16 research outputs found

    Aberrant mitochondrial dynamics contributes to diaphragmatic weakness induced by mechanical ventilation.

    Get PDF
    In critical care patients, the “”temporary inactivity of the diaphragm caused by mechanical ventilation (MV) triggers a series of events leading to diaphragmatic dysfunction and atrophy, commonly known as ventilator-induced diaphragm dysfunction (VIDD). While mitochondrial dysfunction related to oxidative stress is recognized as a crucial factor in VIDD, the exact molecular mechanism remains poorly understood. In this study, we observe that 6 h of MV triggers aberrant mitochondrial dynamics, resulting in a reduction in mitochondrial size and interaction, associated with increased expression of dynamin-related protein 1 (DRP1). This effect can be prevented by P110, a molecule that inhibits the recruitment of DRP1 to the mitochondrial membrane. Furthermore, isolated mitochondria from the diaphragms of ventilated patients exhibited increased production of reactive oxygen species (ROS). These mitochondrial changes were associated with the rapid oxidation of type 1 ryanodine receptor (RyR1) and a decrease in the stabilizing subunit calstabin 1. Subsequently, we observed that the sarcoplasmic reticulum (SR) in the ventilated diaphragms showed increased calcium leakage and reduced contractile function. Importantly, the mitochondrial fission inhibitor P110 effectively prevented all of these alterations. Taken together, the results of our study illustrate that MV leads, in the diaphragm, to both mitochondrial fragmentation and dysfunction, linked to the up-/down-regulation of 320 proteins, as assessed through global comprehensive quantitative proteomics analysis, primarily associated with mitochondrial function. These outcomes underscore the significance of developing compounds aimed at modulating the balance between mitochondrial fission and fusion as potential interventions to mitigate VIDD in human patients

    Leaky ryanodine receptors contribute to diaphragmatic weakness during mechanical ventilation

    Get PDF
    Ventilator-induced diaphragmatic dysfunction (VIDD) refers to the diaphragm muscle weakness that occurs following prolonged controlled mechanical ventilation (MV). The presence of VIDD impedes recovery from respiratory failure. However, the pathophysiological mechanisms accounting for VIDD are still not fully understood. Here, we show in human subjects and a mouse model of VIDD that MV is associated with rapid remodeling of the sarcoplasmic reticulum (SR) Ca2+ release channel/ryanodine receptor (RyR1) in the diaphragm. The RyR1 macromolecular complex was oxidized, S-nitrosylated, Ser-2844 phosphorylated, and depleted of the stabilizing subunit calstabin1, following MV. These posttranslational modifications of RyR1 were mediated by both oxidative stress mediated by MV and stimulation of adrenergic signaling resulting from the anesthesia. We demonstrate in the murine model that such abnormal resting SR Ca2+ leak resulted in reduced contractile function and muscle fiber atrophy for longer duration of MV. Treatment with ÎČ-adrenergic antagonists or with S107, a small molecule drug that stabilizes the RyR1–calstabin1 interaction, prevented VIDD. Diaphragmatic dysfunction is common in MV patients and is a major cause of failure to wean patients from ventilator support. This study provides the first evidence to our knowledge of RyR1 alterations as a proximal mechanism underlying VIDD (i.e., loss of function, muscle atrophy) and identifies RyR1 as a potential target for therapeutic intervention

    Acute RyR1 Ca2+ leak enhances NADH-linked mitochondrial respiratory capacity

    Get PDF
    Sustained ryanodine receptor (RyR) Ca2+ leak is associated with pathological conditions such as heart failure or skeletal muscle weakness. We report that a single session of sprint interval training (SIT), but not of moderate intensity continuous training (MICT), triggers RyR1 protein oxidation and nitrosylation leading to calstabin1 dissociation in healthy human muscle and in in vitro SIT models (simulated SIT or S-SIT). This is accompanied by decreased sarcoplasmic reticulum Ca2+ content, increased levels of mitochondrial oxidative phosphorylation proteins, supercomplex formation and enhanced NADH-linked mitochondrial respiratory capacity. Mechanistically, (S-)SIT increases mitochondrial Ca2+ uptake in mouse myotubes and muscle fibres, and decreases pyruvate dehydrogenase phosphorylation in human muscle and mouse myotubes. Countering Ca2+ leak or preventing mitochondrial Ca2+ uptake blunts S-SIT-induced adaptations, a result supported by proteomic analyses. Here we show that triggering acute transient Ca2+ leak through RyR1 in healthy muscle may contribute to the multiple health promoting benefits of exercise

