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Abstract 3 

Behaviors and disorders related to self-regulation, such as substance use, antisocial conduct, 4 

and ADHD, are collectively referred to as externalizing and have a shared genetic liability. 5 

We applied a multivariate approach that leverages genetic correlations among externalizing 6 

traits for genome-wide association analyses. By pooling data from ~1.5 million people, our 7 

approach is statistically more powerful than single-trait analyses and identifies more than 500 8 

genetic loci. The identified loci were enriched for genes expressed in the brain and related to 9 

nervous system development. A polygenic score constructed from our results captures 10 

variation in a broad range of behavioral and medical outcomes that were not part of our 11 

genome-wide analyses, including traits that until now lacked well-performing polygenic 12 

scores, such as opioid use disorder, suicide, HIV infections, criminal convictions, and 13 

unemployment. Our findings are consistent with the idea that persistent difficulties in self-14 

regulation can be conceptualized as a neurodevelopmental condition. 15 

16 
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Main 1 

Behaviors and disorders related to self-regulation, such as substance use disorders or 2 

antisocial behaviors, have far-reaching consequences for affected individuals, their families, 3 

communities, and society at large1,2. Collectively, this group of correlated traits are classified 4 

as externalizing3. Twin-family studies have demonstrated that externalizing liability is highly 5 

heritable (~80%)4,5, suggesting it will be as tractable to gene discovery as other complex 6 

traits or medical conditions6. To date, however, there have been no large-scale molecular 7 

genetic studies that utilize the extensive degree of genetic overlap among externalizing traits 8 

to aid gene discovery, as most studies have focused on individual disorders or diseases7. But 9 

for many high-cost, high-risk externalizing behaviors – opioid use disorder and suicide 10 

attempts being salient examples – there are too few cases available with genome-wide data to 11 

yield sufficient power for gene discovery8,9. 12 

A complementary strategy to the single-disease approach is to study the shared 13 

genetic architecture across traits in multivariate analyses, which boosts statistical power by 14 

pooling data across genetically correlated traits10. Multivariate approaches can utilize 15 

summary statistics from genome-wide association studies (GWAS), which are now widely 16 

available, to allow for the discovery of connections between phenotypes not naturally studied 17 

together because they span different domains, fields of study, or life stages. Conveniently, by 18 

adjusting for sample overlap, novel statistical methods can attain an even greater effective 19 

sample size by efficiently utilizing observations from overlapping studies. Elucidating the 20 

shared genetic basis of externalizing liability has the potential to advance our understanding 21 

of the biological processes related to behavioral undercontrol, and enables mapping the 22 

pathways by which genetic risk and socio-environmental factors interact to contribute to the 23 

development of different externalizing outcomes. 24 
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5 

Here, we applied genomic structural equation modeling (Genomic SEM) to summary 1 

statistics from GWAS on multiple forms of externalizing behavior for which large samples 2 

were available10. This approach was grounded in the existing literature showing shared 3 

genetic liability across numerous externalizing disorders and with non-psychiatric variation in 4 

externalizing behavior5,11. We posited that applying this multivariate approach would lead to 5 

the identification of genetic variants associated with a broad array of externalizing 6 

phenotypes, as well as related behavioral, social, and medical outcomes that were not directly 7 

included in our genome-wide association analysis. 8 

Results 9 

Multivariate analysis of seven externalizing phenotypes identifies numerous genetic 10 

associations with a general liability to externalizing 11 

Following our preregistered analysis plan (https://doi.org/10.17605/OSF.IO/XKV36, 12 

Supplementary Information section 1), we collated GWAS summary statistics from 13 

externalizing-related disorders and behaviors, with our final analysis using data from seven 14 

externalizing phenotypes with sample sizes >50,000 (Table 1): (1) attention-15 

deficit/hyperactivity disorder (ADHD), (2) problematic alcohol use (ALCP), (3) lifetime 16 

cannabis use (CANN), (4) age at first sexual intercourse (FSEX), (5) number of sexual 17 

partners (NSEX), (6) general risk tolerance (RISK), and (7) lifetime smoking initiation 18 

(SMOK). All samples were of European ancestry. The GWAS protocol is described in 19 

Supplementary Information section 2 (Supplementary Tables 1–4). 20 

 21 
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Table 1. Summary of seven externalizing-related disorders and behaviors with GWAS summary statistics (N > 50,000) 

Phenotype (abbreviation) N h2 (SE) λGC Mean χ2 Intercept Ratio Reference 

Attention-deficit/hyperactivity disorder (ADHD) 53,293 .235 (.015) 1.253 1.297 1.034 .113 12 

Problematic alcohol use (ALCP) 164,121 .055 (.004) 1.149 1.174 1.013 .073 13,14 

Lifetime cannabis use (CANN) 186,875 .066 (.004) 1.230 1.267 1.026 .098 15 

Age at first sexual intercourse (FSEX) 357,187 .115 (.004) 1.623 1.869 1.036 .041 16 

Number of sexual partners (NSEX) 336,121 .097 (.004) 1.492 1.682 1.027 .041 16 

General risk tolerance (RISK) 426,379 .053 (.002) 1.372 1.461 1.019 .041 16 

Lifetime smoking initiation (SMOK) 1,251,809 .078 (.002) 2.328 3.152 1.126 .058 17 

Notes: The statistics reported in this table were all estimated with LD Score regression18. Heritability (h2) is on the observed scale18. λGC is 

the median χ2 statistic divided by the expected median of the χ2 distribution with 1 degree of freedom19. Mean χ2 is the average χ2 statistic. 

Intercept is the estimated LD Score regression intercept. Ratio measures stratification bias, defined as (Intercept – 1) / (Mean χ2 – 1)18. 

 

Consistent with twin studies4,5, the genetic correlations among the seven discovery 1 

phenotypes were moderate to high (Figure 1A and Supplementary Table 5). Using 2 

Genomic SEM10 (Supplementary Information section 3), which is unbiased by sample 3 

overlap and differences in sample sizes in the discovery phenotypes, we formally modeled 4 

the genetic covariances among the seven phenotypes and found that a common factor model 5 

fits the data best. This common factor, which we refer to as EXT, captures a shared genetic 6 

liability to the seven externalizing traits that we included in our analyses (Figure 1B and 7 

Supplementary Table 7).  8 

We then extended Genomic SEM to estimate genetic correlations between EXT and 9 

92 preregistered phenotypes with GWAS summary statistics that were not included among 10 

the seven discovery phenotypes (Extended Data Fig. 1 and Supplementary Table 8). The 11 

genetic correlations indicate convergent and discriminant validity of the common EXT factor 12 

(Figure 1C): As anticipated, EXT showed strong genetic correlations with drug exposure (rg 13 

