
Contents lists available at ScienceDirect

International Journal of Disaster Risk Reduction

journal homepage: www.elsevier.com/locate/ijdrr

Communicating model uncertainty for natural hazards: A qualitative
systematic thematic review
Emma E.H. Doylea,⁎, David M. Johnstona,b, Richard Smithc, Douglas Patond
a Joint Centre for Disaster Research, Massey University | Te Kunenga Ki Pūrehuroa, PO Box 756, Wellington 6140, New Zealand
bGNS Science | Te Pū Ao, PO Box 30 368, Lower Hutt 5010, New Zealand
c The Earthquake Commission | Kōmihana Rūwhenua, Level 11, Majestic Centre, 100 Willis Street, Wellington, New Zealand
d College of Health and Human Sciences, Charles Darwin University, Perth, Australia

A R T I C L E I N F O

Keywords:
Communication
Uncertainty
Models
Decision-making
Engagement
Typology

A B S T R A C T

Natural hazard models are vital for all phases of risk assessment and disaster management. However, the high
number of uncertainties inherent to these models is highly challenging for crisis communication. The non-
communication of these is problematic as interdependencies between them, especially for multi-model ap-
proaches and cascading hazards, can result in much larger deep uncertainties. The recent upsurge in research
into uncertainty communication makes it important to identify key lessons, areas for future development, and
areas for future research. We present a systematic thematic literature review to identify methods for effective
communication of model uncertainty. Themes identified include a) the need for clear uncertainty typologies, b)
the need for effective engagement with users to identify which uncertainties to focus on, c) managing ensembles,
confidence, bias, consensus and dissensus, d) methods for communicating specific uncertainties (e.g., maps,
graphs, and time), and e) the lack of evaluation of many approaches currently in use. Finally, we identify lessons
and areas for future investigation, and propose a framework to manage the communication of model related
uncertainty with decision-makers, by integrating typology components that help identify and prioritise un-
certainties. We conclude that scientists must first understand decision-maker needs, and then concentrate efforts
on evaluating and communicating the decision-relevant uncertainties. Developing a shared uncertainty man-
agement scheme with users facilitates the management of different epistemological perspectives, accommodates
the different values that underpin model assumptions and the judgements they prompt, and increases un-
certainty tolerance. This is vital, as uncertainties will only increase as our model (and event) complexities in-
crease.

1. Introduction

During recent natural hazard events such as the New Zealand
2010–2012 Canterbury earthquake and aftershock sequence, the com-
munication of uncertain science advice, forecast, and model un-
certainty, presented a challenging environment for planning and deci-
sion-making amongst key stakeholders, emergency managers and the
public [1–6]. Globally this has been recognised as a fundamental issue
[7]. Eiser and colleagues [7], summarizing the recommendations of the
Risk Interpretation and Action working group of the International Re-
search on Disaster Risk (IRDR) research programme, identified the need
to understand how people interpret risks and how they respond based
on these interpretations, particularly when making decisions under
uncertainty. In this review, we focus on one particularly challenging

issue: the effective communication to decision-makers of the un-
certainties specifically associated with technical, model, and risk ana-
lysis. We focus on the communication pathway between technical sci-
ence advisers (e.g. geologists, geophysicists, engineers, and social
scientists) and responding agencies including emergency management
(e.g., civil defence, fire service, police, army, policy makers, national
and local government) and lifeline and support organisations (e.g.,
lifelines companies, transport, water, insurance and re-insurance).
This communication pathway relates to operational planning, mitiga-
tion, response, and recovery needs. Thus, we refer to this group as
‘operational decision-makers’, while acknowledging that individual
differences in their respective objectives, priorities, and interpretive
and operational beliefs must be considered and accommodated in
communication [2,8,9]. We recognise the consequent impossibility of
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developing a one-size-fits-all approach to communicate to this range of
decision makers [10], especially as tasks and needs change over the
course of the response and recovery phases of large-scale disasters.
However, we argue that providing a robust contingent communication
framework that encapsulates key factors common across these users,
provides an appropriate starting point for the development of effective
strategies for science agencies and responding bodies (and the publics
they are responsible for), allowing them to play complementary roles in
communication processes.

Considering science advice in a natural hazards context, many levels
of uncertainty exist. These range from the natural stochastic un-
certainty (the variability of the system) to the epistemic uncertainty
(lack of knowledge) [11,12], to scientists being uncertain about their
knowledge and data, through to disagreement amongst scientists due to
a) “incomplete information”, b) “inadequate understanding”, and c)
“undifferentiated alternatives” [13], as well as issues arising due to
conflicting scientific advice from scientific advisory bodies and in-
dividuals e.g., [14,15]. Developing strategies to manage uncertainty in
crisis communication must go beyond the analysis of communication
processes per se, and encompass contextual issues such as under-
standing the balance of information required at different times, and the
psychosocial characteristics and processes that underpin communica-
tion during evolving events [1,3]. They must also encompass the
evolving nature of negotiations between science providers and in-
formation receivers as they manage expectations regarding timelines,
contents, and the concepts of probability and uncertainty [4] over time.
Jolly and Cronin [4] state that “even if geophysical monitoring infra-
structure and science capability is excellent and end-users are well
engaged [and possess appropriate levels of knowledge and under-
standing], expectations of precision and accuracy of scientific advice
are rarely met when attempting to understand uncertain natural sys-
tems” (p. 183). For example, engagement between scientific informa-
tion providers and end-users may need to accommodate issues as di-
verse as planning to protect an international-profile public walking
track in a volcanic park [6], through to communicating the distribution
of hazard (maps) relating to ash fall, debris flows, ash advisories for
aircraft, and warnings [5].

Another pressing issue when communicating hazard and impact
models, relates to the fact that decision-makers are often presented with

outputs (usually probability ranges) from proprietary systems and
analysis platforms. These can act as a ‘black box’ where information
regarding assumptions and analysis uncertainties is often not commu-
nicated to the decision-makers, limiting their decision-making cap-
ability. There is thus a need to identify effective ways to communicate
these uncertainties to maximise the usefulness of these important ana-
lysis techniques, as well as a consideration of the ethics of whether or
not to communicate those uncertainties and assumptions.

In the psychological literature, there is much discourse as to whe-
ther revealing the uncertainties associated with a risk assessment will
strengthen or decrease trust in a risk assessor and their message
[16,17]. Revelations of uncertainty has been identified as both enhan-
cing the credibility and trustworthiness of the provider, and decreasing
people’s trust and credibility, with the outcome that emerges depending
on several factors including the context, the relationship between pro-
vider and receiver, and past experiences [9,18]. Interpretations of, and
the actions that ensue from, uncertainty can be affected by an in-
dividual’s agenda and personal attitudes [16,18–23]. Thus, depending
upon their role the risk to be managed by an individual or organisation
can also encompass political, economic, and social implications of the
hazard and management decisions, alongside the impacts of the hazard
activity itself.

Give this complexity, it is not surprising that several international
bodies (e.g., the International Panel for Climate Change, the World
Meteorological Office, the National Research Council of the National
Academies, and the International Commission on Earthquake
Forecasting for Civil Protection), have generated guidelines to facilitate
meeting this communication challenge [24–27]. However, these
guidelines offer little detail or direction regarding the communication
of the range of model uncertainties. It is unclear how to communicate
this to decision-makers, whether it is appropriate to, and how that
changes with the context. This has resulted in anecdotal discussions of
model uncertainty being omitted from communications because of the
ambiguity of ‘how to communicate’ this very technical uncertainty, and
fear of overwhelming or confusing the receiver. Thus, in this review we
address this issue by identifying key lessons from purposely sampled
literature on the topic of communicating model uncertainty.

The issue of communicating uncertainty, communicating scientific
uncertainty, and communicating model uncertainty has grown rapidly

Fig. 1. An illustration of the increase in research into communicating science between 1980 and 2017, based on a SCOPUS search of all fields for the terms
‘communicat* and science’ (6,687,327 total documents), ‘communicat* and uncertainty’ (269,481), ‘communicat* and scientific and uncertainty’ (50,251), and
‘communicat* and model and uncertainty’ (191,093). All types of documents are included (journal articles, reviews, conference proceedings, books, book chapters,
editorials and notes), and asterisks represent search ‘wildcards’.
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in the last two decades, as illustrated in Fig. 1. Thus, it is an opportune
time to synthesise the key lessons from this literature to provide gui-
dance for future communication, engagement, and to provide a robust
platform for future research. To achieve this, we explore literature from
across diverse disciplines and thematic contexts, ranging from weather
and climate change to health, risk and policy, to help inform geohazard
and risk communication practice. The common denominator is that
these disciplines describe sources of hazardous events that are un-
familiar, present numerous and diverse sources of uncertainty that
evolve over time within a given event, and, given the range of con-
tingent influences on their sources, limit opportunities to predict what
future events will look like. These factors combine in ways that mean
that research into these phenomena is itself evolving. This broad search
approach goes some way to encapsulating the diverse disciplines and
stakeholders (from scientists and engineers, to policy makers, emer-
gency response personnel, army, lifeline utilities, health boards, na-
tional and local government, and civil defence), decision contexts and
decision-making demands, time-scales, and pressures that comprise
“natural hazard emergency management”. Decision-making and com-
munication within disasters can also occur at many levels including
agency-agency, team-team, within teams, individual-individual, and
even individual-agency. Communications within one phase can also
affect those in another (readiness communications can affect both the
format of response communications, and the relationships with, and
trust in, science advisors). Through this manuscript, our goal is thus to
identify lessons for communicating model uncertainty by holistically
drawing from lessons across a range of complex situations and dis-
ciplines. This, in turn, can provide a framework that can be tailored or
adapted for more specific decision-making situations within natural
hazard risk assessment and emergency management, and to provide a
springboard for future communication protocols and systematic re-
search into information and decision management in complex crisis
events.