    Early cellular mechanisms involved in diaphragmatic dysfunction induced by mechanical ventilation

    No full text
    La ventilation mĂ©canique(VM) est le premier traitement en rĂ©animation du syndrome de dĂ©tresse respiratoire aigĂŒe permettant de maintenir une oxygĂ©nation tissulaire suffisante. Mais elle induit une atteinte de la fonction contractile des muscles respiratoires, principalement le diaphragme, augmentant ainsi la dĂ©pendance du patient vis Ă  vis de son ventilateur. Cette pathologie musculaire acquise est appelĂ©e Dysfonction Diaphragmatique induite par la ventilation (VIDD). L’objectif de cette thĂšse est proposer, Ă  partir d’un modĂšle murin de ventilation mĂ©canique, les mĂ©canismes physiopathologiques prĂ©coces impliquĂ©s dans cette dysfonction, afin d’identifier de nouvelles cibles thĂ©rapeutiques dans la prĂ©vention de cette pathologie musculaire.Nous avons montrĂ© en effet la prĂ©sence, aprĂšs 6 heures de ventilation mĂ©canique chez la souris, d’un stress oxydant d’origine mitochondrial Ă  la base d’une oxydation du rĂ©cepteur Ă  la ryanodine (RyR1), principal canal calcique impliquĂ© dans le CEC. Nous avons Ă©galement montrĂ© la prĂ©sence au bout d’un temps de ventilation mĂ©canique Ă©quivalent, d’une phosphorylation de ce mĂȘme canal, du faite d’une activation de la voie des protĂ©ines kinase, secondaire Ă  un stress adrĂ©nergique. Nous Ă©galement avons dĂ©montrĂ© que ces deux modifications post traductionnelles du RyR1 devaient ĂȘtre nĂ©cessairement associĂ©es pour induire une atteinte fonctionnelle du canal avec fuite calcique dans le cytosol, du faite de la perte de liaison avec sa protĂ©ine stabilisatrice FKBP12. Dans ses travaux de thĂšse, nous montrons Ă©galement, que ces anomalies de troubles de l’homĂ©ostasie calcique observĂ©e aprĂšs 6 heures de ventilation mĂ©canique, induisaient au bout de 12 heures de ventilation une activation secondaire de la protĂ©olyse dĂ©pendante du calcium, associĂ©e Ă  une atrophie. Ainsi ces rĂ©sultats montrent l’intĂ©rĂȘt de toutes thĂ©rapeutiques permettant de stabiliser la liaison entre le canal RyR1 et sa protĂ©ine FKBP12 dans la prĂ©vention de la VIDD. En effet, avons observĂ© chez la souris, qu’un traitement anti oxydant spĂ©cifique de la mitochondrie (SS-31) ou qu’un traitement bĂ©tabloquant spĂ©cifique de la voie bĂ©ta2 adrĂ©nergique (ICI-118551) ou qu’un traitement qui stabilise directement la liaison RyR1-FKBP12 (S107) permettaient de prĂ©venir les troubles prĂ©coces de l’homĂ©ostasie calcique et l’apparition secondaire d’une protĂ©olyse et d’une atrophie induite par la ventilation mĂ©canique. Enfin, dans le dernier travail de ma thĂšse, je propose que la production de ROS mitochondriale, puisse ĂȘtre associĂ©e Ă  un remodelage du rĂ©seau mitochondrial avec prĂ©pondĂ©rance d’un phĂ©nomĂšne de fission des mitochondries. Ce remodelage, qui pourrait ĂȘtre considĂ©rĂ© comme une adaptation de la mitochondrie du faite d’une rupture brutale de l’équilibre entre production et consommation d’énergie par la fibre musculaire. En effet, nous montrons qu’un inhibiteur de la fission mitochondriale (P110), qui bloque la liaison entre la protĂ©ine Drp1 et son rĂ©cepteur, dans notre modĂšle animal de ventilation mĂ©canique, pouvait prĂ©venir l’apparition d’une VIDD. Ainsi dans la continuitĂ© de ses derniers travaux, afin de faire le lien entre fission mitochondriale et stress oxydant Ă  la base des troubles de l’homĂ©ostasie calcique, j’espĂšre montrer que ce traitement, au cours de la ventilation mĂ©canique, limite la production de ROS mitochondriale, l’oxydation du canal RyR1, ainsi que la fuite calcique Ă  travers le RyR1. Ces derniers travaux, mettraient en avant toute thĂ©rapeutique permettant de limiter les phĂ©nomĂšnes de fission mitochondriale et ses consĂ©quences dans la prĂ©vention de la VIDD.Mots clĂ©s : RyR, mitochondrie, dysfonction contractile, VIDD, stress oxydantMechanical ventilation (MV) is the first treatment in intensive care for acute respiratory distress syndrome to maintain adequate tissue oxygenation. However, it induces an impairment of the contractile function of the respiratory muscles, particularly the diaphragm, thereby increasing the patient's dependence on his ventilator. This acquired muscle disease have been termed ventilator induced diaphragmatic dysfunction (VIDD). The aim of this thesis is to propose, from a mouse model of mechanical ventilation, early pathophysiologic mechanisms involved in this dysfunction, to identify new therapeutic targets in preventing VIDD.We observed after 6 hours of mechanical ventilation, a mitochondrial oxidative stress which induces ryanodine receptor (RyR1) oxidation, the main calcium channel involved in the ECC. We also showed the presence after an equivalent time of mechanical ventilation, phosphorylation of RyR1, due to protein kinase activation, secondary to an adrenergic stress. Then, we have demonstrated that these post-translational modifications of RyR1 should be necessarily associated to trigger a functional impairment of RyR1 with calcium leakage from the sarcoplasmic reticulum to the cytosol, due to the loss of connection between RyR1 and the stabilizing protein KBP12. In his thesis, we also showed that these calcium homeostasis disorders, induced by 12 hours of ventilation, secondary activates the dependent proteolysis calcium and atrophy.Thus, these results show the benefit of all therapy stabilizing the connection between the RyR1 channel and the FKBP12 protein to prevent VIDD. Indeed, were observed in mice, that a specific mitochondrial anti-oxidant treatment (SS-31), or a specific beta-blocker treatment of beta2 adrenergic pathway (ICI-118551 ) or a treatment that stabilizes directly FKBP12- binding RyR1 (S107 ) prevent early disorders of calcium homeostasis and secondary appearance of proteolysis and atrophy induced by mechanical ventilation.Finally, in the last part of my work thesis, I suggest that mitochondrial ROS production may be associated with remodeling of the mitochondrial network with a preponderance of mitochondrial fission phenomenon. This remodeling could be seen as an adaptation of the mitochondria due to a sudden mismatch between energy production and consumption. Indeed, we showed that an inhibitor of the mitochondrial fission (P110), which blocks the connection between the DRP1 protein and its receptor in our animal model of mechanical ventilation, could prevent the appearance of VIDD. Thus the continuity of this last work of my thesis is to make the link between mitochondrial fission and oxidative stress underlying the disorders of calcium homeostasis. Indeed, I hope to show that this treatment during mechanical ventilation, may decrease mitochondrial ROS production, oxidation of RyR1 channel and calcium leak through the RyR1. This last work will emphasis any therapeutic which limit mitochondrial fission and its consequences, to prevent VIDD.Keywords: RyR1, mitochondria, contractile dysfunction, VIDD, oxidative stres