= .91), antisocial behavior (rg = .65), motor impulsivity (rg = .70), failures to plan (rg = .70), 14 
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7 

and (lack of) agreeableness (rg = –.79), a personality trait characterized by kindness and 1 

cooperativeness that has been found to be low in individuals displaying antisocial behavior. 2 

EXT was also strongly correlated with suicide attempts (rg = .68). EXT showed more modest 3 

inverse correlations with educational attainment (rg = –.32) and intelligence (rg = –.23), 4 

indicating that the latent factor is not simply reflecting genetic influences on cognitive ability. 5 

Finally, there was a strong genetic correlation with the Townsend index (rg = .71), a measure 6 

of neighborhood deprivation that reflects high concentrations of unemployment, household 7 

overcrowding, and low concentrations of home- and car-ownership20. 8 

 9 
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 1 

Figure 1 | Multivariate genome-wide analyses with Genomic SEM. (A) Pair-wise genetic correlations (rg) 2 

among seven discovery phenotypes, with observed-scale SNP heritabilities (h2) on the diagonal. (B) Path 3 

diagram of a confirmatory factor model estimated with Genomic SEM. The parameter estimates were 4 
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standardized, and standard errors are presented in parentheses. (C) Absolute value genetic correlations, |rg|, 1 

between the genetic externalizing factor (EXT) and phenotypes selected to establish convergent and discriminant 2 

validity, where blue and red bars represent positive and negative genetic correlations, respectively. Standard 3 

errors are presented as error bars. (D) GWAS associations (top panel) and QSNP tests of heterogeneity (bottom 4 

panel) for EXT. Purple dots represent 579 EXT lead SNPs that are conditionally and jointly associated (COJO) at 5 

genome-wide significance (two-sided test P < 5×10–8). White diamonds represent eight of the 579 SNPs that 6 

also show significant QSNP heterogeneity. Four green and one yellow squares represent five out of the 579 SNPs 7 

that also were Bonferroni-significant proxy-phenotype associations with alcohol use disorder (AUD) and 8 

antisocial behavior (ASB), respectively. ADHD is attention deficit hyperactivity disorder, ALCP is problematic 9 

alcohol use, CANN is lifetime cannabis use, EXT is externalizing, FSEX is age at first sex, NSEX is number of 10 

sexual partners, RISK is general risk tolerance, SMOK is lifetime smoking initiation. 11 

 12 

We next used Genomic SEM10 to perform a GWAS on the shared genetic liability 13 

EXT (Figure 1D and Extended Data Fig. 2) (Supplementary Information section 3.4). This 14 

analysis estimated single-nucleotide polymorphism (SNP) associations directly with the EXT 15 

factor, with an effective sample size of N = 1,492,085 individuals. These analyses are 16 

different in their approach and substantially increase sample size, statistical power, and the 17 

range of findings compared to previous work21 (Supplementary Information section 2.2.1). 18 

After applying conditional and joint multiple-SNP analysis (COJO) on a set of near-19 

independent, genome-wide significant (two-sided test P < 5×10–8) lead SNPs22, we identified 20 

579 conditionally and jointly associated SNPs (Supplementary Table 9), meaning they were 21 

significantly associated with EXT even after statistically adjusting for each other and other 22 

lead SNPs. Of the 579 EXT SNPs and their correlates within linkage disequilibrium (LD) 23 

regions (r2 > 0.1), 121 (21%) were new loci, not previously associated with any of the seven 24 

externalizing behaviors/disorders that went into the Genomic SEM model, and 41 (7%) can 25 

be classified as entirely novel, as they have not been reported previously for any trait in the 26 

GWAS literature. 27 
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10 

Genomic SEM was used to perform SNP-level tests of heterogeneity (QSNP; 1 

Supplementary Information section 3.5.1) that investigate whether each SNP had consistent, 2 

pleiotropic effects on the seven input phenotypes that effectively operate via the shared 3 

genetic liability EXT (Extended Data Fig. 2). Only 1% (8/579) of the 579 EXT SNPs were 4 

significant (one-sided QSNP P < 5×10–8) in QSNP tests (Figure 1D; Supplementary Table 9), 5 

providing further evidence that the genetic variants we identified primarily index a unitary 6 

dimension of genetic externalizing liability rather than representing an amalgamation of 7 

variants with divergent associations across the discovery phenotypes. The genome-wide QSNP 8 

analysis was adequately powered (mean χ2 = 1.864; Extended Data Fig. 2), and as expected, 9 

it identified heterogeneity in regions of the genome not associated with EXT. The strongest 10 

QSNP and most salient example of a trait-specific association is SNP rs1229984 (one-sided 11 

QSNP P = 1.67×10–51). This particular SNP, located in the gene ADH1B, is a known missense 12 

variant with a well-established role in alcohol metabolism23, and it was not associated with 13 

EXT (two-sided P = 0.022) but only with problematic alcohol use (two-sided P = 6.43×10–57). 14 

Because the discovery stage effectively exhausted large study cohorts available for 15 

strict replication, we instead performed a series of preregistered quasi-replication analyses, 16 

which have previously been applied successfully in the GWAS setting24,25. Further below, we 17 

additionally perform holistic quasi-replication of the 579 EXT SNPs in polygenic score 18 

analyses (also in within-family models). For SNP-level quasi-replication analyses of the 579 19 

SNPs (Supplementary Information section 4), a three-step holistic method tested their 20 

association with two independent, GWAS meta-analyses on externalizing phenotypes: (1) 21 

alcohol use disorder (rg with EXT = 0.52; N = 202,004), and (2) antisocial behavior (rg with 22 

EXT = 0.69; N = 32,574). First, we tested whether the 579 SNPs (or an LD proxy for missing 23 

SNPs, r2 > 0.8) showed sign concordance, i.e., the same direction of effect between EXT and 24 

alcohol use disorder or antisocial behavior: 75.4% of SNPs showed sign concordance with 25 
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11 

alcohol use disorder (two-sided test P = 6.84×10–36) and 66.9% with antisocial behavior (two-1 

sided test P = 1.39×10–15) (Extended Data Fig. 3). For the second and third tests, we 2 

generated empirical null distributions for the two phenotypes by randomly selecting 250 near-3 

independent (r2 < 0.1) SNPs per each of the 579 SNPs, matched on allele frequency. In the 4 

second test, a greater proportion of the 579 SNPs were nominally associated (P < 0.05) with 5 

the two phenotypes compared to their empirical null distributions: 124 (21.4% vs. 6.6%) with 6 

alcohol use disorder (two-sided P = 1.87×10–31) and 58 (10.5% vs. 4.7%) with antisocial 7 

behavior (P = 1.64×10–8). In the third test, the 579 SNPs were jointly more strongly enriched 8 

for association with alcohol use disorder (one-sided Mann-Whitney test P = 5.89×10–26) and 9 

antisocial behavior (P = 1.10×10–5) compared to their empirical null distributions. Overall, 10 

the quasi-replications consistently suggested that the GWAS of EXT is not spurious overall, 11 

and that it is enriched for genetic signal with phenotypes of central importance to the 12 

literature on externalizing.  13 
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Bioinformatic analyses highlight relevant neurodevelopmental and biological processes 1 

