50 research outputs found
Boost Me: Prevalence and Reasons for the Use of Stimulant Containing Pre Workout Supplements Among Fitness Studio Visitors in Mainz (Germany)
The rapidly increasing interest in fitness related sports over the past few years has been accompanied by a booming industry of nutritional supplements. Many of these substances have unproven benefits and are even potentially harmful to the user. The aim of this study was to determine the prevalence and reasons for nutritional supplement (NS) use among fitness studio visitors in Mainz (Germany), emphasizing new multi-ingredient based supplements such as pre workout boosters (PWBs). Some of the PWBs contain stimulants such as DMAA, N,α-DEPEA, DMAE and DMBA with so far unknown risks, harms and benefits. Four-Hundred and Ninety Two participants in 13 fitness studios completed a questionnaire on the use of nutritional supplements. Descriptive statistics and chi-square tests were used to examine differences in supplement use regarding training- and intake-reasons. About 57.0% of the participants reported the use of NS during the last 4 weeks. The all-time prevalence of creatine use was 28.7%, whereas 12.2% of the participants stated creatine use during the past 4 weeks. The all-time prevalence of PWB intake was 25.8%, whereas the last month prevalence was 11.8%. Among the group of PWB users, 20.5% stated to search specifically for substances such as DMAA, N,α-DEPEA, DMAE or DMBA. Logistic regression analysis showed positive relations between creatine use and the predictor variables gender, strength training and bodybuilding, as well as the stated exercisers' training reasons to increase physical- and sports-performance, and quality of life. PWB consumption was related to the variables gender, training frequency, and the reason for sports performance enhancement. Specific ingredient focus was related to the predictor variables competition participation and increase of mental performance. The results of the study show a high prevalence of PWB consumption among fitness studios visitors, which is comparable with creatine use. The predicting variables for consumption seem to be slightly different between the supplements, especially if the users are searching for stimulating agents. The current findings help to create preliminary consumption patterns and can help to identify potential endangered fitness studio visitors for prevention and risk communication, especially for PWBs
Nuclear Skins and Halos in the Mean-Field Theory
Nuclei with large neutron-to-proton ratios have neutron skins, which manifest
themselves in an excess of neutrons at distances greater than the radius of the
proton distribution. In addition, some drip-line nuclei develop very extended
halo structures. The neutron halo is a threshold effect; it appears when the
valence neutrons occupy weakly bound orbits. In this study, nuclear skins and
halos are analyzed within the self-consistent Skyrme-Hartree-Fock-Bogoliubov
and relativistic Hartree-Bogoliubov theories for spherical shapes. It is
demonstrated that skins, halos, and surface thickness can be analyzed in a
model-independent way in terms of nucleonic density form factors. Such an
analysis allows for defining a quantitative measure of the halo size. The
systematic behavior of skins, halos, and surface thickness in even-even nuclei
is discussed.Comment: 22 RevTeX pages, 22 EPS figures included, submitted to Physical
Review
Nucleon Charge and Magnetization Densities from Sachs Form Factors
Relativistic prescriptions relating Sachs form factors to nucleon charge and
magnetization densities are used to fit recent data for both the proton and the
neutron. The analysis uses expansions in complete radial bases to minimize
model dependence and to estimate the uncertainties in radial densities due to
limitation of the range of momentum transfer. We find that the charge
distribution for the proton is significantly broad than its magnetization
density and that the magnetization density is slightly broader for the neutron
than the proton. The neutron charge form factor is consistent with the Galster
parametrization over the available range of Q^2, but relativistic inversion
produces a softer radial density. Discrete ambiguities in the inversion method
are analyzed in detail. The method of Mitra and Kumari ensures compatibility
with pQCD and is most useful for extrapolating form factors to large Q^2.Comment: To appear in Phys. Rev. C. Two new figures and accompanying text have
been added and several discussions have been clarified with no significant
changes to the conclusions. Now contains 47 pages including 21 figures and 2
table
The Arabidopsis JAGGED LATERAL ORGANS (JLO) gene sensitizes plants to auxin
Plant growth and development of new organs depend on the continuous activity of the meristems. In the shoot, patterns of organ initiation are determined by PINFORMED (PIN)-dependent auxin distribution, while the undifferentiated state of meristem cells requires activity of KNOTTED LIKE HOMEOBOX (KNOX) transcription factors. Cell proliferation and differentiation of the root meristem are regulated by the largely antagonistic functions of auxin and cytokinins. It has previously been shown that the transcription factor JAGGED LATERAL ORGANS (JLO), a member of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) family, coordinates KNOX and PIN expression in the shoot and promotes root meristem growth. Here we show that JLO is required for the establishment of the root stem cell niche, where it interacts with the auxin/PLETHORA pathway. Auxin signaling involves the AUX/IAA co-repressor proteins, ARF transcription factors and F-box receptors of the TIR1/AFB1–5 family. Because jlo mutants fail to degrade the AUX/IAA protein BODENLOS, root meristem development is inhibited. We also demonstrate that the expression levels of two auxin receptors, TIR1 and AFB1, are controlled by JLO dosage, and that the shoot and root defects of jlo mutants are alleviated in jlo plants expressing TIR1 and AFB1 from a transgene. The finding that the auxin sensitivity of a plant can be differentially regulated through control of auxin receptor expression can explain how different developmental processes can be integrated by the activity of a key transcription factor
Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation.
