31 research outputs found

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.Rest of authors: Decky Junaedi, Robert R. Junker, Eric Justes, Richard Kabzems, Jeffrey Kane, Zdenek Kaplan, Teja Kattenborn, Lyudmila Kavelenova, Elizabeth Kearsley, Anne Kempel, Tanaka Kenzo, Andrew Kerkhoff, Mohammed I. Khalil, Nicole L. Kinlock, Wilm Daniel Kissling, Kaoru Kitajima, Thomas Kitzberger, Rasmus Kjøller, Tamir Klein, Michael Kleyer, Jitka Klimešová, Joice Klipel, Brian Kloeppel, Stefan Klotz, Johannes M. H. Knops, Takashi Kohyama, Fumito Koike, Johannes Kollmann, Benjamin Komac, Kimberly Komatsu, Christian König, Nathan J. B. Kraft, Koen Kramer, Holger Kreft, Ingolf Kühn, Dushan Kumarathunge, Jonas Kuppler, Hiroko Kurokawa, Yoko Kurosawa, Shem Kuyah, Jean-Paul Laclau, Benoit Lafleur, Erik Lallai, Eric Lamb, Andrea Lamprecht, Daniel J. Larkin, Daniel Laughlin, Yoann Le Bagousse-Pinguet, Guerric le Maire, Peter C. le Roux, Elizabeth le Roux, Tali Lee, Frederic Lens, Simon L. Lewis, Barbara Lhotsky, Yuanzhi Li, Xine Li, Jeremy W. Lichstein, Mario Liebergesell, Jun Ying Lim, Yan-Shih Lin, Juan Carlos Linares, Chunjiang Liu, Daijun Liu, Udayangani Liu, Stuart Livingstone, Joan Llusià, Madelon Lohbeck, Álvaro López-García, Gabriela Lopez-Gonzalez, Zdeňka Lososová, Frédérique Louault, Balázs A. Lukács, Petr Lukeš, Yunjian Luo, Michele Lussu, Siyan Ma, Camilla Maciel Rabelo Pereira, Michelle Mack, Vincent Maire, Annikki Mäkelä, Harri Mäkinen, Ana Claudia Mendes Malhado, Azim Mallik, Peter Manning, Stefano Manzoni, Zuleica Marchetti, Luca Marchino, Vinicius Marcilio-Silva, Eric Marcon, Michela Marignani, Lars Markesteijn, Adam Martin, Cristina Martínez-Garza, Jordi Martínez-Vilalta, Tereza Mašková, Kelly Mason, Norman Mason, Tara Joy Massad, Jacynthe Masse, Itay Mayrose, James McCarthy, M. Luke McCormack, Katherine McCulloh, Ian R. McFadden, Brian J. McGill, Mara Y. McPartland, Juliana S. Medeiros, Belinda Medlyn, Pierre Meerts, Zia Mehrabi, Patrick Meir, Felipe P. L. Melo, Maurizio Mencuccini, Céline Meredieu, Julie Messier, Ilona Mészáros, Juha Metsaranta, Sean T. Michaletz, Chrysanthi Michelaki, Svetlana Migalina, Ruben Milla, Jesse E. D. Miller, Vanessa Minden, Ray Ming, Karel Mokany, Angela T. Moles, Attila Molnár V, Jane Molofsky, Martin Molz, Rebecca A. Montgomery, Arnaud Monty, Lenka Moravcová, Alvaro Moreno-Martínez, Marco Moretti, Akira S. Mori, Shigeta Mori, Dave Morris, Jane Morrison, Ladislav Mucina, Sandra Mueller, Christopher D. Muir, Sandra Cristina Müller, François Munoz, Isla H. Myers-Smith, Randall W. Myster, Masahiro Nagano, Shawna Naidu, Ayyappan Narayanan, Balachandran Natesan, Luka Negoita, Andrew S. Nelson, Eike Lena Neuschulz, Jian Ni, Georg Niedrist, Jhon Nieto, Ülo Niinemets, Rachael Nolan, Henning Nottebrock, Yann Nouvellon, Alexander Novakovskiy, The Nutrient Network, Kristin Odden Nystuen, Anthony O'Grady, Kevin O'Hara, Andrew O'Reilly-Nugent, Simon Oakley, Walter Oberhuber, Toshiyuki Ohtsuka, Ricardo Oliveira, Kinga Öllerer, Mark E. Olson, Vladimir Onipchenko, Yusuke Onoda, Renske E. Onstein, Jenny C. Ordonez, Noriyuki Osada, Ivika Ostonen, Gianluigi Ottaviani, Sarah Otto, Gerhard E. Overbeck, Wim A. Ozinga, Anna T. Pahl, C. E. Timothy Paine, Robin J. Pakeman, Aristotelis C. Papageorgiou, Evgeniya Parfionova, Meelis Pärtel, Marco Patacca, Susana Paula, Juraj Paule, Harald Pauli, Juli G. Pausas, Begoña Peco, Josep Penuelas, Antonio Perea, Pablo Luis Peri, Ana Carolina Petisco-Souza, Alessandro Petraglia, Any Mary Petritan, Oliver L. Phillips, Simon Pierce, Valério D. Pillar, Jan Pisek, Alexandr Pomogaybin, Hendrik Poorter, Angelika Portsmuth, Peter Poschlod, Catherine Potvin, Devon Pounds, A. Shafer Powell, Sally A. Power, Andreas Prinzing, Giacomo Puglielli, Petr Pyšek, Valerie Raevel, Anja Rammig, Johannes Ransijn, Courtenay A. Ray, Peter B. Reich, Markus Reichstein, Douglas E. B. Reid, Maxime