We performed a series of bioinformatic analyses to explore the biological processes 2 

underlying externalizing liability (Supplementary Information section 6, Supplementary 3 

Tables 9–10, and 21–29; Extended Data Figs. 5–8). Consistent with the idea that persistent 4 

difficulties in self-regulation can be conceptualized as a neurodevelopmental condition26,27, 5 

MAGMA gene-property analyses suggested an abundance of enrichment in genes expressed 6 

in brain tissues, particularly during prenatal developmental stages (Extended Data Fig. 7), 7 

with the strongest enrichment seen in the cerebellum, followed by frontal cortex, limbic 8 

system tissues, and pituitary gland tissues (Extended Data Fig. 6). Furthermore, MAGMA 9 

gene-set analysis identified gene sets related to neurogenesis, nervous system development, 10 

and synaptic plasticity, among other gene-sets related to neuronal function and structure. 11 

Because of the strong polygenic signal identified in the GWAS of EXT, four different 12 

gene-based analyses identified an abundance of implicated genes (>3,000): (1) functional 13 

annotation of the 579 SNPs to their nearest gene with FUMA28, which suggested 587 genes; 14 

(2) MAGMA gene-based association analysis29, which identified 928 Bonferroni-significant 15 

genes (one-sided test P < 2.74×10–6); (3) H-MAGMA30, a method that assigns non-coding 16 

SNPs to cognate genes based on chromatin interactions in adult brain tissue and which 17 

identified 2,033 Bonferroni-significant genes (one-sided test P < 9.84×10–7); and (4) S-18 

PrediXcan31, which uses transcriptome-based analyses of predicted gene expression in 13 19 

brain tissues and which identified 348 Bonferroni-significant gene-tissue pairs (two-sided test 20 

P < 2.73×10–7).  21 

We found 34 genes that were consistently identified in all four methods, while 741 22 

overlapped across two or more methods (Supplementary Table 29; Extended Data Fig. 8). 23 

Several of the 34 implicated genes are novel discoveries for the psychiatric/behavioral 24 

literature and have previously been identified only in relation to biomedical disease. Such 25 
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discoveries include ALMS1 (previously associated with kidney function and urinary 1 

metabolites32), and ERAP2 (blood protein levels and autoimmune disease 33,34). Other genes 2 

among the 34 have previously been identified in GWAS of behavioral or psychiatric traits: 3 

Cell Adhesion Molecule 2 (CADM2, previously identified in GWAS related to self-4 

regulation, including drug use and risk tolerance16,35), Zic Family Member 4 (ZIC4, 5 

associated with brain volume36), Gamma-Aminobutyric Acid Type A Receptor Subunit 6 

Alpha 2 (GABRA2; the site of action for alcohol and benzodiazepines, extensively studied in 7 

relation to alcohol dependence37,38, and proposed candidate gene for many psychiatric 8 

disorders39,40), NEGR1 (neuronal growth regulator, associated with intelligence and 9 

educational attainment25,41), and Paired Basic Amino Acid Cleaving Enzyme (FURIN, 10 

associated with schizophrenia, risk tolerance, and trans-diagnostic vulnerability to psychiatric 11 

disorders42,43). 12 

Genetic risk scores explain substantial variation in behavioral, psychiatric, and social 13 

outcomes 14 

We created a genome-wide polygenic score for EXT, adjusted for LD44,45, among 15 

subjects from two European-ancestry datasets selected for their detailed phenotypes related to 16 

externalizing outcomes (Supplementary Information section 5): (1) the National Longitudinal 17 

Study of Adolescent to Adult Health (Add Health; N = 5,107), a U.S.-based study of 18 

adolescents who were recruited from secondary schools in the mid-1990s; (2) the 19 

Collaborative Study on the Genetics of Alcoholism (COGA; N = 7,594), a U.S.-based study 20 

focused on understanding genetic contributions to alcohol use disorders.  21 

To investigate the validity of EXT, in each sample, we fit a latent factor model to 22 

phenotypic data corresponding to the seven Genomic SEM phenotypes (Extended Data Fig. 23 

4 and Supplementary Table 13). Controlling for age, sex, and ten principal components of 24 

genetic ancestry, the EXT polygenic score was strongly associated with the latent phenotypic 25 
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14 

factor in both data sets (βAdd Health = 0.33, 95% CI, 0.30 to 0.36, ΔR2 = 10.5%; βCOGA = 0.30, 1 

95% CI, 0.27 to 0.34, ΔR2 = 8.9%; Figure 2A and Supplementary Table 14). The variance 2 

explained by the EXT polygenic score (ΔR2 ~ 8.9–10.5%) is commensurate with many 3 

conventional variables used in social science research, including parental socioeconomic 4 

status, family income or structure, and neighborhood disadvantage/disorder46–48. Next, as 5 

further quasi-replication, in each sample we created a polygenic score using only the 579 6 

EXT SNPs. This polygenic score was associated with the latent phenotypic externalizing 7 

factor in both samples, explaining ~3–4% of the variance (βAdd Health = 0.20, 95% CI, 0.17 to 8 

0.23; βCOGA = 0.17, 95% CI, 0.13 to 0.20; Supplementary Table 14).   9 

 10 

 11 

Figure 2 | Polygenic score associations with behavioral, psychiatric, and social outcomes in the 12 

independent Add Health (N = 5,107) and COGA (N = 7,594) datasets. (A) Bar charts illustrating the mean 13 

proportion of variance (incremental R2, or ΔR2) explained by the polygenic score. Blue and red bars indicate 14 

positive and negative associations, respectively. Relative risk ratios (RRRs), comparing individuals in the lowest 15 
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15 

20% to those in the highest 20% of the polygenic score distribution, are reported for Add Health and COGA in 1 

square and round boxes, respectively. (B) Line charts illustrating the relative risks across quintiles of the 2 

polygenic score for eight illustrative outcomes: (1) meeting 4 or more criteria for alcohol use disorder (AUD), 3 

(2) lifetime use of an illicit substance other than cannabis, (3) lifetime opioid use, (4) ever being arrested, (5) 4 

meeting 3 or more criteria for conduct disorder (CD) or antisocial personality disorder (ASPD), (6) ever being 5 

convicted of a felony, (7) completing college, and (8) first sexual intercourse at the age of 18 or older. 95% 6 

confidence intervals are presented with error bars for each quintile. 7 

 8 

We next explored to what extent polygenic scores for EXT were associated with 9 

childhood externalizing disorders and a variety of specific phenotypes that reflect difficulty 10 

with self-regulation or its social consequences (Figure 2B and Supplementary Tables 16–11 