Structure-activity profiles for the phytohormone auxin have been collected for over 70 years, and a number of synthetic auxins are used in agriculture. Auxin classification schemes and binding models followed from understanding auxin structures. However, all of the data came from whole plant bioassays, meaning the output was the integral of many different processes. The discovery of Transport Inhibitor-Response 1 (TIR1) and the Auxin F-Box (AFB) proteins as sites of auxin perception and the role of auxin as molecular glue in the assembly of co-receptor complexes has allowed the development of a definitive quantitative structure-activity relationship for TIR1 and AFB5. Factorial analysis of binding activities offered two uncorrelated factors associated with binding efficiency and binding selectivity. The six maximum-likelihood estimators of Efficiency are changes in the overlap matrixes, inferring that Efficiency is related to the volume of the electronic system. Using the subset of compounds that bound strongly, chemometric analyses based on quantum chemical calculations and similarity and self-similarity indices yielded three classes of Specificity that relate to differential binding. Specificity may not be defined by any one specific atom or position and is influenced by coulomb matrixes, suggesting that it is driven by electrostatic forces. These analyses give the first receptor-specific classification of auxins and indicate that AFB5 is the preferred site for a number of auxinic herbicides by allowing interactions with analogues having van der Waals surfaces larger than that of indole-3-acetic acid. The quality factors are also examined in terms of long-standing models for the mechanism of auxin binding
Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits
Chlorine and sulfur are of paramount importance for supporting the transport and deposition of ore metals at magmatic–hydrothermal systems such as the Coroccohuayco Fe–Cu–Au porphyry–skarn deposit, Peru. Here, we used recent partitioning models to determine the Cl and S concentration of the melts from the Coroccohuayco magmatic suite using apatite and amphibole chemical analyses. The pre-mineralization gabbrodiorite complex hosts S-poor apatite, while the syn- and post-ore dacitic porphyries host S-rich apatite. Our apatite data on the Coroccohuayco magmatic suite are consistent with an increasing oxygen fugacity (from the gabbrodiorite complex to the porphyries) causing the dominant sulfur species to shift from S2− to S6+ at upper crustal pressure where the magmas were emplaced. We suggest that this change in sulfur speciation could have favored S degassing, rather than its sequestration in magmatic sulfides. Using available partitioning models for apatite from the porphyries, pre-degassing S melt concentration was 20–200 ppm. Estimates of absolute magmatic Cl concentrations using amphibole and apatite gave highly contrasting results. Cl melt concentrations obtained from apatite (0.60 wt% for the gabbrodiorite complex; 0.2–0.3 wt% for the porphyries) seems much more reasonable than those obtained from amphibole which are very low (0.37 wt% for the gabbrodiorite complex; 0.10 wt% for the porphyries). In turn, relative variations of the Cl melt concentrations obtained from amphibole during magma cooling are compatible with previous petrological constraints on the Coroccohuayco magmatic suite. This confirms that the gabbrodioritic magma was initially fluid undersaturated upon emplacement, and that magmatic fluid exsolution of the gabbrodiorite and the pluton rooting the porphyry stocks and dikes were emplaced and degassed at 100–200 MPa. Finally, mass balance constraints on S, Cu and Cl were used to estimate the minimum volume of magma required to form the Coroccohuayco deposit. These three estimates are remarkably consistent among each other (ca. 100 km3) and suggest that the Cl melt concentration is at least as critical as that of Cu and S to form an economic mineralization