Réjou-Méchain, Victor Resco de Dios, Sabina Ribeiro, Sarah Richardson, Kersti Riibak, Matthias C. Rillig, Fiamma Riviera, Elisabeth M. R. Robert, Scott Roberts, Bjorn Robroek, Adam Roddy, Arthur Vinicius Rodrigues, Alistair Rogers, Emily Rollinson, Victor Rolo, Christine Römermann, Dina Ronzhina, Christiane Roscher, Julieta A. Rosell, Milena Fermina Rosenfield, Christian Rossi, David B. Roy, Samuel Royer-Tardif, Nadja Rüger, Ricardo Ruiz-Peinado, Sabine B. Rumpf, Graciela M. Rusch, Masahiro Ryo, Lawren Sack, Angela Saldaña, Beatriz Salgado-Negret, Roberto Salguero-Gomez, Ignacio Santa-Regina, Ana Carolina Santacruz-García, Joaquim Santos, Jordi Sardans, Brandon Schamp, Michael Scherer-Lorenzen, Matthias Schleuning, Bernhard Schmid, Marco Schmidt, Sylvain Schmitt, Julio V. Schneider, Simon D. Schowanek, Julian Schrader, Franziska Schrodt, Bernhard Schuldt, Frank Schurr, Galia Selaya Garvizu, Marina Semchenko, Colleen Seymour, Julia C. Sfair, Joanne M. Sharpe, Christine S. Sheppard, Serge Sheremetiev, Satomi Shiodera, Bill Shipley, Tanvir Ahmed Shovon, Alrun Siebenkäs, Carlos Sierra, Vasco Silva, Mateus Silva, Tommaso Sitzia, Henrik Sjöman, Martijn Slot, Nicholas G. Smith, Darwin Sodhi, Pamela Soltis, Douglas Soltis, Ben Somers, Grégory Sonnier, Mia Vedel Sørensen, Enio Egon Sosinski Jr, Nadejda A. Soudzilovskaia, Alexandre F. Souza, Marko Spasojevic, Marta Gaia Sperandii, Amanda B. Stan, James Stegen, Klaus Steinbauer, Jörg G. Stephan, Frank Sterck, Dejan B. Stojanovic, Tanya Strydom, Maria Laura Suarez, Jens-Christian Svenning, Ivana Svitková, Marek Svitok, Miroslav Svoboda, Emily Swaine, Nathan Swenson, Marcelo Tabarelli, Kentaro Takagi, Ulrike Tappeiner, Rubén Tarifa, Simon Tauugourdeau, Cagatay Tavsanoglu, Mariska te Beest, Leho Tedersoo, Nelson Thiffault, Dominik Thom, Evert Thomas, Ken Thompson, Peter E. Thornton, Wilfried Thuiller, Lubomír Tichý, David Tissue, Mark G. Tjoelker, David Yue Phin Tng, Joseph Tobias, Péter Török, Tonantzin Tarin, José M. Torres-Ruiz, Béla Tóthmérész, Martina Treurnicht, Valeria Trivellone, Franck Trolliet, Volodymyr Trotsiuk, James L. Tsakalos, Ioannis Tsiripidis, Niklas Tysklind, Toru Umehara, Vladimir Usoltsev, Matthew Vadeboncoeur, Jamil Vaezi, Fernando Valladares, Jana Vamosi, Peter M. van Bodegom, Michiel van Breugel, Elisa Van Cleemput, Martine van de Weg, Stephni van der Merwe, Fons van der Plas, Masha T. van der Sande, Mark van Kleunen, Koenraad Van Meerbeek, Mark Vanderwel, Kim André Vanselow, Angelica Vårhammar, Laura Varone, Maribel Yesenia Vasquez Valderrama, Kiril Vassilev, Mark Vellend, Erik J. Veneklaas, Hans Verbeeck, Kris Verheyen, Alexander Vibrans, Ima Vieira, Jaime Villacís, Cyrille Violle, Pandi Vivek, Katrin Wagner, Matthew Waldram, Anthony Waldron, Anthony P. Walker, Martyn Waller, Gabriel Walther, Han Wang, Feng Wang, Weiqi Wang, Harry Watkins, James Watkins, Ulrich Weber, James T. Weedon, Liping Wei, Patrick Weigelt, Evan Weiher, Aidan W. Wells, Camilla Wellstein, Elizabeth Wenk, Mark Westoby, Alana Westwood, Philip John White, Mark Whitten, Mathew Williams, Daniel E. Winkler, Klaus Winter, Chevonne Womack, Ian J. Wright, S. Joseph Wright, Justin Wright, Bruno X. Pinho, Fabiano Ximenes, Toshihiro Yamada, Keiko Yamaji, Ruth Yanai, Nikolay Yankov, Benjamin Yguel, Kátia Janaina Zanini, Amy E. Zanne, David Zelený, Yun-Peng Zhao, Jingming Zheng, Ji Zheng, Kasia Ziemińska, Chad R. Zirbel, Georg Zizka, Irié Casimir Zo-Bi, Gerhard Zotz, Christian Wirth.Max Planck Institute for Biogeochemistry; Max Planck Society; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; International Programme of Biodiversity Science (DIVERSITAS); International Geosphere-Biosphere Programme (IGBP); Future Earth; French Foundation for Biodiversity Research (FRB); GIS ‘Climat, Environnement et Société'.http://wileyonlinelibrary.com/journal/gcbhj2021Plant Production and Soil Scienc