    Mécanismes cellulaires précoces impliqués dans la dysfonction diaphragmatique induite par la ventilation mécanique

    No full text
    Mechanical ventilation (MV) is the first treatment in intensive care for acute respiratory distress syndrome to maintain adequate tissue oxygenation. However, it induces an impairment of the contractile function of the respiratory muscles, particularly the diaphragm, thereby increasing the patient's dependence on his ventilator. This acquired muscle disease have been termed ventilator induced diaphragmatic dysfunction (VIDD). The aim of this thesis is to propose, from a mouse model of mechanical ventilation, early pathophysiologic mechanisms involved in this dysfunction, to identify new therapeutic targets in preventing VIDD.We observed after 6 hours of mechanical ventilation, a mitochondrial oxidative stress which induces ryanodine receptor (RyR1) oxidation, the main calcium channel involved in the ECC. We also showed the presence after an equivalent time of mechanical ventilation, phosphorylation of RyR1, due to protein kinase activation, secondary to an adrenergic stress. Then, we have demonstrated that these post-translational modifications of RyR1 should be necessarily associated to trigger a functional impairment of RyR1 with calcium leakage from the sarcoplasmic reticulum to the cytosol, due to the loss of connection between RyR1 and the stabilizing protein KBP12. In his thesis, we also showed that these calcium homeostasis disorders, induced by 12 hours of ventilation, secondary activates the dependent proteolysis calcium and atrophy.Thus, these results show the benefit of all therapy stabilizing the connection between the RyR1 channel and the FKBP12 protein to prevent VIDD. Indeed, were observed in mice, that a specific mitochondrial anti-oxidant treatment (SS-31), or a specific beta-blocker treatment of beta2 adrenergic pathway (ICI-118551 ) or a treatment that stabilizes directly FKBP12- binding RyR1 (S107 ) prevent early disorders of calcium homeostasis and secondary appearance of proteolysis and atrophy induced by mechanical ventilation.Finally, in the last part of my work thesis, I suggest that mitochondrial ROS production may be associated with remodeling of the mitochondrial network with a preponderance of mitochondrial fission phenomenon. This remodeling could be seen as an adaptation of the mitochondria due to a sudden mismatch between energy production and consumption. Indeed, we showed that an inhibitor of the mitochondrial fission (P110), which blocks the connection between the DRP1 protein and its receptor in our animal model of mechanical ventilation, could prevent the appearance of VIDD. Thus the continuity of this last work of my thesis is to make the link between mitochondrial fission and oxidative stress underlying the disorders of calcium homeostasis. Indeed, I hope to show that this treatment during mechanical ventilation, may decrease mitochondrial ROS production, oxidation of RyR1 channel and calcium leak through the RyR1. This last work will emphasis any therapeutic which limit mitochondrial fission and its consequences, to prevent VIDD.Keywords: RyR1, mitochondria, contractile dysfunction, VIDD, oxidative stressLa ventilation mĂ©canique(VM) est le premier traitement en rĂ©animation du syndrome de dĂ©tresse respiratoire aigĂŒe permettant de maintenir une oxygĂ©nation tissulaire suffisante. Mais elle induit une atteinte de la fonction contractile des muscles respiratoires, principalement