19 research outputs found

    Structural, morphological and luminescence properties of nanocrystalline up-converting Y1.89Yb0.1Er0.01O3 phosphor particles synthesized through aerosol route

    Get PDF
    Nanocrystalline up-converting Y₂ O₃Yb³⁺ Er³⁺ phosphor particles were processed in a dispersed system-aerosol, generated ultrasonically at 1.3 MHz from common nitrate precursor solution having fixed ytterbium-to-erbium concentration ratio. The appropriate process parameters: residence time 21 s, carrier gas (air) flow rate 1.6 dm3/min, synthesis temperature 900 °C, led to the formation of un-agglomerated spherical nanostructured secondary particles, having mean particle size of approx 450 nm, composed of primary nanoscaled (20 nm) subunits. In order to reach targeting phase crystallinity, the as-prepared particles were additionally annealed at 1100 °C in air for 12, 24 and 48 h, respectively. Particle structure, morphology and purity were analyzed by X-ray powder diffraction (XRPD), scanning electron microscopy (FESEM/SEM), analytical and high resolution transmission electron microscopy (TEM/HRTEM) in combination with energy dispersive X-ray analysis and Fourier Transform Infrared Spectroscopy (FTIR). All samples crystallized in a cubic bixbyte-structure, space group Ia-3. The crystallite size changed with annealing time from 30 nm in as-prepared sample to 135 nm in sample annealed for 48 h, respectively. Emission spectra were assigned to the following trivalent erbium f–f electronic transitions: ²H₉/₂ → ⁴I₁₅/₂ (blue: 407–420 nm), (²H₁₁/₂̦ ⁴S₃/₂) → ⁴I₁₅/₂ (green: 510–590 nm), and ⁴F₉/₂ → ⁴I₁₅/₂ (red: 640–720 nm). The significant improvement of the emission decay times were observed after thermal treatment and this effect is correlated further with the structural and morphological particles characteristics. For the anneal-ing time of 12 h a quite high emission decay times were achieved (blue: 0.14 ms, green: 0.32 ms and red: 0.39 ms).This research is financially supported through the Project #172035 of the Ministry of Science and Education of the Republic of Serbia. OM especially acknowledge the University Carlos III, Madrid, Spain-Santander Bank Chairs of Excellence program and JSPS 2011/2012 fellowship, Japan.Publicad

    Antibacterial potential of electrochemically exfoliated graphene sheets

    Get PDF
    Electrochemically exfoliated graphene is functionalized graphene with potential application in biomedicine. Two most relevant biological features of this material are its electrical conductivity and excellent water dispersibility. In this study we have tried to establish the correlation between graphene structure and its antibacterial properties. The exfoliation process was performed in a two electrode-highly oriented pyrolytic graphite electrochemical cell. Solution of ammonium persulfate was used as an electrolyte. Exfoliated graphene sheets were dispersed in aqueous media and characterized by atomic force microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X photoelectron spectroscopy, X-ray diffraction, electron paramagnetic resonance, zeta potential, contact angle measurements and surface energy. Antibacterial assays have shown lack of the significant antibacterial activity. Major effect on bacteria was slight change of bacteria morphology. Membrane remained intact despite significant change of chemical content of membrane components.This is the peer reviewed version of the paper: Marković, Z. M., Matijašević, D. M., Pavlović, V. B., Jovanović, S. P., Holclajtner-Antunović, I. D., Špitalský, Z., Mičušik, M., Dramićanin, M. D., Milivojević, D. D., Nikšić, M. P., & Todorović Marković, B. M. (2017). Antibacterial potential of electrochemically exfoliated graphene sheets. Journal of Colloid and Interface Science, 500, 30–43. [https://doi.org/10.1016/j.jcis.2017.03.110][https://www.sciencedirect.com/science/article/abs/pii/S0021979717303776?via%3Dihub

    Structure and enhanced antimicrobial activity of mechanically activated nano TiO2

    Get PDF
    Titanium dioxide is a photocatalyst, known not only for its ability to oxidize organic contaminants, but also for its antimicrobial properties. In this article, significant enhancement of the antimicrobial activity of TiO2 (up to 32 times) was demonstrated after its activation by ball milling. The antimicrobial activity was analyzed for one fungal and 13 bacterial ATCC strains using the microdilution method and recording the minimum inhibitory concentration (MIC) values. In order to further investigate the correlation between the mechanical activation of TiO2 and its antimicrobial activity, the structure, morphology and phase composition of the material were studied by means of Electron Microscopy, X-ray diffraction and nitrogen adsorption-desorption measurements. UV-Vis diffuse reflectance spectra were recorded and the Kubelka-Munk function was applied to convert reflectance into the equivalent band gap energy (E-g) and, consequently, to investigate changes in the E-g value. X-ray photoelectron spectroscopy was used to analyze the influence of mechanical activation on the Ti 2p and O 1s spectra. The presented results are expected to enable the development of more sustainable and effective advanced TiO2-based materials with antimicrobial properties that could be used in numerous green technology applications

    Fabrication of polycrystalline (Y0.7Gd0.3)(2)O-3:Eu3+ ceramics: The influence of initial pressure and sintering temperature on its morphology and photoluminescence activity

