129 research outputs found

    N-myristoylated proteins, key components in intracellular signal transduction systems enabling rapid and flexible cell responses

    Get PDF
    N-myristoylation, one of the co- or post-translational modifications of proteins, has so far been regarded as necessary for anchoring of proteins to membranes. Recently, we have revealed that Nα-myristoylation of several brain proteins unambiguously regulates certain protein–protein interactions that may affect signaling pathways in brain. Comparison of the amino acid sequences of myristoylated proteins including those in other organs suggests that this regulation is involved in signaling pathways not only in brain but also in other organs. Thus, it has been shown that myristoylated proteins in cells regulate the signal transduction between membranes and cytoplasmic fractions. An algorithm we have developed to identify myristoylated proteins in cells predicts the presence of hundreds of myristoylated proteins. Interestingly, a large portion of the myristoylated proteins thought to take part in signal transduction between membranes and cytoplasmic fractions are included in the predicted myristoylated proteins. If the proteins functionally regulated by myristoylation, a posttranslational protein modification, were understood as cross-talk points within the intracellular signal transduction system, known signaling pathways could thus be linked to each other, and a novel map of this intracellular network could be constructed. On the basis of our recent results, this review will highlight the multifunctional aspects of protein N-myristoylation in brain

    Progressive Purkinje Cell Degeneration in tambaleante Mutant Mice Is a Consequence of a Missense Mutation in HERC1 E3 Ubiquitin Ligase

    Get PDF
    The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domains have been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a G⇔A transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N-terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology

    Cannabis-Dependence Risk Relates to Synergism between Neuroticism and Proenkephalin SNPs Associated with Amygdala Gene Expression: Case-Control Study

    Get PDF
    BACKGROUND:Many young people experiment with cannabis, yet only a subgroup progress to dependence suggesting individual differences that could relate to factors such as genetics and behavioral traits. Dopamine receptor D2 (DRD2) and proenkephalin (PENK) genes have been implicated in animal studies with cannabis exposure. Whether polymorphisms of these genes are associated with cannabis dependence and related behavioral traits is unknown. METHODOLOGY/PRINCIPAL FINDINGS:Healthy young adults (18-27 years) with cannabis dependence and without a dependence diagnosis were studied (N = 50/group) in relation to a priori-determined single nucleotide polymorphisms (SNPs) of the DRD2 and PENK genes. Negative affect, Impulsive Risk Taking and Neuroticism-Anxiety temperamental traits, positive and negative reward-learning performance and stop-signal reaction times were examined. The findings replicated the known association between the rs6277 DRD2 SNP and decisions associated with negative reinforcement outcomes. Moreover, PENK variants (rs2576573 and rs2609997) significantly related to Neuroticism and cannabis dependence. Cigarette smoking is common in cannabis users, but it was not associated to PENK SNPs as also validated in another cohort (N = 247 smokers, N = 312 non-smokers). Neuroticism mediated (15.3%-19.5%) the genetic risk to cannabis dependence and interacted with risk SNPs, resulting in a 9-fold increase risk for cannabis dependence. Molecular characterization of the postmortem human brain in a different population revealed an association between PENK SNPs and PENK mRNA expression in the central amygdala nucleus emphasizing the functional relevance of the SNPs in a brain region strongly linked to negative affect. CONCLUSIONS/SIGNIFICANCE:Overall, the findings suggest an important role for Neuroticism as an endophenotype linking PENK polymorphisms to cannabis-dependence vulnerability synergistically amplifying the apparent genetic risk

    Quaternary Structure Buildt from Subunuts Combining NMR and Small-Angle X-Ray Scattering Data

    No full text
    A new principle in constructing molecular complexes from the known high-resolution domain structures joining data from NMR and small-angle x-ray scattering (SAXS) measurements is described. Structure of calmodulin in complex with trifluoperazine was built from N- and C-terminal domains oriented based on residual dipolar couplings measured by NMR in a dilute liquid crystal, and the overall shape of the complex was derived from SAXS data. The residual dipolar coupling data serves to reduce angular degrees of freedom, and the small-angle scattering data serves to confine the translational degrees of freedom. The complex built by this method was found to be consistent with the known crystal structure. The study demonstrates how approximate tertiary structures of modular proteins or quaternary structures composed of subunits can be assembled from high-resolution structures of domains or subunits using mutually complementary NMR and SAXS data

    Recombinant human monoclonal antibodies against different conformational epitopes of the E2 envelope glycoprotein of hepatitis C virus that inhibit its interaction with CD81

    No full text
    The antibody response to the envelope proteins of hepatitis C virus (HCV) may play an important role in controlling the infection. To allow molecular analyses of protective antibodies, we isolated human monoclonal antibodies to the E2 envelope glycoprotein of HCV from a combinatorial Fab library established from bone marrow of a chronically HCV-infected patient. Anti-E2 reactive clones were selected using recombinant E2 protein. The bone marrow donor carried HCV genotype 2b, and E2 used for selection was of genotype 1a. The antibody clones were expressed as Fab fragments in E. coli, and as Fab fragments and IgG1 in CHO cells. Seven different antibody clones were characterized, and shown to have high affinity for E2, genotype 1a. Three clones also had high affinity for E2 of genotype 1b. They all bind to conformation-dependent epitopes. Five clones compete for the same or overlapping binding sites, while two bind to one or two other epitopes of E2. Four clones corresponding to the different epitopes were tested as purified IgG1 for blocking the CD81-E2 interaction in vitro; all four were positive at 0.3-0.5 microg/ml. Thus, the present results suggest the existence of at least two conserved epitopes in E2 that mediate inhibition of the E2-CD81 interaction, of which one appeared immunodominant in this donor
    corecore