18 research outputs found

    Periaqueductal grey EP3 receptors facilitate spinal nociception in arthritic secondary hypersensitivity

    Get PDF
    Descending controls on spinal nociceptive processing play a pivotal role in shaping the pain experience following tissue injury. Secondary hypersensitivity develops within undamaged tissue adjacent, and distant to, damaged sites. Spinal neuronal pools innervating regions of secondary hypersensitivity are dominated by descending facilitation that amplifies spinal inputs from un-sensitized peripheral nociceptors. Cyclooxygenase–prostaglandin E2 signaling within the ventrolateral periaqueductal grey (vlPAG) is pro-nociceptive in naïve and acutely inflamed animals but its contributions in more prolonged inflammation and, importantly, secondary hypersensitivity remain unknown. In naïve rats, prostaglandin EP3 receptor (EP3R) antagonism in vlPAG modulated noxious withdrawal reflex (EMG) thresholds to preferential C-, but not A-, nociceptor activation, and raised thermal withdrawal thresholds in awake animals. In rats with inflammatory arthritis, secondary mechanical and thermal hypersensitivity of the hind-paw developed, and this was associated with spinal sensitization to Anociceptor inputs alone. In arthritic rats, blockade of vlPAG EP3R raised EMG thresholds to C-nociceptor activation in the area of secondary hypersensitivity to a degree equivalent to that evoked by the same manipulation in naïve rats

    The degree of acute descending control of spinal nociception in an area of primary hyperalgesia is dependent on the peripheral domain of afferent input

    Get PDF
    Descending controls of spinal nociceptive processing play a critical role in the development of inflammatory hyperalgesia. Acute peripheral nociceptor sensitization drives spinal sensitization and activates spino–supraspinal–spinal loops leading to descending inhibitory and facilitatory controls of spinal neuronal activity that further modify the extent and degree of the pain state. The afferent inputs from hairy and glabrous skin are distinct with respect to both the profile of primary afferent classes and the degree of their peripheral sensitization. It is not known whether these differences in afferent input differentially engage descending control systems to different extents or in different ways. Injection of complete Freund's adjuvant resulted in inflammation and swelling of hairy hind foot skin in rats, a transient thermal hyperalgesia lasting 72 h). In hairy skin, transient hyperalgesia was associated with sensitization of withdrawal reflexes to thermal activation of either A- or C-nociceptors. The transience of the hyperalgesia was attributable to a rapidly engaged descending inhibitory noradrenergic mechanism, which affected withdrawal responses to both A- and C-nociceptor activation and this could be reversed by intrathecal administration of yohimbine (α-2-adrenoceptor antagonist). In glabrous skin, yohimbine had no effect on an equivalent thermal inflammatory hyperalgesia. We conclude that acute inflammation and peripheral nociceptor sensitization in hind foot hairy skin, but not glabrous skin, rapidly activates a descending inhibitory noradrenergic system. This may result from differences in the engagement of descending control systems following sensitization of different primary afferent classes that innervate glabrous and hairy skin

    The control of alternative splicing by SRSF1 in myelinated afferents contributes to the development of neuropathic pain

    Get PDF
    Neuropathic pain results from neuroplasticity in nociceptive neuronal networks. Here we demonstrate that control of alternative pre-mRNA splicing, through the splice factor serine-arginine splice factor 1 (SRSF1), is integral to the processing of nociceptive information in the spinal cord. Neuropathic pain develops following a partial saphenous nerve ligation injury, at which time SRSF1 is activated in damaged myelinated primary afferent neurons, with minimal found in small diameter (IB4 positive) dorsal root ganglia neurons. Serine arginine protein kinase 1 (SRPK1) is the principal route of SRSF1 activation. Spinal SRPK1 inhibition attenuated SRSF1 activity, abolished neuropathic pain behaviors and suppressed central sensitization. SRSF1 was principally expressed in large diameter myelinated (NF200-rich) dorsal root ganglia sensory neurons and their excitatory central terminals (vGLUT1 + ve) within the dorsal horn of the lumbar spinal cord. Expression of pro-nociceptive VEGF-Axxxa within the spinal cord was increased after nerve injury, and this was prevented by SRPK1 inhibition. Additionally, expression of anti-nociceptive VEGF-Axxxb isoforms was elevated, and this was associated with reduced neuropathic pain behaviors. Inhibition of VEGF receptor-2 signaling in the spinal cord attenuated behavioral nociceptive responses to mechanical, heat and formalin stimuli, indicating that spinal VEGF receptor-2 activation has potent pro-nociceptive actions. Furthermore, intrathecal VEGF-A165a resulted in mechanical and heat hyperalgesia, whereas the sister inhibitory isoform VEGF-A165b resulted in anti-nociception. These results support a role for myelinated fiber pathways, and alternative pre-mRNA splicing of factors such as VEGF-A in the spinal processing of neuropathic pain. They also indicate that targeting pre-mRNA splicing at the spinal level could lead to a novel target for analgesic development

    Bibliography

    No full text

    Infectious Diseases

    No full text

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization
    corecore