212 research outputs found

    We\u27re Here Now: An Exploratory Study of the Relationships Between Tourism and Post-Migration Community Participation and Sense of Community

    Get PDF
    ABSTRACT Research has suggested that visiting a community can result in an inclination (Cuba, 1989) or likelihood of moving there (McHugh, 1990). One reason that may contribute to the decision to move is tourism experiences provide an opportunity for visitors to compare the destination to their current community and determine if voids that exist would be filled should they relocate (Haug, Dann, & Mehmetoglu, 2007). However, should tourists decide to relocate, research is needed that examines how tourists transition to being a resident (Oigenblick & Kirschenbaum, 2002) and policy implications of residential growth. The purpose of this exploratory study was twofold. First, this study examined what trip characteristics (i.e., number of trip, season of trip, purpose of trip, type of trip, relocation related trips, and business opportunity trips) contributed to the decision to move to a community in which respondents had previously been visitors. The second purpose of this study was to examine if the number of times visited and self assessment of the decision to move to one\u27s current community influenced in-migrants\u27 community participation, social interaction, sense of community, and overall community satisfaction. Results suggested that leisure trips and general vacations contribute to the decision to relocate. In addition, visiting to look for a community to permanently relocate further confirmed the decision to move. The experience as a tourist prior to moving was positively related to level of community participation, social interaction with friends and neighbors, sense of community, and overall community satisfaction. However, this tourism and migration process presents potential challenges for growing communities. For example, communities who convert tourists to residents may require additional infrastructure, which is typically not covered by the increased property tax that comes with residential growth (Ulbrich & London, 2008)

    Comparison of resident and tourist preferences for public beach access

    Get PDF
    As coastal destinations continue to grow, due to tourism and residential expansion, the demand for public beach access and related amenities will also increase. As a resultagencies that provide beach access and related amenities face challenges when considering both residents and visitors use beaches and likely possess different needs, as well as different preferences for management decisions. Being a resident of a coastal county provides more opportunity to use local beaches, but coastal tourism is an important and growing economic engine in coastal communities (Kriesel, Landry, & Keeler, 2005; Pogue & Lee, 1999). Therefore, providing agencies with a comprehensive assessment of the differences between these two groups will increase the likelihood of effective management programs and policies for the provision of public beach access and related amenities. The purpose of this paper was to use a stated preference choice method (SPCM) to identify the extent of both residents’ and visitors’ preferences for public beach management options. (PDF contains 4 pages

    Evaluation of Multiple Corrosion Protection Systems for Reinforced Concrete Bridge Decks

