23 research outputs found

    A unique midgut-associated bacterial community hosted by the cave beetle \u3cem\u3eCansiliella servadeii\u3c/em\u3e (Coleoptera: Leptodirini) reveals parallel phylogenetic divergences from universal gut-specific ancestors

    Get PDF
    Background Cansiliella servadeii (Coleoptera) is an endemic troglobite living in deep carbonate caves in North-Eastern Italy. The beetle constantly moves and browses in its preferred habitat (consisting in flowing water and moonmilk, a soft speleothem colonized by microorganisms) self-preens to convey material from elytra, legs, and antennae towards the mouth. We investigated its inner and outer microbiota using microscopy and DNA-based approaches. Results Abundant microbial cell masses were observed on the external appendages. Cansiliella’s midgut is fully colonized by live microbes and culture-independent analyses yielded nearly 30 different 16S phylotypes that have no overlap with the community composition of the moonmilk. Many of the lineages, dominated by Gram positive groups, share very low similarity to database sequences. However for most cases, notwithstanding their very limited relatedness with existing records, phylotypes could be assigned to bacterial clades that had been retrieved from insect or other animals’ digestive traits. Conclusions Results suggest a history of remote separation from a common ancestor that harboured a set of gut-specific bacteria whose functions are supposedly critical for host physiology. The phylogenetic and coevolutionary implications of the parallel occurrences of these prokaryotic guilds appear to apply throughout a broad spectrum of animal diversity. Their persistence and conservation underlies a possibly critical role of precise bacterial assemblages in animal-bacteria interactions

    cave hygropetric beetles and their feeding behaviour a comparative study of cansiliella servadeii and hadesia asamo coleoptera leiodidae cholevinae leptodirini

    Get PDF
    Several Leptodirini beetles (Leiodidae) are known to dwell in hygropetric habitats where films of water run down the cave walls, but observations of their behaviour are lacking. The ultra- specialised hygropetricolous beetles belonging to the genera Cansiliella and Hadesia are biogeographically and phylogenetically unrelated leptodirines. As the species of the former genus are known to be associated with the moonmilk deposits our study aimed to obtain data on their foraging behaviour, as well as to compare the feeding strategies of both genera. In situ monitoring of C. servadeii from the cave Grotta della Foos (Italy) and H. asamo from Bravenik Cave (Bosnia and Herzegovina), was complemented by video recordings to ensure accurate results. Mouthparts and tarsi of both species were examined using scanning electron microscopy and compared with H. weiratheri from Montenegro to evaluate potential morphological adaptations to the hygropetricolous ecological niches. The three species had significantly different mouthpart morphologies, likely due to differences in semi-aquatic feeding strategies and overall ecology. A series of new observations on site movement and feeding behaviour are presented, compared and discussed. Key words: Coleoptera, ecology, behaviour, moonmilk, cave hygropetric. Primerjava jamskih higropetricnih hroscev in njihovegaprehranjevanja; Cansiliella servadeii in Hadesia asamo (Coleoptera, Leiodidae, Cholevinae, Leptodirini) Stevilni hrosci iz poddružine Leptodirinae (Leiodidae) so prilagojeni na življenje v posebnem habitatu »jamskem higropetriku «, t.j. tankem sloju tekoce vode, ki tece po sigi. Zaenkrat je njihovo vedenje se precejsnja neznanka. Visoko specializirani higropetricni vrsti Cansiliella servadeii in Hadesia asamo sta geografsko loceni in filogenetsko nesorodni. Ker je prva ocitno vezana na depozite mehke sige (t.i. jamsko mleko), smo želeli raziskati iskanje hrane pri tej vrsti ter primerjati strategijo hranjenja obeh vrst. Da bi povecali zanesljivost rezultatov, smo poleg in situ opazovanja C. servadeii iz jame Grotta della Foos (Italija) in H. asamo iz jame Bravenik (Bosna in Hercegovina), njuno vedenje tudi posneli. Z vrsticnim elektronskim mikroskopom smo raziskali obustne okoncine in stopalca obeh vrst in jih primerjali s H. weiratheri iz Crne gore, da bi preverili potencialne morfoloske prilagoditve na specificno ekolosko niso. Bistvene razlike v zgradbi ustnega aparata so najverjetneje posledica razlik v strategiji hranjenja, kot tudi razlicne splosne ekologije omenjenih vrst. V prispevku predstavljamo, primerjamo in razpravljamo o novih opažanjih povezanih z gibanjem in prehranjevanjem higropetricnih hroscev. Kljucne besede: Coleoptera, ekologija, vedenje, jamsko mleko, jamski higropetrik