    No full text
    Nanocrystalline (Y0.7Gd0.3)(2)O-3 powder, synthetised via polymer complex solution method, was compacted into 25 pellets applying high pressures (173-867 MPa) for 30 s that were subsequently sintered at different temperatures (800-1400 degrees C) for 18 h. The morphology and optical characteristics of the starting powder and prepared ceramic samples were monitored and discussed in order to identify the changes induced with the variations of initial compacting pressure, which influence is often neglected, and with sintering temperature. The grain size tends to decrease significantly with increasing pressure, even when elevated temperatures are used for annealing, while low compacting pressure resulted in grain coarsening and, in some cases, even in anomalous morphology of ceramic samples. Luminescence emission in ceramic samples decays faster than in nanopowders, that is in complete agreement with the grain formation and gradual transformation to the bulk material. Judd-Ofelt intensity parameters and branching ratios were calculated taking into account the difference in effective refractive index for nanopowder and ceramic samples. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved

    Structural, optical and crystal field analyses of undoped and Mn2+-doped ZnS nanoparticles synthesized via reverse micelle route

    No full text
    Zinc sulfide, both as a bulk material and in nanocrystalline form, is a valuable luminescent material with important applications. Doped ZnS nanoparticles of around 5 nm are the material of choice for optoelectronic applications running in the UV region owing to their significant quantum size effect. This paper concerns detailed structural, spectroscopic and crystal field studies of ZnS nanoparticles, both pure and doped with Mn2+ ions, successfully synthesized at room temperature using a simple reverse micelle technique in the Triton X-100/cyclohexane medium. The resulting ZnS sphalerite phase smallsize nanoparticles (3-5 nm) have a much larger energy band gap ( similar to 4.7 eV) than that reported for the bulk ZnS (3.6 eV), thus confirming a pronounced quantum confinement effect. The electron paramagnetic resonance data provided evidence for the existence of two distinct environments for Mn2+ ions: the interior (core) and near the surface of the nanoparticles. The presence of an Mn2+-characteristic orange emission centered at 600 nm confirmed that our sample's were properly doped with Mn2+ ions, as the T-4(1)->(6)A(1) radiation transition could arise only on the basis of Mn2+ ions incorporated into the ZnS nanoparticles. To the best of our knowledge, our finding include the longest decay time component for the orange emission ever observed, timed at about 3.3 ms. The experimental excitation spectra were analyzed and the transitions assigned using the exchange charge model of theory of crystal field, which allowed to calculate the energy level scheme of the Mn2+ ions. The results presented in this paper provide us with detailed information about the ZnS sphalerite nanocrystals studied and can be readily applied to other similar systems. (C) 2013 Elsevier B.V. All rights reserved

    Annealing effects on the microstructure and photoluminescence of Eu3+-doped GdVO4 powders

    No full text
    This work explores the influence of annealing temperature on microstructure and optical characteristics of Eu3+ doped GdVO4 (0.5, 1, 2 and 3 at.% Eu3+) nanopowders produced via co-precipitation synthesis. Samples were annealed at different temperatures (300 degrees C, 600 degrees C, 800 degrees C and 1000 degrees C) for 2 h and XRD analyses confirmed their tetragonal zircon structure. As-synthesized powders were composed of nanorods (diameter similar to 5 nm, length similar to 20 nm) organized in bundles, which by annealing grew to faceted crystals of round and rectangular shape (50-150 nm in size). Energy band gap shifts to higher energy (3.56 eV -> 3.72 eV) with decreasing crystallite size (43 nm -> 13 nm). Photoluminescence emission spectra were recorded using two different excitation wavelengths: lambda(ex) = 330 nm and lambda(ex) = 466 nm, aiming to excite directly the host matrix and Eu3+ ions, respectively. The intensity of most pronounced red transitions is one order of magnitude higher for lambda(ex) = 330 nm due to a strong energy absorption of VO43- groups, followed by efficient energy transfer to Eu3+ ions. We investigated the influence of annealing temperature and concentration of Eu3+ ions on the optical properties, namely photoluminescence emission and excitation, and decay time. The maximum intensity of D-5(0) -> F-7(2) red emission is observed for sample treated at 1000 degrees C, containing 2 at.% of Eu3+ ions. With the increase of Eu3+ concentration (0.5-3 at.%) the decay time of D-5(0) -> F-7(2) transition decreases from similar to 1 ms to 0.5 ms. (c) 2013 Elsevier B.V. All rights reserved

    Eu3+-doped (Y0.5La0.5)(2)O-3: new nanophosphor with the bixbyite cubic structure

    No full text
    New red sesquioxide phosphor, Eu(3+)doped (Y0.5La0.5)(2)O-3, was synthesized in the form of nanocrystalline powder with excellent structural ordering in cubic bixbyite-type, and with nanoparticle sizes ranging between 10 and 20 nm. Photoluminescence measurements show strong, Eu3+ characteristic, red emission (x = 0.66 and y = 0.34 CIE color coordinates) with an average D-5(0) emission lifetime of about 1.3 ms. Maximum splitting of the F-7(1) manifold of the Eu3+ ion emission behaves in a way directly proportional to the crystal field strength parameter, and experimental results show perfect agreement with theoretical values for pure cubic sesquioxides. This could be used as an indicator of complete dissolution of Y2O3 and La2O3, showing that (Y0.5La0.5)(2)O-3:Eu3+ behaves as a new bixbyite structure oxide, M2O3, where M acts as an ion having average ionic radius of constituting Y3+ and La3+. Emission properties of this new phosphor were documented with detailed assignments of Eu3+ energy levels at 10 K and at room temperature. Second order crystal field parameters were found to be B-20 = -66 cm(-1) and B-22 = -665 cm(-1) at 10 K and B-20 = -78 cm(-1) and B-22 = -602 cm(-1) at room temperature, while for the crystal field strength the value of 1495 cm(-1) was calculated at 10 K and 1355 cm(-1) at room temperature
    corecore