1H T*2‐weighted images and venous partial volume estimates were calculated by down‐sampling the finer spatial resolution venous maps from the T*2‐weighted images to the coarser spatial resolution of the sodium data. Linear regressions of venous partial volume estimates and sodium signal were performed for regions of interest including just gray matter, just white matter, and all brain tissue. Results: Linear regression demonstrated a significant venous sodium contribution above the underlying tissue signal. The apparent venous sodium concentrations derived from regression were 65.8 ± 4.5 mM (all brain tissue), 71.0 ± 7.4 mM (gray matter), and 55.0 ± 4.7 mM (white matter). Conclusion: Although the partial vein linear regression did not yield the expected sodium concentration in blood (~87 mM), likely the result of point spread function smearing, this regression highlights that blood compartments may bias brain tissue sodium signals across neurological conditions where blood volumes may differ

    Multi-Site Harmonization of 7 Tesla MRI Neuroimaging Protocols

    Get PDF
    Increasing numbers of 7 tesla (7T) magnetic resonance imaging (MRI) scanners are in research and clinical use. 7T MRI can increase the scanning speed, spatial resolution and contrast-to-noise-ratio of many neuroimaging protocols, but technical challenges in implementation have been addressed in a variety of ways across sites. In order to facilitate multi-centre studies and ensure consistency of findings across sites, it is desirable that 7T MRI sites implement common high-quality neuroimaging protocols that can accommodate different scanner models and software versions. With the installation of several new 7T MRI scanners in the United Kingdom, the UK7T Network was established with an aim to create a set of harmonized structural and functional neuroimaging sequences and protocols. The Network currently includes five sites, which use three different scanner platforms, provided by two different vendors. Here we describe the harmonization of functional and anatomical imaging protocols across the three different scanner models, detailing the necessary changes to pulse sequences and reconstruction methods. The harmonized sequences are fully described, along with implementation details. Example datasets acquired from the same subject on all Network scanners are made available. Based on these data, an evaluation of the harmonization is provided. In addition, the implementation and validation of a common system calibration process is described. Keywords 7 tesla; MRI; Harmonization; anatomical; functional; Scanner calibration;The UK7T Network and this work was funded by the UK's Medical Research Council (MRC). [MR/N008537/1]. Centre funding The Wellcome Centre for Integrative Neuroimaging is supported by core funding from the Wellcome Trust (203139/Z/16/Z). Cardiff University Brain Research Imaging Centre is supported by the UK Medical Research Council (MR/M008932/1) and the Wellcome Trust (WT104943). This research was co-funded by the NIHR Cambridge Biomedical Research Centre. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. Individual funding CTR is funded by a Sir Henry Dale Fellowship from the Wellcome Trust and the Royal Society [098436/Z/12/B]

    Multi-site harmonization of 7 Tesla MRI neuroimaging protocols

    Get PDF
    Increasing numbers of 7 T (7 T) magnetic resonance imaging (MRI) scanners are in research and clinical use. 7 T MRI can increase the scanning speed, spatial resolution and contrast-to-noise-ratio of many neuroimaging protocols, but technical challenges in implementation have been addressed in a variety of ways across sites. In order to facilitate multi-centre studies and ensure consistency of findings across sites, it is desirable that 7 T MRI sites implement common high-quality neuroimaging protocols that can accommodate different scanner models and software versions. With the installation of several new 7 T MRI scanners in the United Kingdom, the UK7T Network was established with an aim to create a set of harmonized structural and functional neuroimaging sequences and protocols. The Network currently includes five sites, which use three different scanner platforms, provided by two different vendors. Here we describe the harmonization of functional and anatomical imaging protocols across the three different scanner models, detailing the necessary changes to pulse sequences and reconstruction methods. The harmonized sequences are fully described, along with implementation details. Example datasets acquired from the same subject on all Network scanners are made available. Based on these data, an evaluation of the harmonization is provided. In addition, the implementation and validation of a common system calibration process is described

    Multivariate analysis of 1.5 million people identifies genetic associations with traits related to self-regulation and addiction

    Get PDF
    Behaviors and disorders related to self-regulation, such as substance use, antisocial behavior and attention-deficit/hyperactivity disorder, are collectively referred to as externalizing and have shared genetic liability. We applied a multivariate approach that leverages genetic correlations among externalizing traits for genome-wide association analyses. By pooling data from ~1.5 million people, our approach is statistically more powerful than single-trait analyses and identifies more than 500 genetic loci. The loci were enriched for genes expressed in the brain and related to nervous system development. A polygenic score constructed from our results predicts a range of behavioral and medical outcomes that were not part of genome-wide analyses, including traits that until now lacked well-performing polygenic scores, such as opioid use disorder, suicide, HIV infections, criminal convictions and unemployment. Our findings are consistent with the idea that persistent difficulties in self-regulation can be conceptualized as a neurodevelopmental trait with complex and far-reaching social and health correlates

