4 research outputs found

    Uncertainty and decision making: Volcanic crisis scenarios

    Get PDF
    AbstractThe impact of uncertainty on Disaster Risk Reduction decision-making has become a pressing issue for debate over recent years. How do key officials interpret and accommodate uncertainty in science advice, forecasts and warnings into their decision making? Volcanic eruptions present a particularly uncertain hazard environment, and to accommodate this scientists utilize probabilistic techniques to inform decision-making. However, the interpretation of probabilities is influenced by their framing. We investigate how verbal or numerical probabilities affect decisions to evacuate a hypothetical town, and reasons given for that decision, based upon a volcanic eruption forecast. We find fewer evacuations for verbal terms than for equivalent numerical terms, and that the former is viewed as more ambiguous. This difference is greater for scientists, which we suggest is due to their greater familiarity with numerical probabilities and a belief that they are more certain. We also find that many participants have a poor understanding of the relationship between probability and time window stated, resulting in an incorrect assessment of overall likelihood and more evacuations for the lower likelihood version of two scenarios. Further, we find that career sector (scientist or non-scientist) influences evacuation decisions, with scientists tending to reduce the uncertainty by focusing on the quality and volume of information provided, while non-scientists tended to either acknowledge or suppress the uncertainty, focusing on actions to take. These findings demonstrate the importance of identifying communication strategies that mitigate different perceptions of forecasts, to both enhance end-user decision making and to prevent premature, delayed, or unnecessary actions

    Communicating model uncertainty for natural hazards:A qualitative systematic thematic review

    Get PDF
    Natural hazard models are vital for all phases of risk assessment and disaster management. However, the high number of uncertainties inherent to these models is highly challenging for crisis communication. The non-communication of these is problematic as interdependencies between them, especially for multi-model approaches and cascading hazards, can result in much larger deep uncertainties. The recent upsurge in research into uncertainty communication makes it important to identify key lessons, areas for future development, and areas for future research. We present a systematic thematic literature review to identify methods for effective communication of model uncertainty. Themes identified include a) the need for clear uncertainty typologies, b) the need for effective engagement with users to identify which uncertainties to focus on, c) managing ensembles, confidence, bias, consensus and dissensus, d) methods for communicating specific uncertainties (e.g., maps, graphs, and time), and e) the lack of evaluation of many approaches currently in use. Finally, we identify lessons and areas for future investigation, and propose a framework to manage the communication of model related uncertainty with decision-makers, by integrating typology components that help identify and prioritise uncertainties. We conclude that scientists must first understand decision-maker needs, and then concentrate efforts on evaluating and communicating the decision-relevant uncertainties. Developing a shared uncertainty management scheme with users facilitates the management of different epistemological perspectives, accommodates the different values that underpin model assumptions and the judgements they prompt, and increases uncertainty tolerance. This is vital, as uncertainties will only increase as our model (and event) complexities increase.</p

    Behavioral Response in the Immediate Aftermath of Shaking: Earthquakes in Christchurch and Wellington, New Zealand, and Hitachi, Japan

    Get PDF
    This study examines people’s response actions in the first 30 min after shaking stopped following earthquakes in Christchurch andWellington, New Zealand, and Hitachi, Japan. Data collected from 257 respondents in Christchurch, 332 respondents in Hitachi, and 204 respondents inWellington revealed notable similarities in some response actions immediately after the shaking stopped. In all four events, people were most likely to contact family members and seek additional information about the situation. However, there were notable differences among events in the frequency of resuming previous activities. Actions taken in the first 30 mins were weakly related to: demographic variables, earthquake experience, contextual variables, and actions taken during the shaking, but were significantly related to perceived shaking intensity, risk perception and affective responses to the shaking, and damage/infrastructure disruption. These results have important implications for future research and practice because they identify promising avenues for emergency managers to communicate seismic risks and appropriate responses to risk area populations
    corecore