Multifaceted Regulation of Translational Readthrough by RNA Replication Elements in a Tombusvirus
Translational readthrough of stop codons by ribosomes is a recoding event used by a variety of viruses, including plus-strand RNA tombusviruses. Translation of the viral RNA-dependent RNA polymerase (RdRp) in tombusviruses is mediated using this strategy and we have investigated this process using a variety of in vitro and in vivo approaches. Our results indicate that readthrough generating the RdRp requires a novel long-range RNA-RNA interaction, spanning a distance of ∼3.5 kb, which occurs between a large RNA stem-loop located 3'-proximal to the stop codon and an RNA replication structure termed RIV at the 3'-end of the viral genome. Interestingly, this long-distance RNA-RNA interaction is modulated by mutually-exclusive RNA structures in RIV that represent a type of RNA switch. Moreover, a different long-range RNA-RNA interaction that was previously shown to be necessary for viral RNA replicase assembly was also required for efficient readthrough production of the RdRp. Accordingly, multiple replication-associated RNA elements are involved in modulating the readthrough event in tombusviruses and we propose an integrated mechanistic model to describe how this regulatory network could be advantageous by (i) providing a quality control system for culling truncated viral genomes at an early stage in the replication process, (ii) mediating cis-preferential replication of viral genomes, and (iii) coordinating translational readthrough of the RdRp with viral genome replication. Based on comparative sequence analysis and experimental data, basic elements of this regulatory model extend to other members of Tombusviridae, as well as to viruses outside of this family
Pathogen and Circadian Controlled 1 (PCC1) Protein Is Anchored to the Plasma Membrane and Interacts with Subunit 5 of COP9 Signalosome in Arabidopsis
The Pathogen and Circadian Controlled 1 (PCC1) gene, previously identified and further characterized as involved in defense
to pathogens and stress-induced flowering, codes for an 81-amino acid protein with a cysteine-rich C-terminal domain. This
domain is essential for homodimerization and anchoring to the plasma membrane. Transgenic plants with the ß-
glucuronidase (GUS) reporter gene under the control of 1.1 kb promoter sequence of PCC1 gene display a dual pattern of
expression. At early post-germination, PCC1 is expressed only in the root vasculature and in the stomata guard cells of
cotyledons. During the transition from vegetative to reproductive development, PCC1 is strongly expressed in the vascular
tissue of petioles and basal part of the leaf, and it further spreads to the whole limb in fully expanded leaves. This
developmental pattern of expression together with the late flowering phenotype of long-day grown RNA interference
(iPCC1) plants with reduced PCC1 expression pointed to a regulatory role of PCC1 in the photoperiod-dependent flowering
pathway. iPCC1 plants are defective in light perception and signaling but are not impaired in the function of the core CO-FT
module of the photoperiod-dependent pathway. The regulatory effect exerted by PCC1 on the transition to flowering as
well as on other reported phenotypes might be explained by a mechanism involving the interaction with the subunit 5 of