    Get PDF
    Chloride-induced corrosion is one of the leading causes of premature serviceability failure in reinforced concrete bridge decks. In an effort to mitigate the effect of corrosion on the longevity of concrete bridge decks, several corrosion protection systems have been developed. The current study evaluates the effectiveness of multiple corrosion protection strategies when used in conjunction with epoxy-coated reinforcement (ECR). The epoxy coating in all test bars is penetrated with either four or ten 3-mm (1/8-in.) diameter holes. The systems evaluated include three corrosion inhibitors (DCI-S, Rheocrete 222+, and Hycrete DSS) in concrete with a w/c ratio of 0.45 and 0.35, an ECR containing a primer of microencapsulated calcium nitrite between the epoxy and the steel in concrete with a w/c ratio of 0.45 and 0.35, three types of increased adhesion ECR (ECR pretreated with chromate prior to the application of the epoxy coating, and ECR with increased adhesion epoxies developed by DuPont and Valspar) evaluated in concrete with a w/c ratio of 0.45, as well as in concrete containing DCI-S corrosion inhibitor, and multiple-coated reinforcement that contains a zinc layer between the steel and the DuPont 8-2739 epoxy coating in concrete with a w/c ratio of 0.45. Conventional steel and epoxy-coated reinforcement serve as control specimens; the performance of the epoxy-coated reinforcement is compared to the performance of the conventional steel reinforcement. Each corrosion protection system is evaluated using the Southern Exposure and cracked beam tests. Macrocell and microcell corrosion losses, mat-to-mat resistances, top and bottom mat corrosion potentials, and critical chloride concentrations are measured during the test. Upon completion of the study, each specimen is autopsied and any disbondment of the epoxy coating from the steel is measured. Of the systems evaluated in this study, conventional steel exhibits the greatest amount of corrosion. ECR, whether in uncracked or cracked concrete, exhibits low corrosion losses; well below the magnitude required to cause corrosion-induced surface deterioration. A lower w/c ratio provides additional protection in uncracked concrete, but affords little to no protection in cracked concrete. Corrosion inhibitors, while effective in uncracked concrete, afford no additional protection against corrosion in cracked concrete. All three improved adhesion ECR systems exhibit corrosion performance that is similar to conventional ECR. Multiple-coated reinforcement exhibits greater corrosion losses than conventional ECR, but the corrosion losses are below the magnitude of corrosion loss required to cause corrosion-induced surface deterioration. The effective critical chloride threshold for epoxy-coated reinforcement is several times higher than that of conventional reinforcement. A relationship exists between microcell and macrocell corrosion loss, and between both microcell and macrocell corrosion loss and the disbonded area of epoxy observed on the bar. The cathodic disbondment test (ASTM A775) does not appear to be a reliable indicator of corrosion disbondment performance of in-service epoxy-coated reinforcement

    Faculty and Guest Artist Recital: Joshua Russell

    Get PDF
    Kemp Recital HallSeptember 7, 2011Wednesday Evening8:00 p.m

    Evaluation of Multiple Corrosion Protection Systems for Reinforced Concrete Bridge Decks

    Get PDF
    Chloride-induced corrosion is one of the leading causes of premature serviceability failure in reinforced concrete bridge decks. In an effort to mitigate the effect of corrosion on the longevity of concrete bridge decks, several corrosion protection systems have been developed. The current study evaluates the effectiveness of multiple corrosion protection strategies when used in conjunction with epoxycoated reinforcement (ECR). The epoxy coating in all test bars is penetrated with either four or ten 3-mm (1/8-in.) diameter holes. The systems evaluated include three corrosion inhibitors (DCI-S, Rheocrete 222+, and Hycrete DSS) in concrete with a w/c ratio of 0.45 and 0.35, an ECR containing a primer of microencapsulated calcium nitrite between the epoxy and the steel in concrete with a w/c ratio of 0.45 and 0.35, three types of increased adhesion ECR (ECR pretreated with chromate prior to the application of the epoxy coating, and ECR with increased adhesion epoxies developed by DuPont and Valspar) evaluated in concrete with a w/c ratio of 0.45, as well as in concrete containing DCI-S corrosion inhibitor, and multiple-coated reinforcement that contains a zinc layer between the steel and the DuPont 8-2739 epoxy coating in concrete with a w/c ratio of 0.45. Conventional steel and epoxy-coated reinforcement serve as control specimens; the performance of the epoxy-coated reinforcement is compared to the performance of the conventional steel reinforcement. Each corrosion protection system is evaluated using the Southern Exposure and cracked beam tests. Macrocell and microcell corrosion losses, mat-to-mat resistances, top and bottom mat corrosion potentials, and critical chloride concentrations are measured during the test. Upon completion of the study, each specimen is autopsied and any disbondment of the epoxy coating from the steel is measured. Of the systems evaluated in this study, conventional steel exhibits the greatest amount of corrosion. ECR, whether in uncracked or cracked concrete, exhibits low corrosion losses; well below the magnitude required to cause corrosion-induced surface deterioration. A lower w/c ratio provides additional protection in uncracked concrete, but affords little to no protection in cracked concrete. Corrosion inhibitors, while effective in uncracked concrete, afford no additional protection against corrosion in cracked concrete. All three improved adhesion ECR systems exhibit corrosion performance that is similar to conventional ECR. Multiple-coated reinforcement exhibits greater corrosion losses than conventional ECR, but the corrosion losses are below the magnitude of corrosion loss required to cause corrosion-induced surface deterioration. The effective critical chloride threshold for epoxy-coated reinforcement is several times higher than that of conventional reinforcement. A relationship exists between microcell and macrocell corrosion loss, and between both microcell and macrocell corrosion loss and the disbonded area of epoxy observed on the bar. The cathodic disbondment test (ASTM A775) does not appear to be a reliable indicator of corrosion disbondment performance of in-service epoxycoated reinforcement

