8 research outputs found
Structural and functional analysis of the Rous Sarcoma virus negative regulator of splicing and demonstration of its activation by the 9G8 SR protein
Retroviruses require both spliced and unspliced RNAs for replication. Accumulation of Rous Sarcoma virus (RSV) unspliced RNA depends upon the negative regulator of splicing (NRS). Its 5′-part is considered as an ESE binding SR proteins. Its 3′-part contains a decoy 5′-splice site (ss), which inhibits splicing at the bona fide 5′-ss. Only the 3D structure of a small NRS fragment had been experimentally studied. Here, by chemical and enzymatic probing, we determine the 2D structure of the entire RSV NRS. Structural analysis of other avian NRSs and comparison with all sequenced avian NRSs is in favour of a phylogenetic conservation of the NRS 2D structure. By combination of approaches: (i) in vitro and in cellulo splicing assays, (ii) footprinting assays and (iii) purification and analysis of reconstituted RNP complex, we define a small NRS element retaining splicing inhibitory property. We also demonstrate the capability of the SR protein 9G8 to increase NRS activity in vitro and in cellulo. Altogether these data bring new insights on how NRS fine tune splicing activity
Antagonistic factors control the unproductive splicing of SC35 terminal intron
Alternative splicing is regulated in part by variations in the relative concentrations of a variety of factors, including serine/arginine-rich (SR) proteins. The SR protein SC35 self-regulates its expression by stimulating unproductive splicing events in the 3′ untranslated region of its own pre-mRNA. Using various minigene constructs containing the terminal retained intron and flanking exons, we identified in the highly conserved last exon a number of exonic splicing enhancer elements responding specifically to SC35, and showed an inverse correlation between affinity of SC35 and enhancer strength. The enhancer region, which is included in a long stem loop, also contains repressor elements, and is recognized by other RNA-binding proteins, notably hnRNP H protein and TAR DNA binding protein (TDP-43). Finally, in vitro and in cellulo experiments indicated that hnRNP H and TDP-43 antagonize the binding of SC35 to the terminal exon and specifically repress the use of SC35 terminal 3′ splice site. Our study provides new information about the molecular mechanisms of SC35-mediated splicing activation. It also highlights the existence of a complex network of self- and cross-regulatory mechanisms between splicing regulators, which controls their homeostasis and offers many ways of modulating their concentration in response to the cellular environment
Terminal restriction fragment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils
International audienceMonitoring the structure and dynamics of fungal communities in soils under agricultural and environmental disturbances is currently a challenge. In this study, a terminal restriction fragment length polymorphism (T-RFLP) fingerprinting method was developed for the rapid comparison of fungal community structures. The terminal restriction fragment polymorphism of different regions of the small-subunit (SSU) ribosomal RNA (rRNA) gene was simulated by sequence comparison using 10 restriction enzymes, and analyzed among three different soils using fungal-specific primers. Polymerase chain reaction amplification of the 3' end of the SSU rRNA gene with the primer nu-SSU-0817-5' and with the fluorescently labelled primer nu-SSU-1536-3', and digestion of the amplicons with AluI and MboI were found to be optimal and were used in a standardized T-RFLP procedure. Both the number and the intensity of terminal restriction fragments detected by capillary gel electrophoresis were integrated in correspondence analyses. Three soils with contrasting physicochemical properties were differentiated according to the structure of their fungal communities. Assessment of the impact on the fungal community structure of the amendment of two soils with compost or manure confirmed the reproducibility and the sensitivity of the method. Shifts in the community structure were detected between non-amended and amended soil samples. In both soils, the shift differed with the organic amendment applied. In addition, the fungal community structures of the two soils were affected in a different way by the same organic amendment. The fingerprinting method provides a rapid tool to investigate the effect of various perturbations on the fungal communities in soils