In this review, we initially consider model uncertainty to include all
those uncertainties associated with modelling, such as: initial condition,
parameter, boundary condition, governing equation, system re-
presentation, data validation, assumptions, and outcome uncertainty;
and review that definition in Section 3.1. We next discuss our metho-
dology (Section 2), summarise the characteristics of the literature found
(Section 3), and present its key themes including the use of typologies,
engagement processes, the influence of epistemic divides, ethics, trust,
model confidence and consensus or dissensus, effective ensemble
communication and spatial visualisation, and the importance of eva-
luation (Section 4). Finally, we identify key lessons from these themes
for the identification, communication, and management of model re-
lated uncertainty, including areas that need future investigation
(Section 5), outline our limitations and areas for future research
(Section 6), and conclude with a new proposed framework for this
process (Section 7).

2. Method

A systematic literature review process clearly documents the search

terms, databases and dates of a search, as a well as the inclusion and
exclusion criteria and the process of selection of the final documents for
review [28–34]. The goal is to cover the range of perspectives on a
topic, reduce the amount of bias that may occur in a traditional nar-
rative review [35–37], and facilitate the replicability of the review
process. However, we note that it is impossible to remove researcher
bias when interpreting and synthesising findings. Unlike a traditional
systematic literature review we employ an approach similar to a meta-
synthesis [37–40] or qualitative thematic review [41], whereby the
systematically identified literature is analysed thematically to find
meaning and relationships. Thus, we do not present here an exhaustive
review that captures, describes, or critiques the complete body of re-
levant literature. Rather, this report identifies and reviews the domi-
nant themes or constructs that lie across a range of studies [41], em-
ploying a selective sampling procedure with inclusion, exclusion and
relevance criteria, driven by core questions. While this means that we
may miss texts relevant to identified themes, the review aims to identify
the key lessons and issues for each theme which can then provide a
robust framework for future systematic research.

We follow a 9 step process, outlined in Table 1. To identify the
suitable search terms for our database search, we conducted a two-stage
peer and expert consultation. Initially, informal conversations were
conducted with active response and advisory scientists and commu-
nicators at a natural hazard science provider agency in Aotearoa NZ, to
identify a series of core questions, which were refined based on the lead
author’s experience in both natural hazards communication and nu-
merical modelling. The final questions are listed in Table 2. From these
a series of search terms and synonyms were identified, as well as in-
clusion and exclusion terms. These were discussed with a further 5
expert colleagues to check for synonym appropriateness and duplicate
meanings. The chosen terms are shown in Tables 3 and 4. We note that
the questions and search terms relate primarily to communication in-
fluences, and not to decision influences. For example, the role of the
precautionary principle on communication is not considered as it re-
lates more to the decisions made for, or from, communicated products
[18], and not on communication efficacy. Thus, it is beyond the scope
of this review. However, future research could explore how the pre-
cautionary principle influences what uncertainties a scientist chooses to
communicate (see also Sections 4.2.1 and 6).

Originally, a wide range of article databases were considered.
However, the extremely high number of documents found required
both a refinement of the search terms and the databases considered.
Initially a Web of Knowledge search by topic between 1970 and 2015,
using the terms listed in Table 3 returned over 1.5 million documents.
The terms Present* and exposure* were removed due to their capturing
irrelevant documents, and Comm* was replaced with communic*. This
still produced an unmanageable 181,315 documents. A continued re-
finement of the communication subgroup of synonyms to Communic* OR
disclos* OR convey* OR acknowl* OR represent* OR summaris* OR sum-
mariz* OR disseminat*, and removing the term crisis, conflict, and dis-
aster, still returned 90,950 documents. Thus, the search was instead
conducted in SCOPUS, due to its ability to execute a more focused
search on titles, abstracts, and key words. An initial search utilising the

Table 1
The 9 step systematic literature review process followed.

1) Determine key issues and questions with practicing scientists and communicators;
2) Identify key search terms, synonyms, and inclusion and exclusion criteria from those questions;
3) Peer review expert colleague feedback on those search terms;
4) Initial search of the databases with those terms;
5) Refinement of search terms as appropriate depending on documents found;
6) Final dated search;
7) Reading of abstracts to identify final suitable documents via inclusion and exclusion criteria;
8) Full reading of chosen documents and thematic coding of text in NVIVO (QSR International [42]) identifying key issues and findings;
9) Final thematic analysis of documents.
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Table 3
Search terms and synonyms as identified from the core governing questions in Table 2, and via feedback from natural hazard and communication colleagues. The
asterisks in the above words act as ‘wildcards’ for the search engine. For example, “communicate*” instructs the search engine to look for any words that start with
“communicat*”, e.g., communicating, communicate, communicates, communications, communicated.

Key word group Potential synonyms

Uncertainty Uncertain*, ambigu*, conflict*, assumption*, limitation*, epistemic, aleator*, subjectiv*
Communication Comm*, display*, disclos*, convey*, acknowl*, represent*, summaris*, summariz*, disseminat*, impart*, inform*, transmit*, present*, *visualis*, *visualiz*,

share*, sharing, engage*, messag*, inquir*, discourse*, semiotic*, conversation, symbol*, language, media, discuss*
Model Model*, simulat*, calculat*, estimat*, comput*, forecast*, project*, predict*
Hazard Hazard*, disaster*, risk, crisis, climate*, medic*, weather, exposure, *fire*, earthquake*, seism*, cyclone*, typhoon*, hurricane*, inundat*, volcan*, tsunami*,

*storm*, precipitat*, rain, wind, *flood*, tornado*, climate, pandemic, sea level

Table 4
Inclusion and exclusion search terms, based upon the questions raised in Table 2. Asterisks are wildcards, as explained for Table 3. In the above GIS
refers to geographical information systems.

Key word group Include if abstract contains this synonym

Assessment of uncertainty Integrat*, quant*, qual*, inter-model*,weight*, assess*, identif*, probabil*
Evaluation Evaluat*, assess*, effective*, implement*
Type of model Hazard, physical, risk, probabilistic (BBN, BET?), multi-model*, ensemble*, hybrid*, OEF, predict*, forecast
Classification Classif*, taxonom*, typolog*
Time Time*, term, short, medium, long, onset
Audience Audience*, receiver*, stakeholder*, *user*, public*, decision*, scientist*
Spatial Spatial*, geospatial, map*, GIS, *visualis*, *visualiz*
Education Educat*, teach*, outreach, learn*, skill*
Model performance Low resolution, data gaps, performance, quality, model choice
Expert Expert*, elicit*, *consensus, judgment, judgement
Guidelines Guideline*, protocol*, guidance
Ethics Ethic*, Trust, transparen*, value*, responsib*, reveal*

Table 5
Final search term string used to identify documents for consideration in this review. A Scopus search on 10th August 2015 at 1:40 p.m. found 1131 of all documents
or which 807 were Articles or reviews. Asterisks are wildcards, as explained for Table 3.

• TITLE ( uncertain* OR assumption* OR limitation* )

• AND TITLE-ABS-KEY (communicat* OR convey* OR represent* OR *visualis* OR *visualiz* )

• AND TITLE-ABS-KEY (model* OR simulat* OR comput* OR forecast* OR predict*)

• AND TITLE-ABS-KEY ( hazard* OR fire* OR earthquake* OR aftershock* OR hurricane* OR volcan* OR tsunami* OR storm* OR flood* OR tornado* OR risk OR climate* OR
medic* OR weather OR science OR scientific )

• AND TITLE (communicat* OR convey* OR represent* OR *visualis* OR *visualiz*) OR (model* OR simulat* OR comput* OR forecast* OR predict* )

• AND LANGUAGE ( english )

• AND NOT TITLE-ABS-KEY ( food OR finance OR financial OR gun OR injury OR oil )

Table 2
the key driving questions used to help select search terms.

Types of models, model specific issues

• How does the type of model affect the communication of uncertainty? (hazard, physical, risk, probabilistic, multi, hybrid, ensemble, insurance, etc.)
Adopting a taxonomy or typology approach

• How is the uncertainty classified? (e.g. assessment and use of taxonomy or typology)
The role of time

• What approaches are used for different timescales? (short, medium, long, time dependent)
The role of audiences

• What approaches are used for different audiences? (e.g. public, stakeholders, decision-makers, engineers, other scientists)
Spatial issues

• What recommendations exist for communicating spatial, or geospatial, uncertainty?
Transfer and propagation of uncertainty, transparency and communication / Ensemble, multi- and multiple models, hybrid models

• What approaches exist for communication of uncertainty between models? (e.g. nested, cascading, dependent uncertainties, multi- and ensemble models)
Communicating model performance, trust in a model, choice to use a model, and model selection

• How do we effectively communicate model performance? (to encourage understanding of expected performance in low data situations, to prevent model ‘abandonment’ by decision-makers
based on one event)

Communicating expert knowledge

• What approaches are used to communicate the role of the expert in uncertainty assessments? (non-consensus, conflict, weighting, elicitation, subjectivity, expert judgment)
Making communication “effective”

• What empirical evidence exists for the effectiveness of these various approaches? How is effectiveness measured and maintained?
Ethics, transparency, trust and motivators

• Are there any studies that consider the role of ethics, responsibility, trust and transparency in their decision to communicate uncertainty, or not; and how they communicate it?
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terms above, returned 68,004 English language documents. Excluding
the terms food, finance, financial, gun, injury, and oil, reduced the
number to 25,306. The search was further refined so that the uncertainty
synonym groups and either themodel or communication synonym groups
must appear in the title of the article. This resulted in the final search
term string shown in Table 5, which on 10th August 2015 produced
1131 documents, of which 807 were Articles or Reviews.

