21 research outputs found

    The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide

    Get PDF
    http://www.nature.com/ismej/journal/v6/n2/full/ismej201199a.htmlOne of the major factors associated with global change is the ever-increasing concentration of atmospheric CO2. Although the stimulating effects of elevated CO2 (eCO2) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO2 conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO2. PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO2, and such significant effects of eCO2 on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO2. Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO2. Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO2 and environmental factors shaping the microbial community structure

    Antimicrobial Resistance in Agriculture

    Get PDF
    In this article, the current knowledge and knowledge gaps in the emergence and spread of antimicrobial resistance (AMR) in livestock and plants and importance in terms of animal and human health are discussed. Some recommendations are provided for generation of the data required in order to develop risk assessments for AMR within agriculture and for risks through the food chain to animals and humans

    Valores en la educación infantil : un año en la clase de las Jirafas

    Get PDF
    Resumen basado en el de la publicaciónSe pretende mostrar los dinamismos de la educación en valores que se dan día a día en una clase de Educación Infantil. Durante un curso escolar, se acompaña a un grupo de alumnos y a su profesora para ver cómo en la clase de las jirafas se cuidan las prácticas de gestión del conocimiento, se fomentan los espacios de dialogo y deliberación y se construyen lazos que no dejan indiferentes a ninguno de sus protagonistas. Y es que, la educación en valores en una comunidad escolar es una tarea dinámica, una experiencia que impregna el clima y la atmosfera de una institución y que permite a sus protagonistas vivir experiencias de autonomía y solidaridad en primera persona.CataluñaBiblioteca de Educación del Ministerio de Educación, Cultura y Deporte; Calle San Agustín, 5 - 3 planta; 28014 Madrid; Tel. +34917748000; [email protected]

    Analysis of the bacterial epiphytic microbiota of oak leaf lettuce with 16S ribosomal RNA gene analysis

    Get PDF
    The leaf microbiota has major influences on the quality of ready-to-eat lettuce. While studies investigating the epi- and endophytic microbiota of lettuce have been published, no protocols focusing only on the epiphytic microbiota exist. As the epiphytic microbiota may be especially influenced by technological steps in the production of ready-to-eat lettuce, an in-depth knowledge of these microorganisms is essential with regard to consumer safety and spoilage. Currently it is not clear to what extent results gained from single samples are representative of the community composition. A technique for the separation of bacterial cells from the leaf surface was applied to green oak leaf lettuce. The bacterial diversity was analysed in triplicate with high throughput Roche 454 sequencing of prokaryotic 16S rRNA genes to analyse the intra-sample variation. Sequence analysis revealed members of the phyla Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, Proteobacteria and Verrucomicrobia, and of the candidate division WYO. The ten most abundant proteobacterial genera in all three samples were Alkanindiges (24.6%), Pseudomonas (11.3%), Sphingomonas (8.6%), Janthinobacterium (8.3%), Acinetobacter (4.3%), Polaromonas (1.3%), Erwinia (1.1%), and Methylobacterium (1.1%). The genera Pedobacter (2.5%) and Hymenobacter (1.4%) dominated the phylum Bacteroidetes. The intra-sample variation was less than 0.7% for seven of these most abundant genera with the exception of Pseudomonas, Janthinobacterium and Alkanindiges, where larger standard deviations were obtained. This low intra-sample variation demonstrates that the established technique based on oak leaf lettuce is suitable for the culture-independent analysis of the epiphytic bacterial microbiota of produce

    Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis

    Full text link
    The arbuscular mycorrhizal (AM) symbiosis represents the most widely distributed mutualistic root symbiosis. We report that root extracts of mycorrhizal plants contain a lipophilic signal capable of inducing the phosphate transporter genes StPT3 and StPT4 of potato (Solanum tuberosum L.), genes that are specifically induced in roots colonized by AM fungi. The same signal caused rapid extracellular alkalinization in suspension-cultured tomato (Solanum lycopersicum L.) cells and induction of the mycorrhiza-specific phosphate transporter gene LePT4 in these cells. The active principle was characterized as the lysolipid lyso-phosphatidylcholine (LPC) via a combination of gene expression studies, alkalinization assays in cell cultures, and chromatographic and mass spectrometric analyses. Our results highlight the importance of lysophospholipids as signals in plants and in particular in the AM symbiosis
    corecore