19). Polygenic scores for EXT explained significant variance (ΔR2) in criteria counts of 12 

ADHD (mean ΔR2 = 1.65%), conduct disorder (CD; mean ΔR2 = 3.1%), and oppositional 13 

defiant disorder (ODD; ΔR2 = 1.96%), as well as in phenotypes categorized as substance use 14 

initiation (mean ΔR2 = 1.3–6.5%), substance use disorders (mean ΔR2 = 0.8–1.7%), 15 

disinhibited behaviors (mean ΔR2 = 1.5–2.5%), criminal justice system involvement (mean 16 

ΔR2 = 1.0–3.0%), reproductive health (mean ΔR2 = 0.3–3.7%), and socioeconomic attainment 17 

(mean ΔR2 = 0.1–2.3%). Many of the phenotypes – such as opioid use disorder criteria count, 18 

conduct disorder and antisocial personality disorder criteria count, lifetime history of arrest or 19 

incarceration, and lifetime history of being fired from work, were not included in our 20 

Genomic SEM analyses; however, our EXT polygenic score is notable in capturing 21 

appreciable variance in phenotypes that are still lacking large GWAS samples (a striking 22 

example being opioid use disorder8). The associations between the EXT polygenic score and 23 

this broad range of phenotypes represents an affirmative test of the hypothesis that genetic 24 

variants associated with externalizing liability generalize to a wide variety of behavioral and 25 

social outcomes related to behavioral undercontrol. 26 

 27 
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1 
Figure 3 | Phenome-wide association study in the BioVU biorepository. –log10 P values of two-sided test for 2 

association of polygenic score for EXT with 1,335 medical outcomes were derived with logistic regression in up 3 

to 66,915 patients, adjusted for sex, median age in the EHR data, and the first 10 genetic PCs. The dashed line is 4 

the Bonferroni-corrected significance threshold; adjusted for the number of tested medical conditions. 84 5 

medical conditions were Bonferroni-significant, while 255 conditions were significant at a false discovery rate 6 

less than 0.05. The labels for some conditions were omitted. The full results, including case-control counts, 7 

effect sizes, and standard errors, are reported in Supplementary Table 20. 8 
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 1 

To evaluate medical outcomes associated with genetic liability to externalizing, we 2 

conducted a phenome-wide association study (PheWAS) in 66,915 genotyped individuals of 3 

European-ancestry in the BioVU biorepository, a U.S.-based biobank of electronic health 4 

records from the Vanderbilt University Medical Center, spanning 1990 to 201749,50. A logistic 5 

regression was fit to 1,335 case/control disease phenotypes. Of these, 255 disease phenotypes 6 

were associated with the EXT polygenic score at a false discovery rate less than 0.05 (Figure 7 

3 and Supplementary Table 20). The most abundant associations were with mental and 8 

behavioral disorders, such as substance use, mood disorders, suicidal ideation, and attempted 9 

suicide. Individuals with higher EXT polygenic scores also showed worse health in nearly 10 

every bodily system. They were more likely to suffer, for example, from ischemic heart 11 

disease, viral hepatitis C and HIV infection, type 2 diabetes and obesity, cirrhosis of liver, 12 

sepsis, and lung cancer. Notably, many of these medical outcomes are mediated by behaviors 13 

related to self-regulation, e.g., smoking, drinking, drug use, condomless sex, and overeating. 14 

Within-family analyses demonstrate that polygenic associations are robust to confounding 15 

Genetic associations detected in GWAS can be due to direct genetic effects, but can 16 

also be confounded by uncontrolled population stratification, indirect genetic effects 17 

mediated through the parental environment, and assortative mating51,52. While reducing 18 

statistical power, sibling comparisons overcome these methodological challenges, because 19 

meiosis randomizes genotypes to siblings51,53. We therefore conducted within-family analyses 20 

of polygenic score associations in the sibling sub-samples of Add Health (N = 994 siblings 21 

from 492 families) and COGA (N = 1,353 siblings from 621 families), as well as a sample of 22 

sibling pairs from the UK Biobank (N = 39,640), which were held-out from the discovery 23 

stage (Supplementary Information section 2.3.2).  24 
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In Add Health and COGA, the phenotypic factor derived from observations 1 

corresponding to the seven discovery phenotypes (see above) was regressed on the EXT 2 

polygenic scores in a within-family model (Supplementary Table 15). Parameter estimates 3 

from the within-family models (βAdd Health = 0.12, 95% CI, 0.04 to 0.20; βCOGA = 0.14, 95% 4 

CI, 0.08 to 0.20) were slightly attenuated compared to OLS models without family-specific 5 

intercepts (βAdd Health = 0.20, 95% CI, 0.16 to 0.24; βCOGA = 0.16, 95% CI, 0.12 to 0.20), but 6 

remained strong (Add Health β / βWF = 1.667; COGA β / βWF = 1.142) and statistically 7 

significant (two-sided test P = 4.89×10–3 and 1.87×10–6, respectively). Additionally, the 8 

association of the quasi-replication polygenic score constructed with the 579 EXT SNPs did 9 

not attenuate in within-family models and remained significant (Supplementary Table 15). 10 

In the UK Biobank sibling hold-out sample, we conducted polygenic score analyses 11 

of 33 phenotypes from the domains of risky behavior, reproductive health, cognitive ability, 12 

personality, and socioeconomic status (Supplementary Table 19). Similar to Add Health 13 

and COGA, within-family estimates were only modestly attenuated for risky behavior and 14 

reproductive health outcomes (mean β / βWF = 1.079); however, effect-sizes in within-family 15 

models were substantially attenuated for cognitive ability and socioeconomic status outcomes 16 

(β / βWF was 3.3 for educational attainment, 4.9 for household income, 2.1 for neighborhood 17 

deprivation). Overall, the EXT polygenic score remained significantly associated (two-sided 18 

test P < 0.05) with 21 outcomes, showing that our GWAS of externalizing captures direct 19 

genetic effects on behavioral health and is not solely a consequence of uncontrolled 20 

population stratification, indirect genetic effects, or other forms of environmental 21 

confounding.   22 

Discussion 23 

Externalizing disorders and behaviors are a widely prevalent cause of human 24 

suffering, but understanding of the molecular genetic underpinnings of externalizing has 25 
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lagged considerably behind progress made in other areas of medical and psychiatric genetics. 1 

For example, dozens of associated genetic loci have been discovered for schizophrenia (>100 2 

loci)54, bipolar disorder (30 loci)55, and major depressive disorders (44 loci)56, whereas recent 3 