Unfortunately, an initial automatic text based search on these
documents’ abstracts using the exclusion and inclusion search terms
shown in Table 4 excluded relevant documents and included those
deemed not useful. Thus, the 1131 abstracts were each individually
read by the lead author and given a relevance score of 1–5, using the
questions in Table 2 as inclusion criteria, and the degree to which it
specifically discussed communicating model uncertainty rather than the
technical computational details of uncertainty. A high number of the
documents considered the propagation of uncertainty between models
(a core question, Table 2). However, these focused on the technical and
procedural mathematical and computing process of that propagation,
with little focus on the communication. Thus, we excluded this item
from our search criteria, and suggest it should be the focus of future
research.

After reading and scoring the document abstracts, those classified as
Articles or Reviews by SCOPUS were chosen if their score was 3 or
more, and those classified as ‘Other’ documents (chapters, conference
papers, editorials, etc.) were chosen if their score was 4 or more. After
this process, the number of documents was reduced from 1131 to 85. To
ensure that relevant cognitive studies were not excluded, the search
process included the PsychInfo database. This search was restricted to
titles and abstracts, producing 3 more articles (see Table 6). In addition,
the lead author’s Mendeley [43] database of documents on commu-
nication, science advice, decision making, and natural hazards, built
over the previous 7 years was searched via a title search on the terms
“(uncertain* OR assumption* OR limitation*) AND ((communicat* OR
convey* OR represent* OR *visualis* OR *visualiz*) OR (model* OR
simulat* OR comput* OR forecast* or predict*))”, producing an addi-
tional 21 relevant documents. Finally, a further 18 were identified
during the conduct of the project and from expert colleague re-
commendations. A final 127 documents were thus identified for full text
review, as shown in Table 6. From these, 19 were rejected due to re-
levance issues or being too computationally focused. A further 3 were

added via a citation forward and backward search, leading to a final
111 for the thematic analysis stage.

Rather than use the specific questions identified in Table 2 to in-
terrogate the 111 documents, or identify pre-existing categories for
content or coding analysis of the chosen documents as of a classic
systematic literature review [31,44], we adopt an approach similar to
that of Johnson et al. [34]. During reading of each manuscript, sections
of text deemed relevant were assigned to codes. All identified codes
were then collated into key themes, and iteratively refined, and re-
viewed to represent the main findings and issues of the literature. This
is similar to a thematic qualitative analysis to identify patterns of
meaning [45], and can also be described as a meta-synthesis [37] or
qualitative systematic thematic review [41]. The goal is not to reduce
findings (as of a meta-analysis or standard systematic review) but rather
to analyse and synthesise the key elements of each document, ‘with the
aim of transforming individual findings into new conceptualizations
and interpretations’ (Polit and Beck, as cited in Cronin et al. [37], p.
1157) that can support developing future research questions. In total 24
themes and subthemes were identified from our documents, discussed
next.

3. Summary of paper characteristics

Fifty-eight % of the 111 eligible documents have publications dates
of 2011–2015 (see Table 7), demonstrating the increasing interest in
model uncertainty communication, as well as the increase in general
journal publications in recent years. Journal disciplines are dominated
by Risk Analysis and Assessment, Geosciences and Geography, En-
vironmental Management, Meteorology, Visualisation, Climate Change
and Health (Table 8), but also include a wider scope from psychology,
policy, communication, business, and environmental law. Based on the
citation counts reported by SCOPUS [46] at the time of our initial
search (10th August 2015), we can identify documents that have been
particularly influential in the literature (Table 9), including Shackley
and Wynne [47] (200 citations), Pang et al. [48] (159 citations), and
Leyk et al. [49] (114 citations).

Using Scopus’ classification, 74% are articles or articles in press,
14% conference papers and the rest are book chapters, guidance notes,
review papers, and editorials (Table 10). During the full thematic
reading of the documents, these were re-categorised by actual docu-
ment content demonstrating that the majority are review or opinion
papers (67%) or contained a large review section within. These were
followed by empirical and case studies (48%), methodologies and fra-
meworks (26%), evaluations (11%), and guidelines or critiques of
guidelines (9%). Note these are not mutually exclusive categories
(Table 10). The disciplinary focus was dominated by climate change
(23%), flood forecasting (13%), weather forecasting (9%), clinical
practice (7%), and natural hazards and emergency management (6%).
Other topics ranged from ecology to journalism and law (Table 11).
Before discussing the themes of these documents, we first clarify our
definition of model uncertainty used from hereon.

Table 6
The final number of considered documents, as found through each step of our search.

Source Initial search criteria
results

Results after refined
search terms

Abstracts reviewed(after removing
duplicates)

Chosen for full read Final chosen

Web of Knowledge > 1.5 Million 90,950 – –
Scopus 68,004 1131 1131 85 (Score: Article > =3; Others

> =4)
79

PsychInfo 18 – 6 3 3
Mendeley database 37 – 23 14+7 13
Expert recommendations – – 54 18 13
Forward backward search 3
Total documents included 127 111

Table 7
The number of documents found per year.

Year Number of documents Year Number of documents

2015 15 2007 11
2014 11 2006 1
2013 10 2005 5
2012 9 2003 2
2011 13 2002 3
2010 8 2000 1
2009 9 1997 2
2008 10 1996 1
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3.1. A note on the definition of model and structural uncertainty

Several reviewed documents present specific typologies and classifica-
tions of uncertainty, discussed further in Section 4.1. In these, ‘model un-
certainty’ describes the broad range of uncertainties associated with the full
modelling process, including: model structure uncertainty, model technical
uncertainty, initial condition uncertainty, external driving force uncertainty,
forcing data, parameter value uncertainty, scenario uncertainty, data un-
certainty (e.g. for calibration, validation, or boundary conditions), and
model outcome uncertainty [11,24,58,63,68,72,74,76–85]. Defining two of
these sub-categories in particular, the model structure uncertainty refers
specifically to the uncertainty in how the model describes the system, and
the choice of governing equations and interrelationships [see 83]. The ca-
tegory model technical uncertainty then refers specifically to the uncertainty
due to the decisions made in the development of the software, computer
code, or hardware. Thus some of our core questions (Table 2) relate to the
specific model structure uncertainty and the uncertainty in the model

description itself, while others relate to the broader range of uncertainties
described above and associated with the modelling process.

Thus we update our initial definition to use the term ‘model related
uncertainty’ (or ‘model uncertainty’) to encompass the full range and
categories of uncertainties associated with the entire modelling process,
from defining the key problems, the structural equations and governing
relationships, through to the computational and validation issues, the
verification and calibration via source data, and the uncertainties re-
lated to initial conditions, parameters, variables, as well as the final
outcome uncertainty. It is this broader communication of model un-
certainty that we aim to improve via this review. We then use the term
‘structural uncertainty’ to specifically refer to the sub-set of that model
uncertainty that is associated with the representation of a physical or
social system by a model, the uncertainty in the descriptions, governing
equations and interrelationships. We note that to date this very specific
uncertainty has often been under-reported (see [63,74]) and can in-
clude simplifications and scientific judgements [63], which can have
particular importance when considering multi-model and ensemble
model assessments [58]. We note that uncertainty related to the ‘un-
modelled’ components, which are those aspects not (yet) incorporated
into models (due to lack of information, understanding, modelling
capability, model resources, etc.), could be included either specifically
in ‘structural uncertainty’ if it pertains to the core model representation,
or more generally in ‘model related uncertainty’, particularly if it per-
tains to input parameters, variables, and initial conditions.

4. Key themes in the literature

Key thematic areas identified in the 111 documents are summarised
in Table 12, and include the need for structured typologies, taxonomies
or classification schemes to effectively identify and communicate the
full range of uncertainties (discussed in Section 4.1), and their role in

Table 8
The number of documents for each classified journal discipline.

Journal discipline Number of documents Journal discipline Number of documents

Risk Analysis and Assessment 10 Mechanics and Engineering 4
Geosciences, Geography 11 Psychology 4
Environmental Management 9 Water Science 3
Meteorology 9 Policy 3
Visualisation 9 Computing 2
Climate Change 9 Sustainable Development 1
Health 7 Oceanography 1
General Science 6 Mathematics and Physics 1
Ecology 5 Communication 1
Hydrology 5 Environmental Law 1
Cartography and GIS 4 Business 1
Ethics and Philosophy 4 Sociology 1

Table 9
The citation counts from Scopus at the time of our search.