the COP9 signalosome (CSN).This work was funded by grants BIO2008-00839, BIO2011-27526 and CSD2007-0057 from Ministerio de Ciencia e Innovacion of Spain to J.L. A fellowship/contract of the FPU program of the Ministerio de Educacion y Ciencia (Spain) funded R.M. work. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Mir Moreno, R.; Leon Ramos, J. (2014). Pathogen and Circadian Controlled 1 (PCC1) Protein Is Anchored to the Plasma Membrane and Interacts with Subunit 5 of COP9 Signalosome in Arabidopsis. PLoS ONE. 1(9):1-14. https://doi.org/10.1371/journal.pone.0087216S11419Sauerbrunn, N., & Schlaich, N. L. (2004). PCC1 : a merging point for pathogen defence and circadian signalling in Arabidopsis. Planta, 218(4), 552-561. doi:10.1007/s00425-003-1143-zSEGARRA, S., MIR, R., MARTÍNEZ, C., & LEÓN, J. (2009). Genome-wide analyses of the transcriptomes of salicylic acid-deficient versus wild-type plants uncover Pathogen and Circadian Controlled 1 (PCC1) as a regulator of flowering time in Arabidopsis. Plant, Cell & Environment, 33(1), 11-22. doi:10.1111/j.1365-3040.2009.02045.xVenancio, T. M., & Aravind, L. (2009). CYSTM, a novel cysteine-rich transmembrane module with a role in stress tolerance across eukaryotes. Bioinformatics, 26(2), 149-152. doi:10.1093/bioinformatics/btp647Lau, O. S., & Deng, X. W. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Current Opinion in Plant Biology, 13(5), 571-577. doi:10.1016/j.pbi.2010.07.001Seo, M., Nambara, E., Choi, G., & Yamaguchi, S. (2008). Interaction of light and hormone signals in germinating seeds. Plant Molecular Biology, 69(4), 463-472. doi:10.1007/s11103-008-9429-yDe Lucas, M., Davière, J.-M., Rodríguez-Falcón, M., Pontin, M., Iglesias-Pedraz, J. M., Lorrain, S., … Prat, S. (2008). A molecular framework for light and gibberellin control of cell elongation. Nature, 451(7177), 480-484. doi:10.1038/nature06520Feng, S., Martinez, C., Gusmaroli, G., Wang, Y., Zhou, J., Wang, F., … Deng, X. W. (2008). Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature, 451(7177), 475-479. doi:10.1038/nature06448Mutasa-Gottgens, E., & Hedden, P. (2009). Gibberellin as a factor in floral regulatory networks. Journal of Experimental Botany, 60(7), 1979-1989. doi:10.1093/jxb/erp040Bastian, R., Dawe, A., Meier, S., Ludidi, N., Bajic, V. B., & Gehring, C. (2010). Gibberellic acid and cGMP-dependent transcriptional regulation inArabidopsis thaliana. Plant Signaling & Behavior, 5(3), 224-232. doi:10.4161/psb.5.3.10718Yu, S., Galvão, V. C., Zhang, Y.-C., Horrer, D., Zhang, T.-Q., Hao, Y.-H., … Wang, J.-W. (2012). Gibberellin Regulates the Arabidopsis Floral Transition through miR156-Targeted SQUAMOSA PROMOTER BINDING–LIKE Transcription Factors. The Plant Cell, 24(8), 3320-3332. doi:10.1105/tpc.112.101014Arc, E., Galland, M., Cueff, G., Godin, B., Lounifi, I., Job, D., & Rajjou, L. (2011). Reboot the system thanks to protein post-translational modifications and proteome diversity: How quiescent seeds restart their metabolism to prepare seedling establishment. PROTEOMICS, 11(9), 1606-1618. doi:10.1002/pmic.201000641Dill, A., Thomas, S. G., Hu, J., Steber, C. M., & Sun, T. (2004). The Arabidopsis F-Box Protein SLEEPY1 Targets Gibberellin Signaling Repressors for Gibberellin-Induced Degradation. The Plant Cell, 16(6), 1392-1405. doi:10.1105/tpc.020958Wang, F., & Deng, X. W. (2011). Plant ubiquitin-proteasome pathway and its role in gibberellin signaling. Cell Research, 21(9), 1286-1294. doi:10.1038/cr.2011.118Hotton, S. K., & Callis, J. (2008). Regulation of Cullin RING Ligases. Annual Review of Plant Biology, 59(1), 467-489. doi:10.1146/annurev.arplant.58.032806.104011Cope, G. A. (2002). Role of Predicted Metalloprotease Motif of Jab1/Csn5 in Cleavage of Nedd8 from Cul1. Science, 298(5593), 608-611. doi:10.1126/science.1075901Gusmaroli, G., Figueroa, P., Serino, G., & Deng, X. W. (2007). Role of the MPN Subunits in COP9 Signalosome Assembly and Activity, and Their Regulatory Interaction with Arabidopsis Cullin3-Based E3 Ligases. The Plant Cell, 19(2), 564-581. doi:10.1105/tpc.106.047571Serino, G., & Deng, X.-W. (2003). THECOP9 SIGNALOSOME: Regulating Plant Development Through the Control of Proteolysis. Annual Review of Plant Biology, 54(1), 165-182. doi:10.1146/annurev.arplant.54.031902.134847Stratmann, J. W., & Gusmaroli, G. (2012). Many jobs for one good cop – The COP9 signalosome guards development and defense. Plant Science, 185-186, 50-64. doi:10.1016/j.plantsci.2011.10.004Lozano-Juste, J., & León, J. (2011). Nitric Oxide Regulates DELLA Content and PIF Expression to Promote Photomorphogenesis in Arabidopsis. Plant Physiology, 156(3), 1410-1423. doi:10.1104/pp.111.177741Nakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., … Kimura, T. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering, 104(1), 34-41. doi:10.1263/jbb.104.34Fromont-Racine, M., Rain, J.-C., & Legrain, P. (1997). Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nature Genetics, 16(3), 277-282. doi:10.1038/ng0797-277Belda-Palazón B, Ruiz L, Martí E, Tárraga S, Tiburcio AF, et al.. (2012) Aminopropyltransferases involved in polyamine biosynthesis localize preferentially in the nucleus of plant cells. PLoS One 7(10), e46907.Simon, R., Igeño, M. I., & Coupland, G. (1996). Activation of floral meristem identity genes in Arabidopsis. Nature, 384(6604), 59-62. doi:10.1038/384059a0Martínez, C., Pons, E., Prats, G., & León, J. (2003). Salicylic acid regulates flowering time and links defence responses and reproductive development. The Plant Journal, 37(2), 209-217. doi:10.1046/j.1365-313x.2003.01954.xKyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105-132. doi:10.1016/0022-2836(82)90515-0Marmagne, A., Rouet, M.-A., Ferro, M., Rolland, N., Alcon, C., Joyard, J., … Ephritikhine, G. (2004). Identification of New Intrinsic Proteins inArabidopsisPlasma Membrane Proteome. Molecular & Cellular Proteomics, 3(7), 675-691. doi:10.1074/mcp.m400001-mcp200Nühse, T. S., Stensballe, A., Jensen, O. N., & Peck, S. C. (2004). Phosphoproteomics of the Arabidopsis Plasma Membrane and a New Phosphorylation Site Database. The Plant Cell, 16(9), 2394-2405. doi:10.1105/tpc.104.023150Kobayashi, Y., & Weigel, D. (2007). Move on up, it’s time for change mobile signals controlling photoperiod-dependent flowering. Genes & Development, 21(19), 2371-2384. doi:10.1101/gad.1589007Jaeger, K. E., & Wigge, P. A. (2007). FT Protein Acts as a Long-Range Signal in Arabidopsis. Current Biology, 17(12), 1050-1054. doi:10.1016/j.cub.2007.05.008Mathieu, J., Warthmann, N., Küttner, F., & Schmid, M. (2007). Export of FT Protein from Phloem Companion Cells Is Sufficient for Floral Induction in Arabidopsis. Current Biology, 17(12), 1055-1060. doi:10.1016/j.cub.2007.05.009Mir, R., Hernández, M. L., Abou-Mansour, E., Martínez-Rivas, J. M., Mauch, F., Métraux, J.-P., & León, J. (2013). Pathogen and Circadian Controlled 1 (PCC1) regulates polar lipid content, ABA-related responses, and pathogen defence in Arabidopsis thaliana. Journal of Experimental Botany, 64(11), 3385-3395. doi:10.1093/jxb/ert177Nordgård, O., Dahle, Ø., Andersen, T. Ø., & Gabrielsen, O. S. (2001). JAB1/CSN5 interacts with the GAL4 DNA binding domain: A note of caution about two-hybrid interactions. Biochimie, 83(10), 969-971. doi:10.1016/s0300-9084(01)01329-3Kwok, S. F., Staub, J. M., & Deng, X.-W. (1999). Characterization of two subunits of Arabidopsis 19S proteasome regulatory complex and its possible interaction with the COP9 complex 1 1Edited by J. Karn. Journal of Molecular Biology, 285(1), 85-95. doi:10.1006/jmbi.1998.2315Nezames, C. D., & Deng, X. W. (2012). The COP9 Signalosome: Its Regulation of Cullin-Based E3 Ubiquitin Ligases and Role in Photomorphogenesis. Plant Physiology, 160(1), 38-46. doi:10.1104/pp.112.198879Moon, J., Parry, G., & Estelle, M. (2004). The Ubiquitin-Proteasome Pathway and Plant Development. The Plant Cell, 16(12), 3181-3195. doi:10.1105/tpc.104.161220Dreher, K., & Callis, J. (2007). Ubiquitin, Hormones and Biotic Stress in Plants. Annals of Botany, 99(5), 787-822. doi:10.1093/aob/mcl255Parry, G., & Estelle, M. (2004). Regulation of cullin-based ubiquitin ligases by the Nedd8/RUB ubiquitin-like proteins. Seminars in Cell & Developmental Biology, 15(2), 221-229. doi:10.1016/j.semcdb.2003.12.003Wee, S., Geyer, R. K., Toda, T., & Wolf, D. A. (2005). CSN facilitates Cullin–RING ubiquitin ligase function by counteracting autocatalytic