GWASs of antisocial behavior57, alcohol use disorders58, and opioid use disorders8 have 4 

identified only a very small number of significantly associated loci, if any at all. Here, we 5 

used multivariate genomic analyses to accelerate genetic discovery, identifying 579 genome-6 

wide significant loci associated with a predisposition toward externalizing disorders and 7 

behaviors, 121 of which are entirely novel discoveries for any of the seven phenotypes 8 

analyzed. Our results demonstrate that moving beyond traditional disease classification 9 

categories can enhance gene discovery, improve polygenic scores, and provide information 10 

about the underlying pathways by which genetic variants impact clinical outcomes. GWAS 11 

efforts find almost ubiquitous genetic correlations across psychiatric disorders and 12 

diagnoses59,60; new analytic methods now allow us to capitalize on these genetic correlations. 13 

Pragmatically, non-disease phenotypes such as the ones we use here (e.g., self-reported age at 14 

first sex) are often easier to measure in the general population than diagnostic status, making 15 

it easier to achieve large sample sizes. Expanding beyond individual diagnoses increases our 16 

ability to detect genes underlying human behavioral and medical outcomes of consequence.  17 

Our results highlight again that there is no distinct line between the genetic study of 18 

biomedical conditions and the genetic study of social and behavioral traits61. Linking biology 19 

with socially-valued behavioral outcomes can be politically sensitive (Box 1)62. Polygenic 20 

scores created using our GWAS results were associated not just with psychiatric and 21 

substance use disorders, but also with correlated social outcomes, such as lower employment 22 

and greater criminal justice system involvement, as well as with biomedical conditions 23 

affecting nearly every system in the body. Considered together, our analyses demonstrate the 24 
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far-reaching toll of human suffering borne by people with high genetic liabilities to 1 

externalizing. 2 

 3 

Box 1. Grappling with the Legacy of Eugenics  4 

In 1912, Henry Goddard published what is now considered an infamous work of 5 

pseudoscience: The Kallakak Family traced several generations of a “feeble-minded” family 6 

to argue that not just intellectual ability, but also drunkenness, criminality, sexual 7 

promiscuity, and morality were hereditary 63. On the basis of these pedigrees, Goddard 8 

recommended that the “feeble-minded” should be institutionalized and prohibited from 9 

reproducing. Horrifically, these recommendations were put into practice: Involuntary 10 

sterilization programs and other forms of state-sponsored violence targeting the poor and 11 

ethnic/racial minorities persisted for decades64,65. Even now, the danger of eugenics is not 12 

safely in the past. Modern genetics research is routinely appropriated by white supremacist 13 

movements to argue that racialized disparities in health, employment, and criminal justice 14 

system involvement are due to the genetic inferiority of people of color rather than 15 

environmental and historical disadvantages66–68. At the same time, failing to understand how 16 

genetic differences contribute to vulnerability to externalizing can increase stigma and blame 17 

for these behaviors69,70. Given the horrific legacy of eugenics, the ongoing reality of racism in 18 

the medical and criminal justice systems, and the importance of combatting stigma in 19 

psychiatric disorders, the scientific results we report here, which are, for technical reasons, 20 

limited to European individuals, must be interpreted with the utmost care. Please see our 21 

supporting materials at www.externalizing.org for more information. 22 

 23 

Our polygenic score for externalizing has one of the largest effect sizes of any 24 

polygenic score in psychiatric and behavioral genetics, accounting for 10% of the variance in 25 
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externalizing factor scores, and meaningful variance in outcomes as varied as opioid use, age 1 

at first sex, being fired from work, and being convicted of a crime. These effect sizes rival the 2 

associations observed with “traditional” covariates used in social science research. But, these 3 

effect sizes remain far below twin estimates of heritability for externalizing5 and far below 4 

what is necessary to predict these outcomes for any individual71,72. Furthermore, while effect 5 

sizes were only modestly attenuated in within-family models of risky behavior and 6 

reproductive behavior, they were substantially attenuated in analyses of socioeconomic 7 

outcomes, indicating that substantial work remains to be done to clarify the association 8 

between externalizing genetics and socioeconomic inequality51. Additionally, application of 9 

these genetic discoveries to improve research and intervention will be limited as long as the 10 

samples available for genomics research fail to reflect the world’s genetic diversity73.  11 

Finally, these results are not evidence that some people are genetically determined to 12 

experience certain life outcomes or are “innately” antisocial. Genetic differences are 13 

probabilistically associated with psychiatric, medical, and social outcomes, in part via 14 

environmental mechanisms that might differ across historical, political, and economic 15 

contexts74. For example, a policy change like decriminalization of cannabis use might 16 

mitigate associations between genetic vulnerabilities and criminal justice system 17 

involvement, because the state ceases to criminalize a behavior to which some individuals 18 

have a greater genetic susceptibility. At the same time, increased availability and decreased 19 

stigma may create environments more conducive to the development of substance problems 20 

among individuals who are genetically at risk75. The impact of genetic factors might also 21 

depend on other forms of social capital and privilege. For instance, childhood externalizing is 22 

associated with greater adult earnings, but only for children not raised in poverty76,77. The 23 

genetic differences identified here can thus be used in future research as a tool to trace how 24 

lifespan development is shaped via complex interactions between genetic predispositions, 25 
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environmental influences (e.g., parenting, peer, and romantic relationships) and social 1 

institutions (e.g., schools, jails, hospitals, creditors, and employers). 2 

Online methods 3 
The article is accompanied by Supplementary Information with further details. The 4 

study was performed according to a preregistered analysis plan 5 

(https://doi.org/10.17605/OSF.IO/XKV36), which specified that we would either generate 6 

new or collect existing single-phenotype genome-wide association study (GWAS) summary 7 

statistics on phenotypes related to the externalizing spectrum (Supplementary Information 8 

section 1). In the discovery stage, the summary statistics were to be analyzed with Genomic 9 

SEM with the aims of (a) estimating a genetic factor structure underlying externalizing 10 

liability, (b) identifying single-nucleotide polymorphisms (SNPs) and genes primarily 11 

involved in a shared genetic liability to externalizing, and (c) increasing the accuracy of 12 

genetic risk scores for specific externalizing phenotypes that are currently intractable to study 13 

in large samples. To ensure satisfying statistical power, we preregistered a minimum sample-14 

size threshold of N > 15,000, and that additional exclusions would be based on displaying 15 

negligible or inaccurate SNP-based heritability or genetic covariance. The study did not 16 

manipulate an experimental condition, and thus, was neither randomized nor blinded. 17 