Number of Citations Number of
documents

Documents

Unassigned 49
1–5 21
6–10 12
11–15 4 [50–53]
16–20 6 [54–59]
21–30 7 [60–66]
31–40 3 [67–69]
41–50 3 [70–72]
51–100 3 Spiegelhalter et al. [73];

Oppenheimer et al. [74];
Schmidt-Thome and Kaulbarsz [75]

114 1 Leyk et al. [49]
159 1 Pang et al. [48]
200 1 Shackley and Wynne [47]

Table 10
The type of documents found.

SCOPUS Classified
Publication type

Number of
documents

Identified Document
Content

Number of
documents

Article 79 Review 56
Conference Paper 15 Empirical study 33
Book Chapter 6 Case study, examples 20
Guidance Note 4 Opinion 18
Review 3 Methodology 16
Article in Press 3 Framework 13
Editorial 1 Evaluation 12
Workshop Proceedings 0 Guidelines and critiques 10

Table 11
The main hazard and disciplinary focus or thematic context of the documents.

Main Hazard / Discipline focus Number of
documents

climate change communication, ocean acidification 25
flood, flood forecasting, flood risk management,

hydrological, hydrometeorological
14

wind, weather, rain, temperature forecasts 10
clinical practice, healthcare, pharmacology 8
natural hazards, emergency management 7
engineering, engineering modelling 3
ecology 3
water management 2
Risk assessment, impact assessment, governance 2
journalism 1
law 1
experimental economics 1
Other / general science communication 34
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Geographical Information Systems (GIS) and spatial visualisation of
uncertainty in particular (Section 4.1.1). The need for effective en-
gagement processes to assess both the decision needs for communica-
tion, and what uncertainties to prioritise, analyse, and communicate
was raised repeatedly (Section 4.2), with a particular acknowledgement
of the challenge of such a process when epistemic divides exist (Section
4.2.1), the role of an individual’s worldview (Section 4.2.2), and the
ethical and trust issues relating to communicating these uncertainties
(Section 4.2.3 and Section 4.2.4). The third broad category relates to
the communication of complex uncertainties, including model con-
fidence and bias (Section 4.3.1), consensus (Section 4.3.2), multi-model
and ensemble related uncertainties (Section 4.3.3), and effective vi-
sualisation of spatial uncertainty (Section 4.3.4). Additional themes
relate to specific methods, techniques and challenges of communicating
these technical and model related uncertainties, including effective
visualisation of graphs, tables and images, communicating prob-
abilities, and communicating timeframes (Appendix A). Finally, the
lack of evaluation of what are considered best practice techniques, and
suggested criteria for evaluation emerged as a theme (Section 4.4).
Thirteen documents (12%, Table 12), discussed the more general issues
of communicating uncertainty, alongside their more detailed discus-
sions of model uncertainty, discussed further in Section 5. Finally, 35

documents discuss specific recommendations, operational guidelines
for communicating modelling uncertainties, and critiques of those ap-
proaches (Table 12, discussed in Section 5).

4.1. Typologies, taxonomies, categories, and classification schemes

A key theme identified was the need for specific categories, typol-
ogies or taxonomies for uncertainty, to help identify, assess and com-
municate them, with 35 (32%) of the documents reviewed explicitly
advocating for this (see Tables 12 and 13). A number of documents
suggested such typology schemes can facilitate communication by
bridging epistemological cultural differences between disciplines
[56,78,86,97,100] discussed further in Section 4.2.1. However, creating
a unified classification scheme can, because of these epistemological
differences, be challenging [77]. Thus, there is a need to identify or
develop a suitable scheme for the communication issue in hand, which
adopts an engagement or elicitation approach [e.g., 99] to develop a
mutual understanding between scientists and decision-makers of the
relevant uncertainties that need to be assessed and communicated to
support their decision needs [71], discussed further in Section 4.2.

In advocating for the use of formalised typologies for uncertainty,
Walker et al. [83] highlight that "understanding the various dimensions

Table 12
The themes and sub-themes found through our meta-synthesis review of the 111 chosen documents. Sub-themes were identified by the dominant topics coded
through a reading of each manuscript (as described in Section 2), and were then grouped into the main themes indicated in bold. Sub-themes were not mutually
exclusive, thus there are some documents that were coded for multiple sub-themes. However, to remove excessive duplication across related sub-themes, coded
manuscripts were assigned to a sub-theme only when they contained a considerable discussion or exploration of the topic, and not for brief overviews.

Theme # Document Reference

Typologies, categories, and classification schemes for communicating uncertainty
General typologies, taxonomies, and categorisations 35 [25,55,56,58,63,64,67,68,71,72,77–81,83–102]
Typologies specifically for uncertainty in spatial visualisation 13 [10,48,49,70,72,77,103–109]
Structural uncertainty definitions 17 [11,24,58,63,68,72,74,76–85]
Engagement processes, and the complexities that influence effective engagement
Engagement and participatory approaches 10 [11,67,69,75,89,93,99,110–112]
Trust 5 [23,60,113–115]
Epistemic differences and divides, philosophy of science, post-normal science 12 [47,50,54,56,67,86,97,98,100,115–117]
Psychology, mental models, individual beliefs 7 [11,53,93,102,115,118,119]
Ethics 4 [82,85,120,121]
Methods and techniques for communicating specific uncertainties (e.g. graphs, probabilities), and complex uncertainties (e.g. confidence and consensus)
Visualisation: maps, spatial, GIS, specific techniques 29 [10,25,48,62,72,77,91,103–107,109,111,116,118,122–133]
Novel techniques: sonification 3 [48,77,133]
Evaluation 8 [62,105,106,116,118,123,128,134]
Particular Examples of Empirical investigations 5 [125,127,129,131,134]
Visualisation: graphs, tables, images 9 [25,57,62,66,73,118,119,135,136]
Probabilistic statements and terms 18 [11,24,25,52,53,60,61,73,81,85,101,129,136–141]
Timeframes 12 [87,89,92,106,113,131,138–140,142–144]
Ensembles 15 [50,51,58,59,65,66,68,92,108,109,121,142,145–147]
Model confidence, confidence in evidence, bias 13 [24,25,50,56,79,85,88,94,101,121,140,141,148]
Consensus and dissensus 10 [64,74,79,81,82,98,114,140,141,148]
Articles that list a summary of recommendations and guidelines for communicating uncertainties
Specific recommendations/guidelines 20 [11,53,56,64,72,81,84,85,88,93,94,101,127,131,132,137,139,140,144,149]
Specific operational guidelines 4 [24,25,76,150]
Critique of IPCC guidelines 11 [11,53,64,79,81,101,132,139–141,148]
General uncertainty communication 13 [23,59,68,98,101,113,114,135,143,144,149,151,152]
Other themes
Propagating and cascading uncertainties 7 [65,70,78,88,96,144,147]
Decision making 26 [25,50,60,71,79,83,93,97,100,106,108,110,112,116,117,128,129,135–137,140,142,146,148,152]

Table 13
Papers that consider typologies and uncertainty classifications. Note for the first category, Janssen et al. [67], van der Sluijs et al. [86], and Ekström et al.
[87] all build on the matrix of Walker et al. [83]; Kloprogge et al. [88] utilises a ‘pedigree matrix’, building on Funtowicz and Ravetz [153]; and Höllermann
and Evers [89] utilises the uncertainty risk triangle of Stirling [98].

Approaches to classify uncertainty Document references

Documents, reviews, or proposes Typologies, Taxonomies, systematic classification, or pedigree matrices [55,67,78,83,86–89,98]
More generalised definitions and classifications of sources of uncertainty [25,56,80,84,85,95,96]
Case studies considering classifications of uncertainty and assessing end user perspectives on uncertainty [58,63,68,90,93,94,102]
Typologies developed and proposed specifically for spatial visualisation [10,48,70,72,77,103–109]
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of uncertainty helps in identifying, articulating, and prioritising critical
uncertainties, which is a crucial step to more adequate acknowl-
edgment and treatment of uncertainty in decision support endeavours”
(p. 5). As stated by Stirling [98], it is vital to identify all types of un-
certainty in technical science advice such that science advice can be-
come more rigorous, robust and ‘democratically accountable' (p. 1029).
Both Aven and Renn [101] and Adler and Hirsch Hadorn [79] also
support distinctions of uncertainty associated with modelling to ‘avoid
misinterpretations of uncertainty characterizations’ [79; p. 668] parti-
cularly in the case of structural model uncertainty, as well as to improve
communications that accurately reflect ‘extreme outcomes and a poor
knowledge base’ as appropriate [101; p.10].

Methods for identifying and classifying uncertainties become par-
ticularly important as many forecast, model, risk, and technical scien-
tific communications tend to focus on the statistical output uncertainty,
whether the model assumptions and relationships are reasonable, and
the calibration data representative. This is, however, often incomplete.
Deeper uncertainties can form, particular due to interdependencies,
resulting in much larger (practical) uncertainties than the statistical
uncertainty usually communicated. This circumstance requires prior-
itisation of their analysis and communication over that statistical un-
certainty [83].