adapter instability. Nature Cell Biology, 7(4), 387-391. doi:10.1038/ncb1241Kuramata, M., Masuya, S., Takahashi, Y., Kitagawa, E., Inoue, C., Ishikawa, S., … Kusano, T. (2008). Novel Cysteine-Rich Peptides from Digitaria ciliaris and Oryza sativa Enhance Tolerance to Cadmium by Limiting its Cellular Accumulation. Plant and Cell Physiology, 50(1), 106-117. doi:10.1093/pcp/pcn175Zeng, W., Melotto, M., & He, S. Y. (2010). Plant stomata: a checkpoint of host immunity and pathogen virulence. Current Opinion in Biotechnology, 21(5), 599-603. doi:10.1016/j.copbio.2010.05.006Wigge, P. A. (2011). FT, A Mobile Developmental Signal in Plants. Current Biology, 21(9), R374-R378. doi:10.1016/j.cub.2011.03.038Kardailsky, I. (1999). Activation Tagging of the Floral Inducer FT. Science, 286(5446), 1962-1965. doi:10.1126/science.286.5446.1962Srikanth, A., & Schmid, M. (2011). Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences, 68(12), 2013-2037. doi:10.1007/s00018-011-0673-yGalvao, V. C., Horrer, D., Kuttner, F., & Schmid, M. (2012). Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development, 139(21), 4072-4082. doi:10.1242/dev.080879Cerdán, P. D., & Chory, J. (2003). Regulation of flowering time by light quality. Nature, 423(6942), 881-885. doi:10.1038/nature01636Guo, H. (1998). Regulation of Flowering Time by Arabidopsis Photoreceptors. Science, 279(5355), 1360-1363. doi:10.1126/science.279.5355.1360Liu, B., Zuo, Z., Liu, H., Liu, X., & Lin, C. (2011). Arabidopsis cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes & Development, 25(10), 1029-1034. doi:10.1101/gad.2025011Weidler, G., zur Oven-Krockhaus, S., Heunemann, M., Orth, C., Schleifenbaum, F., Harter, K., … Batschauer, A. (2012). Degradation of Arabidopsis CRY2 Is Regulated by SPA Proteins and Phytochrome A. The Plant Cell, 24(6), 2610-2623. doi:10.1105/tpc.112.09821
TGF-β Induction of miR-143/145 Is Associated to Exercise Response by Influencing Differentiation and Insulin Signaling Molecules in Human Skeletal Muscle
Physical training improves insulin sensitivity and can prevent type 2 diabetes (T2D). However, approximately 20% of individuals lack a beneficial outcome in glycemic control. TGF-β, identified as a possible upstream regulator involved in this low response, is also a potent regulator of microRNAs (miRNAs). The aim of this study was to elucidate the potential impact of TGF-β-driven miRNAs on individual exercise response. Non-targeted long and sncRNA sequencing analyses of TGF-β1-treated human skeletal muscle cells corroborated the effects of TGF-β1 on muscle cell differentiation, the induction of extracellular matrix components, and identified several TGF-β1-regulated miRNAs. qPCR validated a potent upregulation of miR-143-3p/145-5p and miR-181a2-5p by TGF-β1 in both human myoblasts and differentiated myotubes. Healthy subjects who were overweight or obese participated in a supervised 8-week endurance training intervention (n = 40) and were categorized as responder or low responder in glycemic control based on fold change ISIMats (≥+1.1 or <+1.1, respectively). In skeletal muscle biopsies of low responders, TGF-β signaling and miR-143/145 cluster levels were induced by training at much higher rates than among responders. Target-mining revealed HDACs, MYHs, and insulin signaling components INSR and IRS1 as potential miR-143/145 cluster targets. All these targets were down-regulated in TGF-β1-treated myotubes. Transfection of miR-143-3p/145-5p mimics in differentiated myotubes validated MYH1, MYH4, and IRS1 as miR-143/145 cluster targets. Elevated TGF-β signaling and miR-143/145 cluster induction in skeletal muscle of low responders might obstruct improvements in insulin sensitivity by training in two ways: by a negative impact of miR-143-3p on muscle cell fusion and myofiber functionality and by directly impairing insulin signaling via a reduction in INSR by TGF-β and finetuned IRS1 suppression by miR-143-3p