le diaphragme, augmentant ainsi la dĂ©pendance du patient vis Ă  vis de son ventilateur. Cette pathologie musculaire acquise est appelĂ©e Dysfonction Diaphragmatique induite par la ventilation (VIDD). L’objectif de cette thĂšse est proposer, Ă  partir d’un modĂšle murin de ventilation mĂ©canique, les mĂ©canismes physiopathologiques prĂ©coces impliquĂ©s dans cette dysfonction, afin d’identifier de nouvelles cibles thĂ©rapeutiques dans la prĂ©vention de cette pathologie musculaire.Nous avons montrĂ© en effet la prĂ©sence, aprĂšs 6 heures de ventilation mĂ©canique chez la souris, d’un stress oxydant d’origine mitochondrial Ă  la base d’une oxydation du rĂ©cepteur Ă  la ryanodine (RyR1), principal canal calcique impliquĂ© dans le CEC. Nous avons Ă©galement montrĂ© la prĂ©sence au bout d’un temps de ventilation mĂ©canique Ă©quivalent, d’une phosphorylation de ce mĂȘme canal, du faite d’une activation de la voie des protĂ©ines kinase, secondaire Ă  un stress adrĂ©nergique. Nous Ă©galement avons dĂ©montrĂ© que ces deux modifications post traductionnelles du RyR1 devaient ĂȘtre nĂ©cessairement associĂ©es pour induire une atteinte fonctionnelle du canal avec fuite calcique dans le cytosol, du faite de la perte de liaison avec sa protĂ©ine stabilisatrice FKBP12. Dans ses travaux de thĂšse, nous montrons Ă©galement, que ces anomalies de troubles de l’homĂ©ostasie calcique observĂ©e aprĂšs 6 heures de ventilation mĂ©canique, induisaient au bout de 12 heures de ventilation une activation secondaire de la protĂ©olyse dĂ©pendante du calcium, associĂ©e Ă  une atrophie. Ainsi ces rĂ©sultats montrent l’intĂ©rĂȘt de toutes thĂ©rapeutiques permettant de stabiliser la liaison entre le canal RyR1 et sa protĂ©ine FKBP12 dans la prĂ©vention de la VIDD. En effet, avons observĂ© chez la souris, qu’un traitement anti oxydant spĂ©cifique de la mitochondrie (SS-31) ou qu’un traitement bĂ©tabloquant spĂ©cifique de la voie bĂ©ta2 adrĂ©nergique (ICI-118551) ou qu’un traitement qui stabilise directement la liaison RyR1-FKBP12 (S107) permettaient de prĂ©venir les troubles prĂ©coces de l’homĂ©ostasie calcique et l’apparition secondaire d’une protĂ©olyse et d’une atrophie induite par la ventilation mĂ©canique. Enfin, dans le dernier travail de ma thĂšse, je propose que la production de ROS mitochondriale, puisse ĂȘtre associĂ©e Ă  un remodelage du rĂ©seau mitochondrial avec prĂ©pondĂ©rance d’un phĂ©nomĂšne de fission des mitochondries. Ce remodelage, qui pourrait ĂȘtre considĂ©rĂ© comme une adaptation de la mitochondrie du faite d’une rupture brutale de l’équilibre entre production et consommation d’énergie par la fibre musculaire. En effet, nous montrons qu’un inhibiteur de la fission mitochondriale (P110), qui bloque la liaison entre la protĂ©ine Drp1 et son rĂ©cepteur, dans notre modĂšle animal de ventilation mĂ©canique, pouvait prĂ©venir l’apparition d’une VIDD. Ainsi dans la continuitĂ© de ses derniers travaux, afin de faire le lien entre fission mitochondriale et stress oxydant Ă  la base des troubles de l’homĂ©ostasie calcique, j’espĂšre montrer que ce traitement, au cours de la ventilation mĂ©canique, limite la production de ROS mitochondriale, l’oxydation du canal RyR1, ainsi que la fuite calcique Ă  travers le RyR1. Ces derniers travaux, mettraient en avant toute thĂ©rapeutique permettant de limiter les phĂ©nomĂšnes de fission mitochondriale et ses consĂ©quences dans la prĂ©vention de la VIDD.Mots clĂ©s : RyR, mitochondrie, dysfonction contractile, VIDD, stress oxydan