Several schemes analysed served to define and classify the un-
certainties, listed in Table 13. A scheme often referred to is that of
Walker et al. [83] who developed a typology for uncertainty manage-
ment in model-based decision support, based upon a synthesis of ex-
isting taxonomies, frameworks and typologies of uncertainties from
different decision support fields. This considers three overarching ca-
tegories (p. 8): 1) the location of the uncertainty which considers: a) the
context of the model, b) the model uncertainty, including both the
model structure uncertainty (the uncertainty about the form of the
model itself) and the model technical uncertainty (the uncertainty
about the computer implementation), c) inputs such as the reference
system and external forces and other input variables, d) parameter
uncertainty, and e) model outcome uncertainty, which is the “accu-
mulated uncertainty associated with the model outcomes of interest to
the decision-maker” ([83], p. 9). Next, 2) The level of the uncertainty
considers where the uncertainty sits along a scale from determinism,
statistical uncertainty, scenario uncertainty, recognised ignorance, in-
determinacy, through to total ignorance, where “we do not even know
that we do not know” (p. 13). Finally, 3) the nature of the uncertainty
considers whether the uncertainty is epistemic and due to knowledge
imperfection, or whether it is a variability uncertainty which is of
particular importance in human and natural systems that considers
social, economic, and technological developments (p. 14). This varia-
bility (or ontological uncertainty) can thus be further divided into be-
havioural variability (micro), social variability (micro and macro) and
natural randomness. Having defined these uncertainties, Walker et al.
[83] then develop an uncertainty matrix that illustrates the location,
level, and nature of the uncertainty associated with models and

provides a systematic and graphic overview of the range of essential
uncertainties (see Tables 14 and 15). Such a matrix only applies at one
time during the decision support process, such as during a) the pre-
paratory pre-analysis phase when the problem is being framed and the
model built, b) the analysis phase acting as a checklist during model
use, assessment of the results, reporting and communication, and c)
during peer review or self-evaluation for quality control.

Walker et al.’s [83] uncertainty matrix represents the most utilised
typology relating to the modelling process found in the selected lit-
erature. It was used and developed by van der Sluijs et al. [86], Ekström
et al. [87], Kwakkel et al. [55], and Janssen et al. [67] (see Table 13).
Janssen et al.’s [67] addition included scores distinguishing the “qua-
lification of knowledge base (what are weak and strong parts in the as-
sessment) and [the] value-ladenness of choices (what biases may shape
the assessment)” (see van der Sluijs et al., [86], p. 266), for each lo-
cation of uncertainty (see summary in Table 15), and employ this ma-
trix within a guidance decision system for managing and commu-
nicating uncertainty for the Netherlands Environmental Assessment
Agency (then RIVM/MNP). This is used within a checklist approach for
problem framing and project design (see also [86]). Ekström et al. [87]
adds the categories ‘aim and genesis’ and ‘recognised weaknesses’ to
that of Walker et al. [83]. These categories capture the "specific aim(s)
of the assessment, the circumstances under which the study was con-
ducted, and any important caveats" [87; p.118]. They also include the
stage of the assessment, including aspects such as ‘main policy focus’,
‘spatial scale’, and ‘analytical approach’. Kwakkel et al. [55] updated
the matrix of Walker et al. [83] based on its applied use and critiques,
to consider four levels of uncertainty: 1) shallow uncertainty, 2)
medium uncertainty; 3) deep uncertainty; and 4) recognised un-
certainty; in an attempt to capture the differences in the types of scales
used when assigning likelihood to things or events. They also include
ambiguity as an additional category of the nature dimension, to account
for the differences in frames between different stakeholders due to a
plurality of perspectives and values. The updated system is summarised
in Table 15.

Kloprogge et al. [88] adopt a different approach by developing a
pedigree matrix for the assessment of the value-ladenness of assump-
tions made throughout a modelling process. Types of value-ladenness
considered include practical aspects, epistemic, disciplinary-bound
epistemic, and socio-political issues. The method uses a pedigree matrix
[building on 153], which ‘addresses the strengths and weaknesses in the
knowledge base behind a number by critically reviewing the production
process of the number and the scientific status and underpinning of the
number’ [88; p. 293]. Kloprogge’s matrix has 7 criteria: 1) influence of
situational awareness, 2) (im)plausibility, 3) choice space, 4) (dis)
agreement among peers, 5) (dis)agreement among stakeholders, 6)
sensitivity to view and interests of the analyst, and 7) influence on
results; each of which are ranked from ‘weak’ to ‘strong’ via qualitative
expert judgment.

The goal is to facilitate the identification, analysis, prioritisation

Table 14
An example of an uncertainty typology matrix, as of Walker et al. [83], outlining the various dimensions of uncertainty. As stated by Walker “in filling in the matrix,
one should be aware that the level and nature of the uncertainty that occurs at any location can manifest itself in various forms simultaneously” (p.14).

Location Level Nature

Statistical
Uncertainty

Scenario
uncertainty

Recognised
ignorance

Epistemic
Uncertainty

Variability
uncertainty

Context Natural, technological, economic, social and
political representation

Model Model structure
Technical Model

Inputs Driving forces
System data

Parameter
Model outcomes
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and communication of the value-ladennesss (bias) of assumptions in the
full calculation chain that leads to a model assessment output. Unlike
some of the other typologies discussed, the influence of each assump-
tion on the final result is included in the assessment, allowing for overly
influential biased assumptions to be addressed. Utilisation of such a tool
addresses the issue that it is not possible to adequately communicate
modelling related uncertainty if there is a lack of clarity as to what they
are. Kloprogge et al. [88] do however emphasize that such an approach
isn’t appropriate for every day-to-day assessment due to the time-con-
suming nature of the process. They suggest it should be followed in
selective situations where ‘the policy relevance of the issue of as-
sumptions is highest’ (p. 300). Kloprogge et al. [88] provide criteria to
help identify those cases.

Building across existing approaches, Höllermann and Evers [89]
developed an alternative approach that considers a 2×2 matrix (see
summary in Table 15). This approach considers on one axis the level
and location of the uncertainty, and on the other the causes of the
uncertainty including a) the fundamental uncertainties such as aleatoric
or epistemic uncertainties, and b) the procedural uncertainties due to
the planning process. They state that such a matrix can be used in a risk
governance framework to assist communication and decisions at each
step, including 1) pre-assessment and framing, 2) appraisal and risk
estimation, 3) characterisation and evaluation, and 4) management;
acting as a tool to assist knowledge transfer and communication. Their
approach attempts to capture in one scheme both the various ap-
proaches used to reduce scientific uncertainty, and the approaches used
in risk governance uncertainty acceptance.

Considering instead an approach that focuses more on the defini-
tions of uncertainty to assist information visualisation, Skeels et al. [78]
develop an alternative classification scheme that considers three levels:
1) the measurement precision; 2) the completeness – which includes
missing values, sampling aggregation, and level of uncertainty aware-
ness; and 3) the inferences – which includes the predictions, modelling,
and describing of past events. Across all levels two additional categories
are added; defining disagreement and credibility uncertainty. The level
of uncertainty awareness considers a) known knowns; b) unknown
knowns; and c) unidentified unknowns, which is the worst case of un-
known. This type of classification scheme aims to create a tool to fa-
cilitate discussion and understanding of uncertainty with diverse users.
They also identify issues with visualising uncertainty, depending on
where the uncertainty sits within the classification scheme, discussed
further in Section 4.1.1.

Other schemes that adopt more generalised definitions and classi-
fications of uncertainty include those of Murphy et al. [56], Briggs et al.
[84], Han [85] and Bjerga [80]. Several of the studies reviewed used
typology and classification schemes in specific case studies and ex-
amples (see Table 13). These may provide useful exemplars for people
developing classification schemes. These include approaches from
health care, pharmacology and clinical settings [63,84,93,102], climate
change [58,90,94], ecology [72,91], and flood forecasting [92]. It is
beyond the scope of this review to describe each of those schemes in
detail here, and we direct users to the documents for details. In addition
to the texts identified in the systematic search, we direct readers to
Thompson and Warmink’s [154] framework for identifying and classi-
fying uncertainties that adapts Walker et al., [83] typology such that
the ‘nature’ dimension includes linguistic, knowledge, variability, and
decision; the ‘location’ dimension includes context, input, model struc-
ture, model technical, parameters; and the ‘level’ dimension includes
statistical, scenario, and recognised ignorance of uncertainty. Of par-
ticular use are the decision trees they provide that can facilitate iden-
tifying where an uncertainty sits within this uncertainty matrix.

Several documents, including Farhangmehr and Tumer’s [95]
complex design systems work, Blind and Refsgaard's [71] work on
water resources management, Roy and Oberkampf's [96] discussion of
flow simulations in engineering, Gill et al.'s [25] guidelines for me-
teorological forecasting and Parker’s [68] global weather and climate

models, do not adopt formalised typologies for analysis or commu-
nication. Rather they identify general categories and sources of un-
certainties. While their definitions assist understanding of the range of
uncertainties that may need to be accommodated, such approaches,
without a fully structured typology, run the risk of the accidental
omission or oversight of a critical uncertainty. In addition, the approach
used in the field of applied systems analysis by Grubler et al. [97] in-
cludes the categories linguistic uncertainty to represent vagueness in
problem formulation, and contingency/agency uncertainty which arises
from human intentionality, whereby the very policy decision made in a
particular study contributes to uncertainty itself. An alternative ap-
proach by Stirling [98] uses a broader classification matrix, which acts
as a tool to assist in model assessment that encourages experts to con-
sider ambiguity, uncertainty, and ignorance, as well as risk when
analysing information that supports a decision, deciding how to com-
municate, and when making a decision. How definitions of uncertainty
apply in socio-environmental systems including the uncertainty due to
human choice and ontological uncertainty in terms of how the system
relates to the nature of the world are also discussed by Cornell and
Jackson [155], as well as by Patt and Dessai [11] who raise the issue of
human reflexive uncertainty (which arises as simulated predictions
influence human actions, which in turn impact the systems being pre-
dicted). Finally, of particular interest is the point raised by both Aven
and Renn [101] and Han [85] that probability is often erroneously used
to describe all uncertainty, when usually it does not include other
epistemological, structural uncertainties and value judgements, nor
alternative definitions of risk and different understandings of prob-
ability.