Collecting existing single-phenotype GWAS on externalizing phenotypes 18 

A detailed definition of “externalizing phenotypes” was preregistered to delimit the 19 

data collection of single-phenotype GWAS summary statistics (Supplementary Information 20 

section 2.1). Summary statistics from existing studies were either provided by or downloaded 21 

from the public repositories of 23andMe, the Psychiatric Genomics Consortium (PGC), the 22 

Million Veterans Program (MVP), the International Cannabis Consortium (ICC), the GWAS 23 

& Sequencing Consortium of Alcohol and Nicotine Use (GSCAN), the Social Science 24 

Genetics Association Consortium (SSGAC), the Genetics of Personality Consortium (GPC), 25 

and the Broad Antisocial Behavior Consortium (Broad ABC), see Supplementary 26 

Information section 2.2 for more details. All GWAS that were considered for inclusion are 27 

listed in Supplementary Table 1, and Supplementary Table 2 reports the underlying 28 

studies that had contributed to the seven GWAS (or GWAS meta-analysis) that were included 29 

the final multivariate model specification (see below). 30 
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GWAS in UK Biobank (UKB) 1 

New GWAS were estimated in UKB (Supplementary Information section 2.3), of 2 

which summary statistics for “age at first sexual intercourse” and “Alcohol Use Disorder 3 

Identification Test problem items” (AUDIT-P) were later included in the final multivariate 4 

model (see below). The GWAS were performed with linear mixed models (BOLT-LMM78) 5 

and were statistically adjusted for sex, birth year, sex-specific birth-year interaction dummies, 6 

genotyping array and batch, and 40 genetic principal components (PCs). Two partly 7 

overlapping hold-out subsamples of UKB participants were excluded from all single-8 

phenotype GWAS summary statistics that included UKB data, and the participants were 9 

instead retained as an independent sample for polygenic score analyses (Supplementary 10 

Information section 2.3.2). Genetic relatives (pairwise KING coefficient ≥ 0.0442) of the 11 

held-out individuals were excluded from the study altogether to ensure independence 12 

between the discovery and follow-up analyses. Whenever an existing GWAS (or meta-13 

analysis) was based on UKB data, we re-estimated the UKB component using the same 14 

phenotype definition as in the existing study, while excluding the held-out participants and 15 

their genetic relatives. See Supplementary Information section 2.3.2 for further details. 16 

GWAS inclusion criteria, quality control, and meta-analysis 17 

All GWAS were performed among individuals that (a) were of European ancestry, (b) 18 

were observed for all relevant covariates, (c) were successfully genotyped and passed 19 

standardized sample-level quality control (according to study-specific protocols12–15,21,79), and 20 

(d) were unrelated (unless a particular GWAS was estimated with linear mixed models). 21 

Genotypes were imputed with reference data from either the 1000 Genomes Consortium80, 22 

the Haplotype Reference Consortium81, the UK10K Consortium82, or a combination thereof. 23 

We performed quality control of GWAS summary statistics with a whole-genome sequenced 24 

reference panel, assembled from 1000 Genomes Consortium80 and UK10K Consortium82 data 25 

(Supplementary Information section 2.4.1). Our quality-control procedure applied 26 

recommended83 SNP-filtering to remove rare SNPs (minor allele frequency < 0.005), SNPs 27 

with an IMPUTE imputation quality (INFO) score less than 0.9, and otherwise low-quality 28 

variants (Supplementary Table 3). For a complete description of the quality-control 29 

procedure, see Supplementary Information section 2.4.  30 

We performed sample-size weighted meta-analysis with METAL84 (Supplementary 31 

Information section 2.5). Thereafter, we excluded any summary statistics that displayed 32 
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insufficient SNP-based heritability (h2 < 0.05) or GWAS association signal (�̅�# < 1.05), 1 

estimated with LD Score regression18,59. At this stage, we had collected or generated well-2 

powered summary statistics for eleven phenotype-specific GWAS (or meta-analysis) that 3 

satisfied our inclusion criteria and that were kept for exploratory factor analysis 4 

(Supplementary Table 4): (1) ADHD (N = 53,293), (2) age at first sexual intercourse (N = 5 

357,187), (3) problematic alcohol use (N = 164,684), (4) automobile speeding propensity (N 6 

= 367,151), (5) alcoholic consumption (drinks per week; N = 375,768), (6) educational 7 

attainment (N = 725,186), (7) lifetime cannabis use (N = 186,875), (9) lifetime smoking 8 

initiation (N = 1,251,809), (9) general risk tolerance (N = 426,379), (10) irritability (N = 9 

388,248), and (11) number of sexual partners (N = 336,121). 10 

Exploratory factor analysis of genetic correlations 11 

As an initial analysis to inform and guide the multivariate modeling process, we 12 

performed hierarchical clustering of a matrix with pair-wise LD Score genetic correlations 13 

(rg) (Supplementary Information section 3). The GWAS effect-sizes of age at first sexual 14 

intercourse and educational attainment were reversed to anticipate positive correlations with 15 

externalizing liability. The 11 phenotypes displayed moderate-to-substantial genetic overlap 16 

with at least one other phenotype (max |rg| = 0.245–0.773), and the average |rg| across all 17 

pairwise correlations was 0.323 (Supplementary Table 5). Three clusters were identified: 18 

(1) attention deficit/hyperactivity disorder (ADHD), educational attainment (EDUC), age at 19 

first sexual intercourse (FSEX), irritability (IRRT), and smoking initiation (SMOK); (2) 20 

problematic alcohol use (ALCP), drinks per week (DRIN); and (3) lifetime cannabis use 21 

(CANN), automobile speeding propensity (DRIV), number of sexual partners (NSEX), 22 

general risk tolerance (RISK). 23 

Following the preregistration, exploratory factor analysis tested four different factor 24 

solutions, specifying 1...k + 1 factors (Supplementary Information section 3.2), where k 25 

corresponds to the number of clusters identified in the genetic correlation matrix, while 26 

retaining factors that explained at least 15% of the variance (a preregistered threshold). 27 

Exploratory factor analysis found that the fourth factor explained only 12.5% of the variance, 28 

and thus, the three-factor solution was considered the most appropriate exploratory model in 29 

terms of capturing variation (Supplementary Table 6). The pattern of factor loadings was 30 

consistent with the hierarchical clustering. However, as we detail in Supplementary 31 