    More than sense of place? Exploring the emotional dimension of rural tourism experiences

    Get PDF
    It is widely suggested that participation in rural tourism is underpinned by a sense of rural place or “rurality”. However, although nature and the countryside have long been recognised as a source of spiritual or emotional fulfilment, few have explored the extent to which tourism, itself often claimed to be a sacred experience, offers an emotional/spiritual dimension in the rural context. This paper addresses that literature gap. Using in-depth interviews with rural tourists in the English Lake District, it explores the extent to which, within respondents’ individual understanding of spirituality, a relationship exists between sense of place and deeper, emotional experiences and, especially, whether participation in rural tourism may induce spiritual or emotional responses. The research revealed that all respondents felt a strong attachment to the Lake District; similarly, and irrespective of their openness to spirituality, engaging in rural tourism activities resulted in highly emotive experiences for all respondents, the description/interpretation of such experiences being determined by individual “beliefs”. However, sense of place was not a prerequisite to emotional or spiritual experiences. Being in and engaging with the landscape � effectively becoming part of it � especially through physical activity is fundamental to emotional responses

    Evolution in the Disks and Bulges of Group Galaxies since z=0.4

    Full text link
    We present quantitative morphology measurements of a sample of optically selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and the GIM2D surface brightness--fitting software package. The group sample is derived from the Canadian Network for Observational Cosmology Field Redshift survey (CNOC2) and follow-up Magellan spectroscopy. We compare these measurements to a similarly selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z < 0.12. We find that, at both epochs, the group and field fractional bulge luminosity (B/T) distributions differ significantly, with the dominant difference being a deficit of disk--dominated (B/T < 0.2) galaxies in the group samples. At fixed luminosity, z=0.4 groups have ~ 5.5 +/- 2 % fewer disk--dominated galaxies than the field, while by z=0.1 this difference has increased to ~ 19 +/- 6 %. Despite the morphological evolution we see no evidence that the group environment is actively perturbing or otherwise affecting the entire existing disk population. At both redshifts, the disks of group galaxies have similar scaling relations and show similar median asymmetries as the disks of field galaxies. We do find evidence that the fraction of highly asymmetric, bulge--dominated galaxies is 6 +/- 3 % higher in groups than in the field, suggesting there may be enhanced merging in group environments. We replicate our group samples at z=0.4 and z=0 using the semi-analytic galaxy catalogues of Bower et al (2006). This model accurately reproduces the B/T distributions of the group and field at z=0.1. However, the model does not reproduce our finding that the deficit of disks in groups has increased significantly since z=0.4.Comment: Accepted for publication in MNRAS. 20 pages, 17 figure

    Whole brain 31P MRSI at 7T with a dual-tuned receive array

    Get PDF
    Purpose: The design and performance of a novel head coil setup for 31P spectroscopy at ultra‐high field strengths (7T) is presented. The described system supports measurements at both the 1H and 31P resonance frequencies. Methods: The novel coil consists of 2, actively detunable, coaxial birdcage coils to give homogeneous transmit, combined with a double resonant 30 channel receive array. This allows for anatomical imaging combined with 31P acquisitions over the whole head, without changing coils or disturbing the subject. A phosphate buffer phantom and 3 healthy volunteers were scanned with a pulse acquire CSI sequence using both the novel array coil and a conventional transceiver birdcage. Four different methods of combining the array channels were compared at 3 different levels of SNR. Results: The novel coil setup delivers significantly increased 31P SNR in the peripheral regions of the brain, reaching up to factor 8, while maintaining comparable performance relative to the birdcage in the center. Conclusions: The new system offers the potential to acquire whole brain 31P MRSI with superior signal relative to the standard options

    Atomic Resonance and Scattering

    Get PDF
    Contains research objectives and summary of research on eight research projects.National Science Foundation (Grant PHY75-15421-A01)U. S. Air Force - Office of Scientific Research (Grant AFOSR 76-2972)Joint Services Electronics Program (Contract DAAB07-76-C-1400)U. S. Air Force - Office of Scientific Research (Contract F44620-72-C-0057
    corecore