4.1.1. Typologies for uncertainty in spatial visualisation
When it comes to communicating uncertainty associated with maps,

GIS, or other spatial visualisation tools, 13 documents (12%) further the
schemes discussed above by considering the uncertainties associated with
data classification, projection, and visualisation (Tables 12 and 13).
Thomson et al. [70] propose a typology of geospatially referenced in-
formation based upon the spatial data transfer standards of the USGS for
data quality [156], which incorporates accuracy/error, precision, com-
pleteness, consistency, lineage, currency/timing, credibility, subjectivity,
and interrelatedness. They also include classification schemes identified in
the fields of scientific visualisation and information visualisation [10,48]
which matches the data type (scalar, multivariate, vector, and tensor) to the
visualisation extent (discrete, continuous). In addition, they include im-
perfect knowledge, which incorporates incomplete information, incon-
sistency, complicated information, uncertainty, and imperfection due to
corrupt data or information, as well as imperfect presentation.

With regard to digital elevation models (DEM) and visualisations of
their uncertainty, Brus and Svobodova [106] consider spatial data un-
certainties to include positional uncertainty, attribute uncertainty, time
uncertainty, incompleteness, and logical inconsistence. They also include
three types of errors in DEM creation, including blunders, systematic errors,
and random errors. Similar schemes that include measurement precision
and data errors in the sources of visualisation uncertainties were found in a
number of documents [72,77,103–105,107–109]. Elith et al. [72] uses the
term linguistic uncertainty differently to that described in Section 4.1 above,
and instead use it to describe the literal uncertainty that arises due to the
duplication and uncertainty of word meanings when digitizing qualitative
data and maps. Leyk et al. [49] additionally consider three domains for
potential sources of uncertainty in GIS, including production-oriented un-
certainty, transformation-oriented, and application-oriented. Specific tech-
niques for visualising uncertainty are recommended by some of the above
documents [10,48,72,104–107], discussed further in Section 4.3.4.

4.1.2. The purpose and use of typologies
It is clear that there is a wide range of typologies, taxonomies, and

classification and definition schemes for uncertainties in decision ana-
lysis, model decision support, simulations, forecasts, model
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development, and communication. While it would be impossible to
develop one uniform scheme, the development and use of an appro-
priate scheme can help to facilitate communication by bridging epis-
temological cultural differences between disciplines [56,77,86,97,100;
see also Section 4.2.1]. This approach can also prevent erroneous or
accidental omission of uncertainties in an uncertainty analysis [78], or
the incorrect prioritisation of communication of one uncertainty over
another [83]. This is particularly important in an environment where
experts might be pressured to simplify their advice by policy-makers
[98]. Stirling [98] advocates that we should move away from a narrow
focus on risk to broader and deeper understandings of incomplete
knowledge. They present an ‘uncertainty matrix’ that classifies and
identifies uncertainty assessments, and state that this matrix can be
used as a tool to facilitate better discussion with policy-makers (one of
our ‘operational decision-makers’, Section 1), by catalysing ‘nuanced
deliberations’ (p. 1030) and encouraging experts to look beyond risk to
consider ‘ambiguity, uncertainty, and ignorance using quantitative and
qualitative methods’. Considering climate change forecasts, Budescu
et al. [81] emphasize the importance of “specifying the various sources
of uncertainty underlying key events and the importance of outlining
their nature and magnitude to the degree that is possible” (p. 306), in
order to set realistic expectations about whether these uncertainties can
be reduced in the future or not.

The use of classification schemes can also help risk assessors identify
ways in which the “level of uncertainty can be changed so that it becomes
more informative (i.e., shifts from qualitative to scenario or statistical)...
[or] …so that the data with the largest uncertainty is introduced towards
the end of the analyses" [87]. The reviewed literature highlights that by
developing and utilising these classification and typology schemes, scientists
and modellers can work with stakeholders and decision-makers to help
communicate and visualise the uncertainties in a modelling or forecast
system, and prioritise which uncertainties should be the focus for reduction,
analysis, and communication. However, in order for this to be successfully
accomplished, scientists, modellers and risk analysts must develop an ef-
fective engagement or elicitation process with stakeholders and decision-
makers to identify those relevant uncertainties and decision needs
[71,89,98,99]. They could utilise an existing typology, or develop a ty-
pology as part of the process such that the contingency and agency un-
certainties [97] and other human activity and decision related errors and
uncertainties [56,83] can be incorporated. This relates to Beven et al. [157],
who reviews various approaches to elicit expert opinions about sources of
epistemic uncertainty, identifying this as a critical step in their framework
for good practice in modelling. They recommend these uncertainties are
then used to inform a sensitivity analysis of risk management decisions to
explore whether they are robust to the chosen assumptions. As highlighted
by Höllermann and Evers [89] it is through classifications and typologies of
uncertainties in models, risk analysis, and forecasts, that we can help fa-
cilitate knowledge transfer into the risk governance processes. We next
discuss the range of potential engagement approaches found through our
review, and the role and impact of different epistemological, disciplinary
cultures, and mental models in this process.

4.2. Engagement processes to assess needs, and the complexities that
influence engagement

Ten (9%) of the documents found in our meta-synthesis focussed on
engagement and participatory type approaches to communicating un-
certainty between scientists and decision-makers (Table 12). Patt [110]
points out that a particularly challenging issue is the wide range of
uncertainty decision making models that exist to describe the stake-
holders’ thought processes, and addressing communications to meet
those processes. These models can range from economic models (where
framing of the communication is key), through to psychological models
(where satisficing, heuristics, and bias play an important role), or po-
litical models (which depend on distinct worldviews, discourse, and
where people interpret information in a way consistent with their own

view). Rather than focusing on which model best describes the stake-
holder’s decision making process, and formatting communications to
meet that process accordingly, Patt [110] suggest instead that the so-
lution lies in adopting a participatory approach which can help make
scientific information more credible and legitimate [see also 11]. This is
rooted in a process of dialogue with attention to “two-way commu-
nication and the relationship between scientists and policy-makers”
([110, p. 231]).

This approach is particularly advantageous when considering the
many dimensions of uncertainty, which can be difficult to communicate
quickly in a traditional one-way communication process. An effective
two-way dialogue allows scientists to communicate just enough in-
formation for decision-makers to judge whether they need more, rather
than overwhelming them with all the information. An interactive dia-
logue allows the most important details to be made salient. In addition,
a dialogue can help combat any loss of credibility that can arise in si-
tuations of highly uncertainty information. Patt states that the most
important consideration when communicating to policy-makers (one of
our ‘operational decision-makers’, Section 1) is to give ‘decision-makers
enough information to know when they need to invest the time and
resources to take part in a participatory process, and when they do not’
[110; p. 246]. Considering risk visualisations, Loucks [135] also high-
light that what to communicate (in terms of level of detail and quan-
tification) depends on audience needs, where communicators must
listen and learn from their stakeholders in order to craft effective risk
messages and communications that better reflect “the perspectives,
technical knowledge, and concerns of the audience” (p. 50) [see also
10].

Faulkner [69], Janssen [67], and Beven [111] all promote partici-
patory approaches that enable the users and decision-makers to identify
alongside scientists their specific uncertainty information needs, to fa-
cilitate more effective management and communication of uncertainty.
Faulkner et al. [69] consider the development of an uncertainty clas-
sification scheme in flood risk management, and indicate that a key
problem with communication to date has been a lack of ownership of
uncertainty, where communication to stakeholders has been one way
and has not included purposive translations of the information (parti-
cularly between different domains of scientific complexity and opera-
tional needs), or shared ownership of the uncertainty. Their solution is
to adopt a ‘translational discourse’, which is defined as “a conversation
that maximizes the facilitation of the decision-making process” (p.
698), leading to a joint decision about which uncertainties should be
modelled. For this to work, they state that a code of practice and pro-
fessional guidelines are needed for the uncertainty estimation and
translation discourse, which considers funding, leadership, and ethical
standards. Such an approach also provides an audit trail to ensure no
uncertainty is forgotten [111]. Janssen et al. [67] present a guidance
system primarily for the identification and management of environ-
mental assessment uncertainty which involves the development of a
typology or taxonomy of appropriate uncertainties considered relevant
by both the scientists and the stakeholders. They highlight that such a
system, which focuses on the problem context and socio-political em-
bedding, accountability, transparency, reflexivity, participation and
extended peer review, provides a flexible structure to uncertainty
management, which stimulates reflection and deliberation on “how
uncertainties are (to be) handled and communicated effectively” [67;
p.130]. Such an approach builds towards the “new social practice of
science in a postmodern era” (p. 131) such as post-normal science and
mode 2 science paradigms [158–161]. Mode 2 science advances on the
traditional paradigm of scientific discovery (mode 1) and considers
“socially distributed, application-oriented, trans-disciplinary” ap-
proaches to science that are subject to multiple accountabilities (see
review in [162]), discussed further in Sections 4.2.1 and 4.2.2.