Information section 3.2, the second and third factor mainly accounted for complex residual 32 

variation and divergent residual cross-trait correlations among the subset of phenotypes that 33 
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had the weakest loadings on the single common factor. Thus, we learned from the exploratory 1 

factor analysis that some of the 11 indicators may not be optimal for identifying a single 2 

common genetic liability to externalizing, and that a less complex model specification with 3 

fewer indicators would perhaps perform better than a three-factor model in the subsequent 4 

confirmatory factor analysis. 5 

Confirmatory factor analyses with Genomic SEM 6 

We formally modelled genetic covariances (rather than genetic correlations) and 7 

performed confirmatory factor analyses using the method genomic structural equation 8 

modeling (Genomic SEM)10 (Supplementary Information section 3.3). Genomic SEM is 9 

unbiased by sample overlap and differences in sample size in the discovery phenotypes, and 10 

by applying to GWAS summary statistics it allows for genetic analyses of latent factors in 11 

larger samples than is typically possible with individual-level data10. We competed four 12 

models: (1) a common factor model with the aforementioned 11 phenotypes, (2) a correlated 13 

three-factors model with the 11 phenotypes (with and without cross-loadings), (3) a bifactor 14 

model with the 11 phenotypes, and (4) a revised common factor model that only included 15 

seven of the phenotypes that satisfied moderate-to-large (i.e., ≥ .50) loadings on the single 16 

latent factor in model (1) (Supplementary Table 7). We found that model (4) was the only 17 

model that closely approximated the observed genetic covariance matrix (χ2(12) = 390.234, 18 

AIC = 422.234, CFI = .957, SRMR = .079), fulfilled our preregistered model fit criteria, and 19 

coalesced with theoretical expectations of a general shared genetic liability to externalizing. 20 

This model was selected as our final factor specification, and we hereafter refer to it as “the 21 

latent genetic externalizing factor”, or simply, “the externalizing factor” (EXT). To explore 22 

the convergent and discriminant validity of the externalizing factor, we estimated genetic 23 

correlations between the externalizing factor and 92 traits from various research domains 24 

(Supplementary Table 8). 25 

Multivariate GWAS analyses with Genomic SEM 26 

Using Genomic SEM, we performed multivariate GWAS analysis by estimating SNP 27 

associations with the externalizing factor (EXT), which is our main discovery analysis 28 

(Supplementary Information section 3.4). We estimated the effective sample size of the 29 

resulting “externalizing GWAS” to be Neff = 1,492,085. The GWAS displayed strong 30 

association signal, with a mean χ2 and genomic inflation factor (λGC) of 3.114 and 2.337, 31 

respectively. Analyses with LD Score regression suggest that the strong inflation observed in 32 
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the association test statistic is attributable to polygenicity rather than bias from population 1 

stratification10,18, as the LD Score intercept and attenuation ratio were estimated to be 1.115 2 

(SE = 0.019) and 0.054 (SE = 0.009), respectively. 3 

A conventional “clumping” algorithm was applied to identify near-independent 4 

genome-wide significant lead SNPs (two-sided P < 5×10–8)85, which were then subjected to 5 

“multi-SNP-based conditional & joint association analysis using GWAS summary data” 6 

(COJO) to estimate conditional SNP associations22,86 (Supplementary Information section 7 

3.4.2). We identified 579 lead SNPs that were conditionally and jointly associated with EXT. 8 

We performed lookups of these “579 EXT SNPs”, as well as any correlated SNPs (r2 > 0.1), 9 

in the NHGRI-EBI GWAS Catalog7 (version e96 2019-05-03) to investigate whether the 10 

identified loci have previously been found associated with other traits at suggestive 11 

significance (two-sided P < 1×10–5). To evaluate whether each SNP acted through the 12 

externalizing factor, we estimated genome-wide QSNP heterogeneity statistics with Genomic 13 

SEM (Supplementary Information section 3.5.1). The null hypothesis of the QSNP test is that 14 

SNP effects on the constituent phenotypes operate (i.e., are statistically mediated) via the 15 

EXT factor, so a significant QSNP test indicates that SNP association is better explained by a 16 

trait-specific pathway independent of the EXT factor. The QSNP analysis was sufficiently 17 

powered to identify substantial heterogeneity in the genome (160 near-independent genome-18 

wide significant QSNP loci), but reassuringly, did not identify heterogeneity among 99% 19 

(571/579) of the EXT SNPs. Supplementary Table 9–10 reports the results of the 20 

externalizing GWAS and the heterogeneity analysis, together with bioannotation with 21 

“functional mapping and annotation of genetic associations” (FUMA)28.  22 

Proxy-phenotype and quasi-replication analysis 23 

We performed a preregistered proxy-phenotype87 and quasi-replication24 analysis by 24 

investigating the 579 SNPs (k) for association in two independent, second-stage GWAS on 25 

(1) alcohol use disorder (N = 202,004, rg = 0.52) and (2) antisocial behavior (N = 32,574, rg = 26 

0.69) (Supplementary Information section 4). For SNPs missing from the two second-stage 27 

GWAS, we analyzed highly correlated proxy SNPs (r2 > 0.8). Significant proxy-phenotype 28 

associations were evaluated for Bonferroni-corrected significance (two-sided test P < 0.05/k). 29 

For the quasi-replication exercises, we generated empirical null distributions for the two 30 

second-stage GWAS by randomly selecting 250 near-independent (r2 < 0.1) SNPs matched 31 

on MAF (± 1 percentage point) for each of the k SNPs. The quasi-replication approach was 32 

performed in three steps: (1) a binomial test of sign concordance, which tested whether the 33 
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direction of effect of the k SNPs were in greater concordance between the externalizing 1 

GWAS and each of the second-stage GWAS compared to what would be expected by chance 2 

(H0 = 0.5); (2) a binomial test of whether a greater proportion of the k SNPs were nominally 3 

significant (two-sided P < 0.05) in the second-stage GWAS compared to the empirical null 4 

distribution; (3) a test of joint enrichment, performed as a non-parametric (one-sided) Mann-5 

Whitney test of the null hypothesis that the P values of the k SNPs are derived from the 6 

empirical null distribution. We strongly rejected the null hypotheses of all quasi-replication 7 

tests, suggesting that the externalizing GWAS is not spurious overall and that it was more 8 

enriched for association with the second-stage phenotypes than their respective polygenic 9 

background GWAS signal (Supplementary Table 11–12). 10 

Polygenic score analyses 11 

We generated polygenic scores by summing genotypes weighed by the effect sizes 12 

estimated in the externalizing GWAS, among individuals of European ancestry in five 13 

independent study cohorts: (1) Add Health88,89, (2) COGA90–92, (3) PNC93,94, (4) the UKB 14 

siblings hold-out cohort95, and (5) the BioVU biorepository96 (Supplementary Information 15 

section 5). In each dataset, we generated three scores, of which two were adjusted for linkage 16 

disequilibrium (LD): (1) PRS-CS45, (2) LDpred (infinitesimal model)44, and (3) unadjusted 17 

scores97, while using SNPs that overlapped with the high-quality consensus set defined by the 18 