    Bringing "The Moth" to Light: A Planet-Sculpting Scenario for the HD 61005 Debris Disk

    Full text link
    The HD 61005 debris disk ("The Moth") stands out from the growing collection of spatially resolved circumstellar disks by virtue of its unusual swept-back morphology, brightness asymmetries, and dust ring offset. Despite several suggestions for the physical mechanisms creating these features, no definitive answer has been found. In this work, we demonstrate the plausibility of a scenario in which the disk material is shaped dynamically by an eccentric, inclined planet. We present new Keck NIRC2 scattered-light angular differential imaging of the disk at 1.2-2.3 microns that further constrains its outer morphology (projected separations of 27-135 AU). We also present complementary Gemini Planet Imager 1.6 micron total intensity and polarized light detections that probe down to projected separations less than 10 AU. To test our planet-sculpting hypothesis, we employed secular perturbation theory to construct parent body and dust distributions that informed scattered-light models. We found that this method produced models with morphological and photometric features similar to those seen in the data, supporting the premise of a planet-perturbed disk. Briefly, our results indicate a disk parent body population with a semimajor axis of 40-52 AU and an interior planet with an eccentricity of at least 0.2. Many permutations of planet mass and semimajor axis are allowed, ranging from an Earth mass at 35 AU to a Jupiter mass at 5 AU.Comment: Accepted to AJ; added Figure 5 and minor text edit

    Oncoprotein DEK as a tissue and urinary biomarker for bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bladder cancer is a significant healthcare problem in the United States of America with a high recurrence rate. Early detection of bladder cancer is essential for removing the tumor with preservation of the bladder, avoiding metastasis and hence improving prognosis and long-term survival. The objective of this study was to analyze the presence of DEK protein in voided urine of bladder cancer patients as a urine-based bladder cancer diagnostic test.</p> <p>Methods</p> <p>We examined the expression of DEK protein by western blot in 38 paired transitional cell carcinoma (TCC) bladder tumor tissues and adjacent normal tissue. The presence of DEK protein in voided urine was analyzed by western blot in 42 urine samples collected from patients with active TCC, other malignant urogenital disease and healthy individuals.</p> <p>Results</p> <p>The DEK protein is expressed in 33 of 38 bladder tumor tissues with no expression in adjacent normal tissue. Based on our sample size, DEK protein is expressed in 100% of tumors of low malignant potential, 92% of tumors of low grade and in 71% of tumors of high grade. Next, we analyzed 42 urine samples from patients with active TCC, other malignant urogenital disease, non-malignant urogenital disease and healthy individuals for DEK protein expression by western blot analysis. We are the first to show that the DEK protein is present in the urine of bladder cancer patients. Approximately 84% of TCC patient urine specimens were positive for urine DEK.</p> <p>Conclusion</p> <p>Based on our pilot study of 38 bladder tumor tissue and 42 urine samples from patients with active TCC, other malignant urogenital disease, non-malignant urogenital disease and healthy individuals; DEK protein is expressed in bladder tumor tissue and voided urine of bladder cancer patients. The presence of DEK protein in voided urine is potentially a suitable biomarker for bladder cancer and that the screening for the presence of DEK protein in urine can be explored as a noninvasive diagnostic test for bladder cancer.</p
    • …
    corecore