44 research outputs found

    Long-term survival in people with transthyretin amyloid cardiomyopathy who took tafamidis: A Plain Language Summary

    Get PDF
    WHAT IS THIS PLAIN LANGUAGE SUMMARY ABOUT?: This summary presents the results from an ongoing, long-term extension study that followed an earlier study called ATTR-ACT. People who took part in this extension study and ATTR-ACT have a type of heart disease known as transthyretin amyloid cardiomyopathy (ATTR-CM for short), which causes heart failure and death. In ATTR-ACT, people took either a medicine called tafamidis or a placebo (a pill that looks like the study drug but does not contain any active ingredients) for up to 2½ years. So far, in the long-term extension study, people have continued taking tafamidis, or switched from taking a placebo to tafamidis, for another 2½ years. Researchers looked at how many people died in ATTR-ACT and the extension study. The long-term extension study is expected to end in 2027, so these are interim (not final) results. WHAT DID RESEARCHERS FIND OUT?: In the extension study of ATTR-ACT, the risk of dying was lower in people who took tafamidis continuously throughout ATTR-ACT and the extension study than in people who took placebo in ATTR-ACT and switched to tafamidis in the extension study. WHAT DO THE RESULTS MEAN?: Taking tafamidis increases how long people with ATTR-CM live. People with ATTR-CM who take tafamidis early and continuously are more likely to live longer than those who do not. These results highlight the importance of early detection and treatment in people with ATTR-CM. Clinical Trial Registration: NCT01994889 (ClinicalTrials.gov) Clinical Trial Registration: NCT02791230 (ClinicalTrials.gov)

    Genotype and Phenotype of Transthyretin Cardiac Amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey)

    Get PDF
    Background Transthyretin amyloidosis (ATTR) is a heterogeneous disorder with multiorgan involvement and a genetic or nongenetic basis. Objectives The goal of this study was to describe ATTR in the United States by using data from the THAOS (Transthyretin Amyloidosis Outcomes Survey) registry. Methods Demographic, clinical, and genetic features of patients enrolled in the THAOS registry in the United States (n = 390) were compared with data from patients from other regions of the world (ROW) (n = 2,140). The focus was on the phenotypic expression and survival in the majority of U.S. subjects with valine-to-isoleucine substitution at position 122 (Val122Ile) (n = 91) and wild-type ATTR (n = 189). Results U.S. subjects are older (70 vs. 46 years), more often male (85.4% vs. 50.6%), and more often of African descent (25.4% vs. 0.5%) than the ROW. A significantly higher percentage of U.S. patients with ATTR amyloid seen at cardiology sites had wild-type disease than the ROW (50.5% vs. 26.2%). In the United States, 34 different mutations (n = 201) have been reported, with the most common being Val122Ile (n = 91; 45.3%) and Thr60Ala (n = 41; 20.4%). Overall, 91 (85%) of 107 patients with Val122Ile were from the United States, where Val122Ile subjects were younger and more often female and black than patients with wild-type disease, and had similar cardiac phenotype but a greater burden of neurologic symptoms (pain, numbness, tingling, and walking disability) and worse quality of life. Advancing age and lower mean arterial pressure, but not the presence of a transthyretin mutation, were independently associated with higher mortality from a multivariate analysis of survival. Conclusions In the THAOS registry, ATTR in the United States is overwhelmingly a disorder of older adult male subjects with a cardiac-predominant phenotype. Val122Ile is the most common transthyretin mutation, and neurologic phenotypic expression differs between wild-type disease and Val122Ile, but survival from enrollment in THAOS does not. (Transthyretin-Associated Amyloidoses Outcome Survey [THAOS]; NCT00628745

    Strategy for Treating Motor Neuron Diseases Using a Fusion Protein of Botulinum Toxin Binding Domain and Streptavidin for Viral Vector Access: Work in Progress

    Get PDF
    Although advances in understanding of the pathogenesis of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) have suggested attractive treatment strategies, delivery of agents to motor neurons embedded within the spinal cord is problematic. We have designed a strategy based on the specificity of botulinum toxin, to direct entry of viral vectors carrying candidate therapeutic genes into motor neurons. We have engineered and expressed fusion proteins consisting of the binding domain of botulinum toxin type A fused to streptavidin (SAv). This fusion protein will direct biotinylated viral vectors carrying therapeutic genes into motor nerve terminals where they can enter the acidified endosomal compartments, be released and undergo retrograde transport, to deliver the genes to motor neurons. Both ends of the fusion proteins are shown to be functionally intact. The binding domain end binds to mammalian nerve terminals at neuromuscular junctions, ganglioside GT1b (a target of botulinum toxin), and a variety of neuronal cells including primary chick embryo motor neurons, N2A neuroblastoma cells, NG108-15 cells, but not to NG CR72 cells, which lack complex gangliosides. The streptavidin end binds to biotin, and to a biotinylated Alexa 488 fluorescent tag. Further studies are in progress to evaluate the delivery of genes to motor neurons in vivo, by the use of biotinylated viral vectors