    Mitochondrial Calcium Overload Plays a Causal Role in Oxidative Stress in the Failing Heart

    No full text
    Heart failure is a serious global health challenge, affecting more than 6.2 million people in the United States and is projected to reach over 8 million by 2030. Independent of etiology, failing hearts share common features, including defective calcium (Ca2+) handling, mitochondrial Ca2+ overload, and oxidative stress. In cardiomyocytes, Ca2+ not only regulates excitation–contraction coupling, but also mitochondrial metabolism and oxidative stress signaling, thereby controlling the function and actual destiny of the cell. Understanding the mechanisms of mitochondrial Ca2+ uptake and the molecular pathways involved in the regulation of increased mitochondrial Ca2+ influx is an ongoing challenge in order to identify novel therapeutic targets to alleviate the burden of heart failure. In this review, we discuss the mechanisms underlying altered mitochondrial Ca2+ handling in heart failure and the potential therapeutic strategies

    Mitochondrial oxidative stress induces leaky ryanodine receptor during mechanical ventilation

    No full text
    International audienceVentilator-induced diaphragm dysfunction (VIDD) increases morbidity and mortality in critical care patients. Although VIDD has been associated with mitochondrial oxidative stress and calcium homeostasis impairment, the underling mechanisms are still unknown. We hypothesized that diaphragmatic mitochondrial oxidative stress causes remodeling of the ryanodine receptor (RyR1)/calcium release channel, contributing to sarcoplasmic reticulum (SR) Ca2+ leak, proteolysis and VIDD

    Ryanodine receptor remodeling in cardiomyopathy and muscular dystrophy caused by lamin A/C gene mutation

    No full text
    International audienceAbstract Mutations in the lamin A/C gene (LMNA), which encodes A-type lamins, cause several diseases called laminopathies, the most common of which is dilated cardiomyopathy with muscular dystrophy. The role of Ca2+ regulation in these diseases remain poorly understood. We now show biochemical remodeling of the ryanodine receptor (RyR)/intracellular Ca2+ release channel in heart samples from human subjects with LMNA mutations, including protein kinase A-catalyzed phosphorylation, oxidation and depletion of the stabilizing subunit calstabin. In the LmnaH222P/H222P murine model of Emery-Dreifuss muscular dystrophy caused by LMNA mutation, we demonstrate an age-dependent biochemical remodeling of RyR2 in the heart and RyR1 in skeletal muscle. This RyR remodeling is associated with heart and skeletal muscle dysfunction. Defective heart and muscle function are ameliorated by treatment with a novel Rycal small molecule drug (S107) that fixes ‘leaky’ RyRs. SMAD3 phosphorylation is increased in hearts and diaphragms of LmnaH222P/H222P mice, which enhances NADPH oxidase binding to RyR channels, contributing to their oxidation. There is also increased generalized protein oxidation, increased calcium/calmodulin-dependent protein kinase II-catalyzed phosphorylation of RyRs and increased protein kinase A activity in these tissues. Our data show that RyR remodeling plays a role in cardiomyopathy and skeletal muscle dysfunction caused by LMNA mutation and identify these Ca2+ channels as a potential therapeutic target
    corecore