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Percutaneous Coronary Intervention for Vulnerable Coronary Atherosclerotic Plaque

    No full text
    Background: Acute coronary syndromes most commonly arise from thrombosis of lipid-rich coronary atheromas that have large plaque burden despite angiographically appearing mild. Objectives: This study sought to examine the outcomes of percutaneous coronary intervention (PCI) of non–flow-limiting vulnerable plaques. Methods: Three-vessel imaging was performed with a combination intravascular ultrasound (IVUS) and near-infrared spectroscopy (NIRS) catheter after successful PCI of all flow-limiting coronary lesions in 898 patients presenting with myocardial infarction (MI). Patients with an angiographically nonobstructive stenosis not intended for PCI but with IVUS plaque burden of ≥65% were randomized to treatment of the lesion with a bioresorbable vascular scaffold (BVS) plus guideline-directed medical therapy (GDMT) versus GDMT alone. The primary powered effectiveness endpoint was the IVUS-derived minimum lumen area (MLA) at protocol-driven 25-month follow-up. The primary (nonpowered) safety endpoint was randomized target lesion failure (cardiac death, target vessel–related MI, or clinically driven target lesion revascularization) at 24 months. The secondary (nonpowered) clinical effectiveness endpoint was randomized lesion–related major adverse cardiac events (cardiac death, MI, unstable angina, or progressive angina) at latest follow-up. Results: A total of 182 patients were randomized (93 BVS, 89 GDMT alone) at 15 centers. The median angiographic diameter stenosis of the randomized lesions was 41.6%; by near-infrared spectroscopy–IVUS, the median plaque burden was 73.7%, the median MLA was 2.9 mm2, and the median maximum lipid plaque content was 33.4%. Angiographic follow-up at 25 months was completed in 167 patients (91.8%), and the median clinical follow-up was 4.1 years. The follow-up MLA in BVS-treated lesions was 6.9 ± 2.6 mm2 compared with 3.0 ± 1.0 mm2 in GDMT alone–treated lesions (least square means difference: 3.9 mm2; 95% confidence interval: 3.3 to 4.5; p < 0.0001). Target lesion failure at 24 months occurred in similar rates of BVS-treated and GDMT alone–treated patients (4.3% vs. 4.5%; p = 0.96). Randomized lesion–related major adverse cardiac events occurred in 4.3% of BVS-treated patients versus 10.7% of GDMT alone–treated patients (odds ratio: 0.38; 95% confidence interval: 0.11 to 1.28; p = 0.12). Conclusions: PCI of angiographically mild lesions with large plaque burden was safe, substantially enlarged the follow-up MLA, and was associated with favorable long-term clinical outcomes, warranting the performance of an adequately powered randomized trial. (PROSPECT ABSORB [Providing Regional Observations to Study Predictors of Events in the Coronary Tree II Combined with a Randomized, Controlled, Intervention Trial]; NCT02171065

    Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT II) : a prospective natural history study

    No full text
    Background: Near-infrared spectroscopy (NIRS) and intravascular ultrasound are promising imaging modalities to identify non-obstructive plaques likely to cause coronary-related events. We aimed to assess whether combined NIRS and intravascular ultrasound can identify high-risk plaques and patients that are at risk for future major adverse cardiac events (MACEs). Methods: PROSPECT II is an investigator-sponsored, multicentre, prospective natural history study done at 14 university hospitals and two community hospitals in Denmark, Norway, and Sweden. We recruited patients of any age with recent (within past 4 weeks) myocardial infarction. After treatment of all flow-limiting coronary lesions, three-vessel imaging was done with a combined NIRS and intravascular ultrasound catheter. Untreated lesions (also known as non-culprit lesions) were identified by intravascular ultrasound and their lipid content was assessed by NIRS. The primary outcome was the covariate-adjusted rate of MACEs (the composite of cardiac death, myocardial infarction, unstable angina, or progressive angina) arising from untreated non-culprit lesions during follow-up. The relations between plaques with high lipid content, large plaque burden, and small lumen areas and patient-level and lesion-level events were determined. This trial is registered with ClinicalTrials.gov, NCT02171065. Findings: Between June 10, 2014, and Dec 20, 2017, 3629 non-culprit lesions were characterised in 898 patients (153 [17%] women, 745 [83%] men; median age 63 [IQR 55–70] years). Median follow-up was 3·7 (IQR 3·0–4·4) years. Adverse events within 4 years occurred in 112 (13·2%, 95% CI 11·0–15·6) of 898 patients, with 66 (8·0%, 95% CI 6·2–10·0) arising from 78 untreated non-culprit lesions (mean baseline angiographic diameter stenosis 46·9% [SD 15·9]). Highly lipidic lesions (851 [24%] of 3500 lesions, present in 520 [59%] of 884 patients) were an independent predictor of patient-level non-culprit lesion-related MACEs (adjusted odds ratio 2·27, 95% CI 1·25–4·13) and non-culprit lesion-specific MACEs (7·83, 4·12–14·89). Large plaque burden (787 [22%] of 3629 lesions, present in 530 [59%] of 898 patients) was also an independent predictor of non-culprit lesion-related MACEs. Lesions with both large plaque burden by intravascular ultrasound and large lipid-rich cores by NIRS had a 4-year non-culprit lesion-related MACE rate of 7·0% (95% CI 4·0–10·0). Patients in whom one or more such lesions were identified had a 4-year non-culprit lesion-related MACE rate of 13·2% (95% CI 9·4–17·6). Interpretation: Combined NIRS and intravascular ultrasound detects angiographically non-obstructive lesions with a high lipid content and large plaque burden that are at increased risk for future adverse cardiac outcomes. Funding: Abbott Vascular, Infraredx, and The Medicines Company

    Psychometric evaluation of the Tagalog and German subjective happiness scales and a cross-cultural comparison

    No full text
    The Subjective Happiness Scale (SHS) has recently been developed as a more complete measure for the assessment of molar subjective happiness. In the present study, we report on the translation and validation of German and Tagalog versions of the SHS and conduct an initial cross-cultural examination of subjective happiness. In Study 1, 960 participants in Austria completed a German version of the SHS, which showed a unidimensional structure, good internal consistency, and good convergent validity with other measures of subjective well-being. In Study 2, 182 participants in the Philippines completed a Tagalog version of the scale, which likewise had a unidimensional structure, high internal consistency, and good convergent validity. Finally, the results of Study 3 indicate that there were significant cross-cultural differences in subjective happiness. Specifically, participants in individualist Austria and Britain had higher SHS scores than their counterparts in collectivist Malaysia and the Philippines. Limitations of these studies are discussed
    corecore