Developing uncertainty management and communication processes
in a partnership model between scientists and users is also advocated
for by Fischhoff and Davis [99]. They argue that effective
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communication depends on the decision needs of the stakeholders,
identifying three typical decisions (action thresholds, fixed options, and
potential options) and methods to characterise, analyse and commu-
nicate uncertainty for each of these effectively, via an engagement/
elicitation scheme which incorporates a classification typology. They
caution however, that communicating uncertainty can both simplify
and complicate discourse, stating that uncertainty should be non-per-
suasive and honest (discussed further in Section 4.2.3).

Specific case studies adopting similar engagement and participatory
approaches to developing and utilising typologies for knowledge
transfer, communication and management of uncertainty can be found
in Hirschberg et al. [112] for hydrometeorological forecast uncertainty,
Höllermann and Evers [89] for flood risk management, Schmidt-Thome
and Kaulbarsz [75] for climate change and GIS maps, and Politi and
Street [93] who focus on a collaborative decision making approach to
communicating and managing uncertainty between doctors and pa-
tients. The participatory development of typologies, which acknowl-
edge and communicate uncertainty in a transparent shared manner
with stakeholders, also helps to build trust in both scientists and in
science information.

Found subsequent to our initial search, Cornell and Jackson [155]
outline the importance of different engagement and classification tools
such as uncertainty tables, decision-mapping, and multi-criteria ana-
lysis to help integrate knowledge between disciplines and across social
and physical sciences. They review a range of deliberative techniques
for assessing risk and uncertainty in an interdisciplinary manner (in-
cluding integrated assessments, mediated modelling, expert elicitation,
narrative approaches, and community participation methods). In ad-
dition, they highlight that social science “should … add to our under-
standing of natural hazard risks and uncertainty” (emphasis original, p.
503), stating how the cultural and epistemological differences between
physical and social scientists create a particular communication chal-
lenge, discussed next.

4.2.1. The challenge of epistemic divides
Effective participatory dialogue type approaches require an appre-

ciation of the different epistemic cultures present between disciplines
and between scientists and operational decision-makers, as well as their
different ‘models’ of science. Twelve (11%) documents discussed this in
the context of shared communication and uncertainty management (see
Table 12). A key issue is that the current deficit model of commu-
nicating science (assuming your audience lacks the relevant knowl-
edge) creates an epistemic divide between experts and stakeholders and
a division of labour as to what simplifications are appropriate [100].
Deitrick and Wentz [116] review the different uncertainties that arise
between scientific researchers and policy makers, from knowledge-
production based in the former, to solutions-oriented in the latter, and
highlight how an awareness of this difference is vital for effective
communication. Incorporating epistemic cultural differences into clas-
sification and management schemes is important, especially con-
sidering scientists will aim to reduce epistemic uncertainty while, for
example, engineers accept uncertainty exists due to it being at the core
of innovation and invention and can represent sources of solutions to
many engineering problems [56]. For example, in the context of en-
semble flood forecasters, such different epistemic cultures between
scientists and different stakeholders (meteorologists, flood forecasts,
the public, etc.) can result in different tolerances for uncertainty in
decision making [50]. This can result in a ‘duality of error’ regarding
false alarms, where flood forecasters would change the threshold to
decrease false alarms due to the impact they have on response of the
public to future warnings. This however increases the chance of ‘false
negatives’ (unwarned floods). In comparison, meteorologists prefer to
reduce those false negatives at the expense of increasing false alarms.
Thus, a system of shared uncertainty management between different
scientists within a modelling and forecast chain must acknowledge and
account for differences such as these.

When considering the development of shared uncertainty manage-
ment approaches to model based decision-making, Grubler et al. [97]
state that epistemic differences can actually affect the initial problem
formulation, particularly because the different world views of natural
and social scientists result in ‘linguistic uncertainty’ due to a lack of a
common language. In particular, the different systems of scientific en-
quiry adopted in different disciplines, ranging from analytic, empirical,
synthetic, or conflictual models of enquiry, lead to a different emphasis
on language in the initial problem formulation. As stated by Stirling
[98] "the intrinsically plural, conditional nature of knowledge [should
be recognised, so that] science advice can become more rigorous, ro-
bust and democratically accountable" (p. 1029). They argue that
adopting a pluralistic and conditional approach enables a debate on
broader questions and can provide a basis for a “more-equal partnership
between social and natural science in policy advice” (p. 1031), and help
to resolve polarized debates about science in policy by integrating
quantitative and qualitative approaches across disciplines. This is par-
ticularly relevant for disasters when science advisory group processes
require both disciplines to formally provide advice together [2], with
each being characterised by fundamentally different epistemologies and
ways of defining ‘science’, different processes of knowledge creation,
and different ways of defining what is an ‘objective’ or ‘true’ re-
presentation of the world as defined by their ‘epistemic culture’ [163]
(see also [155]). However, Stirling [98] cautions that this pluralistic
conditional approach to manage uncertainty will not remove the deep
intractability of the many uncertainties present, the perils of group
dynamics, or the perturbing effects of power on communication and
uncertain science advice; rather it makes them more rigorously explicit
and democratically accountable.

To address these epistemic divides, Shackley and Wynne [47] sug-
gest science advisors act as a bridge between scientists and policy
makers in climate change management, employing ‘boundary-ordering
devices’ to help facilitate the communication and shared understanding
between the worlds of science and policy. They suggest 6 types of
boundary objects to help achieve order between science and policy, as
follows: 1) the clarification and management of uncertainty [which we
note could utilise the typology type schemes discussed above], 2) the
reduction of uncertainty, 3) the transformation of uncertainty (e.g.
changing indeterminacy and ignorance to uncertainty and risk), 4)
condensation of uncertainty (collapsing multi-layered/multi-faceted
uncertainty into one aggregated uncertainty to provide control to ex-
ternal audiences, but not offend peers); 5) scheduling into future
(identifying how and when key uncertainties will be reduced, see also
Moss [140]); and 6) the displacement of uncertainty (placing respon-
sibility for that uncertainty in another discipline, domain or social
world - so that uncertainty ceases to threaten the authority of the sci-
entific community). van Pelt et al. [117] investigate the use of a si-
mulation game as another type of boundary object to bridge epistemic
divides and communicate climate change to water managers tasked
with adaptation. They demonstrated an increased general under-
standing of uncertainties, but not however a statistically significant
different understanding in learning, or understanding for the specific
uncertainty they aimed to improve with the game (natural variability).

The appropriate choice of boundary object would depend on the
time scale and time pressures of the science advice and decision-making
context under consideration. However, whether short or long time
scales, the goal should be to develop relationships and communication
frameworks during preparedness and mitigation type activities that
enable these pluralistic principles to be followed in high pressure short
time situations, even if the boundary objects themselves cannot be
employed at that time. In addition, such activities should work towards
enhancing both scientists and decision-makers understanding of each
other’s information needs, tasks, responsibilities and demands via the
development of shared ‘mental models’ of the response environment
(discussed in Sections 4.2.2 and 7). These can be developed through
team building, cross training, and scenario planning tools [2,164–167].
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Epistemic divides are discussed by Rabinovich and Morton [54] as
one of the reasons why people may not act on a message or information
in the manner expected by a science advisor. People are not just in-
fluenced by the framing of the message, but also by their prior ex-
pectation of the message. Such an expectation is framed by whether
they assume a classical model of science (which considers science to be
the ‘search for truth’), or a Kuhnian model of science (which considers
‘science as debate’). In the Kuhnian approach [168], actions are less
likely to be undeterred by uncertainty and uncertainty may actually
increase motivations. Rabinovich and Morton [54] attributes this dif-
ference to trust, where people with a Kuhnian model of science trust a
message more if it includes uncertainty because it matches their ex-
pectations, whereas a classicist distrusts such a message as they search
for absolute truth rather than relative certainty and “the very presence
of uncertainty … is not consistent with their view of what good science
should be” (p. 999). They thus suggest the importance of assessing the
beliefs of an audience and adapting communications accordingly. Such
an approach is thus important to consider when adopting the transla-
tory discourse and participatory type approaches described previously
for the development of shared uncertainty management decision-ma-
kers (see Section 4.2 above). In a public communication arena, Rabi-
novich and Morton [54] thus suggest that communicators should pre-
pare the public for the levels of uncertainty prevalent in contemporary
science, and present it as a deeper understanding of the subject rather
than a shortfall. Maxim and Mansier [115] present a discussion of si-
milar issues, outlining how people reference their ‘science model’
(which can include hypothesis, disciplines, subjectivity, etc.) to inter-
pret the science and uncertainty present and assess the credibility of
any information. They state that individuals also reference non-scien-
tific sources encountered in their daily life, their personal considera-
tions about the world, similar information previously encountered from
another source, and how it aligns to knowledge from school or pro-
fessional experience. Including these aspects in the framing or process
of a communication or dialogue is similar to that of accounting for an
individual’s ‘mental models’, discussed in Section 4.2.2 below.