    A genome-wide association study of myasthenia gravis

    Get PDF
    IMPORTANCE: Myasthenia gravis is a chronic, autoimmune, neuromuscular disease characterized by fluctuating weakness of voluntary muscle groups. Although genetic factors are known to play a role in this neuroimmunological condition, the genetic etiology underlying myasthenia gravis is not well understood. OBJECTIVE: To identify genetic variants that alter susceptibility to myasthenia gravis, we performed a genome-wide association study. DESIGN, SETTING, AND PARTICIPANTS: DNA was obtained from 1032 white individuals from North America diagnosed as having acetylcholine receptor antibody–positive myasthenia gravis and 1998 race/ethnicity-matched control individuals from January 2010 to January 2011. These samples were genotyped on Illumina OmniExpress single-nucleotide polymorphism arrays. An independent cohort of 423 Italian cases and 467 Italian control individuals were used for replication. MAIN OUTCOMES AND MEASURES: We calculated P values for association between 8114394 genotyped and imputed variants across the genome and risk for developing myasthenia gravis using logistic regression modeling. A threshold P value of 5.0 × 10(−8) was set for genome-wide significance after Bonferroni correction for multiple testing. RESULTS: In the over all case-control cohort, we identified association signals at CTLA4 (rs231770; P = 3.98 × 10(−8); odds ratio, 1.37; 95% CI, 1.25–1.49), HLA-DQA1 (rs9271871; P = 1.08 × 10(−8); odds ratio, 2.31; 95% CI, 2.02 – 2.60), and TNFRSF11A (rs4263037; P = 1.60 × 10(−9); odds ratio, 1.41; 95% CI, 1.29–1.53). These findings replicated for CTLA4 and HLA-DQA1 in an independent cohort of Italian cases and control individuals. Further analysis revealed distinct, but overlapping, disease-associated loci for early- and late-onset forms of myasthenia gravis. In the late-onset cases, we identified 2 association peaks: one was located in TNFRSF11A (rs4263037; P = 1.32 × 10(−12); odds ratio, 1.56; 95% CI, 1.44–1.68) and the other was detected in the major histocompatibility complex on chromosome 6p21 (HLA-DQA1; rs9271871; P = 7.02 × 10(−18); odds ratio, 4.27; 95% CI, 3.92–4.62). Association within the major histocompatibility complex region was also observed in early-onset cases (HLA-DQA1; rs601006; P = 2.52 × 10(−11); odds ratio, 4.0; 95% CI, 3.57–4.43), although the set of single-nucleotide polymorphisms was different from that implicated among late-onset cases. CONCLUSIONS AND RELEVANCE: Our genetic data provide insights into aberrant cellular mechanisms responsible for this prototypical autoimmune disorder. They also suggest that clinical trials of immunomodulatory drugs related to CTLA4 and that are already Food and Drug Administration approved as therapies for other autoimmune diseases could be considered for patients with refractory disease

    Daniel B. Drachman to Viktor Hamburger, December 14, 1964

    No full text
    Typewritten letter, 1 pageAbout glass needles and a reprint request for an article by HamburgerCorrespondenc

    Daniel B. Drachman to Viktor Hamburger, November 30, 1964

    No full text
    Typewritten letter, 1 pageAbout methods for extirpation of spinal cordsCorrespondenc

    Autonomic “myasthenia”: the case for an autoimmune pathogenesis

    No full text

    Strategy for Treating Motor Neuron Diseases Using a Fusion Protein of Botulinum Toxin Binding Domain and Streptavidin for Viral Vector Access: Work in Progress

    No full text
    Although advances in understanding of the pathogenesis of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) have suggested attractive treatment strategies, delivery of agents to motor neurons embedded within the spinal cord is problematic. We have designed a strategy based on the specificity of botulinum toxin, to direct entry of viral vectors carrying candidate therapeutic genes into motor neurons. We have engineered and expressed fusion proteins consisting of the binding domain of botulinum toxin type A fused to streptavidin (SAv). This fusion protein will direct biotinylated viral vectors carrying therapeutic genes into motor nerve terminals where they can enter the acidified endosomal compartments, be released and undergo retrograde transport, to deliver the genes to motor neurons. Both ends of the fusion proteins are shown to be functionally intact. The binding domain end binds to mammalian nerve terminals at neuromuscular junctions, ganglioside GT1b (a target of botulinum toxin), and a variety of neuronal cells including primary chick embryo motor neurons, N2A neuroblastoma cells, NG108-15 cells, but not to NG CR72 cells, which lack complex gangliosides. The streptavidin end binds to biotin, and to a biotinylated Alexa 488 fluorescent tag. Further studies are in progress to evaluate the delivery of genes to motor neurons in vivo, by the use of biotinylated viral vectors

    Daniel B. Drachman to Viktor Hamburger, October 14, 1965

    No full text
    Typewritten letter, 1 pageQueries about methods in the laboratory for staining, etc.Correspondenc
    corecore