    A New foodweb based on microbes in calcitic caves: The Cansiliella (Beetles) case in Northern Italy

    No full text
    The troglobitic beetle, Cansiliella servadeii (Leptodirini), has specialized mouthparts modified for browsing and feeding under percolating water on moonmilk, a speleothem formation in Grotta della Foos, Italy. Results from analyses of stable isotopes of carbon and nitrogen suggest thatacquires and assimilates dissolved allochthonous organic carbon, inorganic nitrogen, and possibly phosphorus and other nutrients from the microbial fauna associated with moonmilk

    A New foodweb based on microbes in calcitic caves: The Cansiliella (Beetles) case in Northern Italy

    Get PDF
    The troglobitic beetle, Cansiliella servadeii percolating water on moonmilk, a speleothem formation in Grotta della Foos, Italy. Results from analyses of stable isotopes of carbon and nitrogen suggest that acquires and assimilates dissolved allochthonous organic carbon, inorganic nitrogen, and possibly phosphorus and other nutrients from the microbial fauna associated with moonmilk

    Comparative microbial community composition from secondary carbonate (moonmilk) deposits: implications for the Cansiliella servadeii cave hygropetric food web

    No full text
    The microbial diversity of moonmilk, a hydrated calcium carbonate speleothem, was evaluated from two Italian caves to provide context for the food web of highly-specialized troglobitic beetles, Cansiliella spp. (Leptodirinae), with distinctive carbon and nitrogen isotope values indicative of a novel food source. The moonmilk and associated percolating waters had low to no extractable chlorophyll, with an average organic C:N ratio of 9, indicating limited allochthonous input and a significant contribution from microbial biomass. The biomass from moonmilk was estimated to be ~104 micro- and meiofaunal individuals per m2 and ~108 microbial cells/ml. Betaproteobacteria dominated the 16S rRNA gene sequences retrieved from the moonmilk from both caves. The distribution of other proteobacterial classes and phyla in the moonmilk were statistically similar to each other, even though the two caves are geographically separated from each other. Comparing the moonmilk gene sequences to sequences from previously described environmental clones or cultured strains revealed the uniqueness of the moonmilk habitat, as ~ 15% of all of the moonmilk sequences were more closely related to each other than to sequences retrieved from any other habitat. However, comparative analyses confirmed that as much as ~34% of the clones sequences were also closely related to environmental clones and cultured strains derived from soil and freshwater habitats, which is likely due to the fact that the putative inoculation source for the moonmilk bacterial communities is from overlying soil and percolating fluids from the surface. Prior to our studies of Cansiliella spp., moonmilk has not been considered a food source for cave animals. Our findings provide unique insight into moonmilk microbial diversity that could reveal the underpinnings of the moonmilk carbon and nitrogen cycle that influences the isotopic composition and the morphological adaptations of the troglobitic beetles associated with the moonmilk

    Comparative microbial community composition from secondary carbonate (moonmilk) deposits: implications for the Cansiliella servadeii cave hygropetric food web

    No full text
    The microbial diversity of moonmilk, a hydrated calcium carbonate speleothem, was evaluated from two Italian caves to provide context for the food web of highly-specialized troglobitic beetles, Cansiliella spp. (Leptodirinae), with distinctive carbon and nitrogen isotope values indicative of a novel food source. The moonmilk and associated percolating waters had low to no extractable chlorophyll, with an average organic C:N ratio of 9, indicating limited allochthonous input and a significant contribution from microbial biomass. The biomass from moonmilk was estimated to be ~104 micro- and meiofaunal individuals per m2 and ~107 microbial cells/ml. Proteobacteria dominated the 16S rRNA gene sequences retrieved from the moonmilk from both caves. The distribution of other proteobacterial classes and phyla in the moonmilk were statistically similar to each other, even though the two caves are geographically separated from each other. Comparing the moonmilk gene sequences to sequences from previously described environmental clones or cultured strains revealed the uniqueness of the moonmilk habitat, as ~15% of all of the moonmilk sequences were more closely related to each other than to sequences retrieved from any other habitat. However, comparative analyses confirmed that as much as ~34% of the clones sequences were also closely related to environmental clones and cultured strains derived from soil and freshwater habitats, which is likely due to the fact that the putative inoculation source for the moonmilk bacterial communities is from overlying soil and percolating fluids from the surface. Prior to our studies of Cansiliella spp., moonmilk has not been considered a food source for cave animals. Our findings provide unique insight into moonmilk microbial diversity that could reveal the underpinnings of the moonmilk carbon and nitrogen cycle that influences the isotopic composition and the morphological adaptations of the troglobitic beetles associated with the moonmilk