HapMap 3 Consortium98. Accuracy was evaluated as the incremental R2/pseudo-R2 (ΔR2) 19 

attained by adding the polygenic score to a regression model with baseline covariates, in 20 

accordance with previous efforts16,99. The baseline model included covariates for sex, age, 21 

and genetic principal components (PCs), and genotyping array and batch. The choice of 22 

statistical model (e.g., OLS vs. logit) and adjustment of standard errors depended on (1) the 23 

distribution of the phenotype and (2) the structure of the data in the study cohort (independent 24 

vs. clustered observations), see Supplementary Information section 5.2.4 for further details. 25 

We estimated 95% confidence intervals for ΔR2 using percentile method bootstrapping with 26 

1000 iterations. 27 

In Add Health and COGA, we performed out-of-sample validation of EXT by 28 

modeling a latent externalizing factor using phenotypic data corresponding to the seven 29 

Genomic SEM phenotypes (Supplementary Information section 5.2.3) (Supplementary 30 

Table 13–14). In Add Health, COGA, PNC, and the UKB siblings hold-out cohort, we 31 

performed exploratory polygenic score analyses with a wide range of preregistered 32 

phenotypes from the behavioral, psychiatric, and socioeconomic research domains 33 
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(Supplementary Table 16–19). We performed a phenome-wide association study (PheWAS) 1 

of medical outcomes in the BioVU biorepository by fitting a logistic regression to 1,335 2 

case/control disease “phecodes”100 (N = 66,915) (Supplementary Table 20). 3 

We performed within-family analyses in data on full siblings in Add Health, COGA, 4 

and the UKB siblings hold-out cohort (Supplementary Information section 5.2.5). We 5 

analyzed 492 families in Add Health (Nsiblings = 994), 621 families in COGA (Nsiblings = 6 

1,353), and 19,252 families in the UKB (Nsiblings = 39,640). In Add Health and COGA, we 7 

applied OLS to test the externalizing polygenic score for association with a single outcome: 8 

the factor scores of the phenotypic externalizing factor (a continuous variable), while 9 

adjusting for family fixed-effects (i.e., family-specific dummy variables) (Supplementary 10 

Table 15). We then compared the magnitude of the within-family coefficient (𝛽%&') to the 11 

coefficient of an OLS model without family-specific intercepts (𝛽%). In the UKB siblings 12 

hold-out cohort, we performed an analogous within-family analysis of the exploratory 13 

phenotypes (Supplementary Table 19). We analyzed heteroskedasticity-consistent and 14 

cluster-robust standard errors, clustered at the family level. 15 

Bioannotation 16 

We performed a series of bioannotation and bioinformatic analyses to identify 17 

relevant biological pathways (Supplementary Information section 6). The method  18 

“functional mapping and annotation of genetic associations” (FUMA v1.3.5e)28 was applied 19 

to explore the functional consequences of the 579 SNPs (Supplementary Table 9), which 20 

included ANNOVAR categories (i.e., the functional consequence of SNPs on genes), 21 

Combined Annotation Dependent Depletion (CADD) scores (i.e., a measure of how 22 

deleterious a SNP is; CADD > 12.37 is classified as deleterious), RegulomeDB scores (i.e., a 23 

categorical score from 1a to 7 with 1a corresponding to the most biological evidence that the 24 

SNP is a regulatory element), mapping to expression quantitative trait loci (eQTLs), and 25 

chromatin states (values range from 1 to 15, with values 1 to 7 referring to an open chromatin 26 

state). The sources of the external reference data used by FUMA are described in ref.28. 27 

Gene-based association analyses was performed by applying the method “multi-28 

marker analysis of genomic annotation” (MAGMA v1.07)28,29 (Supplementary Information 29 

sections 6.1.2). The method accounts for LD, which was calculated using reference data from 30 

European-ancestry 1000 Genomes participants80. Genome-wide SNPs were first mapped to 31 

18,093 protein-coding genes from Ensembl (build 85)101, and the SNPs within each gene 32 
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were then jointly tested for association with EXT. We evaluated Bonferroni-corrected 1 

significance, adjusted for the number of tested genes (one-sided P < 2.76×10–6) 2 

(Supplementary Table 21). Next, MAGMA gene-set analysis was performed using 15,477 3 

curated gene sets and Gene Ontology (GO)102 terms obtained from the Molecular Signatures 4 

Database (MsigDB v7.0)103. We evaluated Bonferroni-corrected significance, adjusted for the 5 

number of tested gene sets (one-sided P < 3.23×10–6) (Supplementary Table 22). Lastly, a 6 

gene property analysis tested the relationships between 54 tissue-specific gene expression 7 

profiles and gene associations, while adjusting for the average expression of genes per tissue 8 

type as a covariate (Supplementary Table 23), and between brain gene expression profiles 9 

and gene associations across 11 brain tissues from BrainSpan104 (Supplementary Table 24). 10 

Gene expression values were log2 transformed average Reads Per Kilobase Million (RPKM) 11 

per tissue type (after replacing RPKM > 50 with 50) based on GTEx RNA-seq data105. We 12 

evaluated Bonferroni-corrected significance, adjusted for the number of tested profiles (one-13 

sided P < 9.26×10–4). 14 

We used an extension of MAGMA: “Hi-C coupled MAGMA” or “H-MAGMA” 30, to 15 

assign non-coding (intergenic and intronic) SNPs to cognate genes based on their chromatin 16 

interactions. Exonic and promoter SNPs were assigned to genes based on physical position. 17 

We used four Hi-C datasets provided with the software, derived from adult brain106, fetal 18 

brain107, and iPSC derived neurons and astrocytes108. We evaluated Bonferroni-corrected 19 

significance, adjusted the number of tests within each of the four Hi-C datasets (one-sided P 20 

< 9.83–9.86×10–7) (Supplementary Tables 25–28). 21 

The method S-PrediXcan v0.6.2109 was used to analyze the association of EXT with 22 

gene expression levels in different brain tissues. We used pre-computed tissue weights from 23 

the Genotype-Tissue Expression (GTEx, v8) project database as the reference transcriptome 24 

dataset105. As input data, we used the EXT summary statistics, LD matrices of the SNPs 25 

(available at the PredictDB Data Repository, http://predictdb.org), and transcriptome tissue 26 

data related to 13 brain tissues: anterior cingulate cortex, amygdala, caudate basal ganglia, 27 

cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, 28 

nucleus accumbens basal ganglia, putamen basal ganglia, spinal cord and substantia nigra. 29 

We evaluated transcriptome-wide significance at the two-sided test P < 2.77×10–7, which is 30 

the Bonferroni-corrected threshold adjusted for 13 tissues times 13,876 tested genes (180,388 31 

gene-tissue pairs) (Supplementary Table 29). In Supplementary Table 30 we summarize 32 

the genes findings across the bioannotation analyses. 33 

34 
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