    Comparative microbial community composition from secondary carbonate (moonmilk) deposits: implications for the \u3ci\u3eCansiliella servadeii\u3c/i\u3e cave hygropetric food web

    Get PDF
    The microbial diversity of moonmilk, a hydrated calcium carbonate speleothem, was evaluated from two Italian caves to provide context for the food web of highly-specialized troglobitic beetles, Cansiliella spp. (Leptodirinae), with distinctive carbon and nitrogen isotope values indicative of a novel food source. The moonmilk and associated percolating waters had low to no extractable chlorophyll, with an average organic C:N ratio of 9, indicating limited allochthonous input and a significant contribution from microbial biomass. The biomass from moonmilk was estimated to be ~104 micro- and meiofaunal individuals per m2 and ~107 microbial cells/ml. Betaproteobacteria dominated the 16S rRNA gene sequences retrieved from the moonmilk from both caves. The distribution of other proteobacterial classes and phyla in the moonmilk were statistically similar to each other, even though the two caves are geographically separated from each other. Comparing the moonmilk gene sequences to sequences from previously described environmental clones or cultured strains revealed the uniqueness of the moonmilk habitat, as ~15% of all of the moonmilk sequences were more closely related to each other than to sequences retrieved from any other habitat. However, comparative analyses confirmed that as much as ~34% of the clones sequences were also closely related to environmental clones and cultured strains derived from soil and freshwater habitats, which is likely due to the fact that the putative inoculation source for the moonmilk bacterial communities is from overlying soil and percolating fluids from the surface. Prior to our studies of Cansiliella spp., moonmilk has not been considered a food source for cave animals. Our findings provide unique insight into moonmilk microbial diversity that could reveal the underpinnings of the moonmilk carbon and nitrogen cycle that influences the isotopic composition and the morphological adaptations of the troglobitic beetles associated with the moonmilk

    DNA barcoding of the Italian anecic Octodrilus species in rural (vineyard) and forested areas with description of Octodrilus zicsiniello sp. nov. (Clitellata, Megadrili)

    No full text
    Csuzdi, Csaba, Szederjesi, Tímea, Marchán, Daniel Fernández, Sosa, Irene De, Gavinelli, Federico, Dorigo, Luca, Pamio, Alberto, Dreon, Angelo Leandro, Fusaro, Silvia, Moretto, Enzo, Paoletti, Maurizio Guido (2018): DNA barcoding of the Italian anecic Octodrilus species in rural (vineyard) and forested areas with description of Octodrilus zicsiniello sp. nov. (Clitellata, Megadrili). Zootaxa 4496 (1): 43-64, DOI: https://doi.org/10.11646/zootaxa.4496.1.

    Barcoding Eophila crodabepis sp. nov. (Annelida, Oligochaeta, Lumbricidae), a large stripy earthworm from alpine foothills of northeastern Italy similar to Eophila tellinii (Rosa, 1888)

    No full text
    none16A new Italian earthworm morphologically close to the similarly large and anecic Eophila tellinii (Rosa, 1888) is described. Distribution of Eophila crodabepis sp. nov. extends over 750 km2 from East to West on the Asiago Plateau and Vittorio Veneto Hills, from North to South on mounts Belluno Prealps (Praderadego and Cesen), Asiago, Grappa and onto the Montello foothills. This range abuts that of Eophila tellinii in northern Friuli Venezia Giulia region. Known localities of both E. tellinii and E.crodabepis sp. nov. are mapped. mtDNA barcoding definitively separates the new western species from classical Eophila tellinii (Rosa, 1888).nonePaoletti, Maurizio G.; Blakemore, Robert J.; Csuzdi, Csaba; Dorigo, Luca; Dreon, Angelo Leandro; Gavinelli, Federico; Lazzarini, Francesca; Manno, Nicola; Moretto, Enzo; Porco, David; Ruzzier, Enrico; Toniello, Vladimiro; Squartini, Andrea; Concheri, Giuseppe; Zanardo, Marina; Alba-Tercedor, JavierPaoletti, Maurizio G.; Blakemore, Robert J.; Csuzdi, Csaba; Dorigo, Luca; Dreon, ANGELO LEANDRO; Gavinelli, Federico; Lazzarini, Francesca; Manno, Nicola; Moretto, Enzo; Porco, David; Ruzzier, Enrico; Toniello, Vladimiro; Squartini, Andrea; Concheri, Giuseppe; Zanardo, Marina; Alba Tercedor, Javie
    corecore