Finally, when considering epistemic differences, and alternative
models of science, the role of post-modern approaches to science
communication and uncertainty management, such as post-normal
science, was raised by a number of documents [67,86,115], with many
referencing the work of Funtowicz and Ravetz [158,161]. Such an ap-
proach is more reflective, and moves beyond just the quantitative tools
inherent to uncertainty analysis (e.g. sensitivity analysis or Monte-Carlo
type simulations) to consider the mass of uncertainties that include
technical, methodological, epistemological, and societal dimensions
[86]. The post-normal science approach acknowledges that ‘facts are
uncertain, values are in dispute, the stakes are high and decisions ur-
gent’ [161], particularly when these uncertainties are of an epistemo-
logical or ethical kind. This approach recognises that risks are inter-
preted and managed subjectively. Funtowicz and Ravetz [161] propose
problem-solving frameworks that account for this plurality of perspec-
tives, including uncertainty, value loading, community values, history,
personal experiences and other forms of ‘non-traditional’ science in-
formation. It is this philosophy that underlies the transparent system of
notations provided by the NUSAP (Numeral, Unit, Spread, Assessment
and Pedigree) [153] to express and integrate the different types of
uncertainty including quality and values, rather than ‘banish’ un-
certainty from science [see 161]. This NUSAP approach forms the basis
for the Netherlands Environmental Assessment Agency’s Guidance for
Uncertainty Assessment and Communication reviewed in van der Sluijs
et al., [86], the pedigree analysis and pedigree matrix developed by
Kloprogge et al. [76,88], discussed further in Section 4.1, and the
communication protocol of Fischoff and Davis [99] (see also [67,69]).
Since Funtowicz and Ravetz [161], a number of other philosophies and

approaches have been developed to account for such plurality e.g.,
[162], which have been adopted in a range of contexts, particularly
under conditions of uncertainty, including: the use of cultural theory,
transdisciplinary studies, future studies, action research, and policy
sciences (see [12,160,169]).

4.2.2. The effect of an individual’s world view
Seven (6%) of the documents (Table 12), highlighted the role an

individual’s model of the world and science has on perceptions of sci-
entific uncertainty. Maxim and Mansier [115] state that individuals
interpret information based upon their ‘science model’. Budescu et al.
[53] found that interpretations of verbal statements varied depending
upon ideologies and beliefs in climate change. Tak et al. [118] con-
cluded from an empirical study into the visualisation of uncertainty in
temperature forecasts that in the absence of any textual explanation of
an uncertainty range, people will apply their own internal model of the
uncertainty distribution that often closely resembles a normal (cumu-
lative) distribution. Such internal models of ‘the way things are’ do not
just affect the information receiver’s perception of the information, and
subsequent actions, but also the communicator.

As discussed by Portnoy et al. [102] the perception that doctors
have of the ambiguity aversion of their patients (which may be erro-
neous or biased) can impact their communication of uncertainty, even
unintentionally. It is thus important to be cognisant of such affects
when considering the dialogue between scientists and decision-makers,
or science advisors communicating between scientists and policy ma-
kers, particularly during engagement and participatory approaches.
Adopting transparent and clear uncertainty documentation via systems
like typologies enables decision-makers to engage with the level of
uncertainty appropriate to their needs (as discussed in 4.1.2). An ex-
ample of such an approach to counteract the potential biases and
misconceptions is provided by Slavin et al. [119], who developed an
uncertainty visualisation method that follows the Carnegie Mellon
mental models approach [170] to uncertainty communication. This
involves 1) creating an expert model of the problem, 2) characterising
the audience in terms of their mental models for perceiving risk, and 3)
creating communication materials that address the misconceptions in
step 2 and “provide normatively accurate information for accurate risk
perceptions” [119; p. 75].

Politi and Street [93] advocate that for doctors to effectively com-
municate uncertainty to their patients they need to enhance a ‘shared
mind’ with them, to facilitate collaborative decision making and action
plans. They provide strategies and steps to achieve this shared mind
that are also relevant to any engagement or participatory process in-
volved in uncertainty management, and include: providing clear ex-
planations, checking for understanding, eliciting the recipient’s values,
concerns, needs, finding common ground, reaching consensus on a
plan, and establishing a mutually acceptable follow-up plan to help
facilitate any collaborative decision making. In their discussion of the
benefits of such participatory type approaches, Patt and Dessai [11]
identify that the most effective approach is one that “incorporates an
awareness of decision heuristics and framing into a participatory and
distributed decision-support system, anticipating the potential for
‘cognitive conflicts’ between the communicators and the users of the
information” (p.430). This is similar to the ‘mental models’ commu-
nication approach of Morgan et al. [170], which highlights the need to
understand the world views of different stakeholders to facilitate ef-
fective communication, where an individual’s mental models are their
“representation or visualisation of a real system, including concepts,
relationships, and their role within that system” [2].

4.2.3. Ethics
Four (4%) documents considered in detail the ethical issues in
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communicating uncertainty (see Table 12). Keohane et al. [82] re-
viewed the communication norms regarding honesty in reporting con-
clusions, as well as the social and financial contract scientists have to
inform society and government.1 Citing the work of Onara O’Neill
[171] they state that communication is “ethically acceptable only when
it aims to be accessible to and assessable by its audiences” [82; p.350].
Thus, they outline five ethical principles to communicating science
under uncertainty, including: 1) honesty, 2) precision, 3) audience re-
levance, 4) process transparency, and 5) specification of uncertainty
about conclusions. Regarding the uncertainty inherent in modelling in
particular, they state that there are no generally agreed rules for as-
sessing and reporting it, but that ethically both parameter and struc-
tural uncertainty should be communicated. However, this can be in
conflict with the ethical code for ‘audience relevance’, which in turn
can be in conflict with precision, and process transparency. They con-
clude that ethically the goal should always be to lead an audience to
understand the range of likelihoods of future possibilities, and how
their decisions affect the future, stating that by not including un-
certainties a communicator will mislead their audience. Finally, they
see “[no] ethical principle supporting the highlighting of the quantifi-
able aspects of uncertainty over the non-quantifiable aspects” [82; p.
361-362], advocating for the more transparent communication of
subjective uncertainties via elicitation of subjective expert opinion and
development of an additional assessment table that communicates the
“range of such judgements and their aggregation (or not) into a scien-
tific consensus” (p. 361). Other approaches to communicating these
subjective uncertainties include the post-normal approaches based on
that proposed by Funtowicz and Ravetz [161,172], which involve
problem-solving frameworks and incorporate typologies and categor-
isations that account for and communicate the plurality of perspectives
including quality and values see [67,69,76,86,88]; discussed in Section
4.1 and Section 4.2.1. For example, Kloprogge et al. [88] develop a
pedigree matrix that incorporates the value-ladenness of assumptions
including practical aspects, epistemic, disciplinary-bound epistemic,
and socio-political issues.

Han [85] present an interesting discussion of both the benefits and
harms of communicating uncertainty in a clinical setting, asking whe-
ther communicating uncertainty actually enhances or diminishes pa-
tient autonomy. Considering harms, they discuss how ambiguity aver-
sion could deter protective behaviours if the efficacy of such behaviours
has a degree of uncertainty. They also emphasize how ambiguity about
a risk estimate can increase risk perceptions, worry and pessimistic
judgements, leading to avoidance of beneficial interventions. They
highlight how communicating uncertainty can reduce satisfactions with
a decision, as it introduces doubt as to whether the right decision has
been made. They conclude that the answer may not be to tailor com-
munication according to a patients’ tolerance of uncertainty, but rather
to provide patients with the support needed to increase uncertainty
tolerance, via a patient-centred approach which adopts standardized
language and methods to represent and communicate uncertainty.
While these operational recommendations relate to doctor-patient de-
cision making, they are very relevant to science-stakeholder or agency
decision making; ethically, the focus should centre on decision-makers
and involve communication which is flexible and matches end-user
uncertainty needs and tolerance. This is best achieved through parti-
cipatory dialogues (Section 4.2), which enhance the autonomy of the
decision-maker see also [82,120,173].

When considering such participatory or dialogue type approaches,

the role of different perspectives on ethics between disciplines and
world views thus becomes important. Austin et al. [120], discussed the
different ethical standards inherent to different disciplines involved in
communicating scientific uncertainty, including science/risk assessors,
law, and journalism which results in different priorities for commu-
nication. There are thus social and ethical value judgments in all forms
of science, and philosophers have identified that science has normative
value based judgments in it, that can not necessarily be separated from
epistemic issues [121]. Considering climate science, Winsberg [121]
states that value judgments occur in methodological choices, optimi-
zation, metrics of success, problem solving, and evaluations, concluding
that the value judgments are woven into these complex models, and
discuss how this process may include inherent biases stakeholders
themselves are unaware of (e.g., it being impossible to remove social
and ethical values from forecast predictions). Winsberg thus suggests
that uncertainty quantification can act as a communication tool as it
attempts to separate epistemic from normative issues, and divides in-
tellectual labour by leaving the normative value laden considerations to
political decision-makers; except that we can never really remove all
the normative value issues from the science we communicate as it is
inherent within it.

4.2.4. Trust
Five (5% Table 12) documents talked in depth about the role of trust

in communication. Joslyn and LeClerc [113] report the finding that
including uncertainty information increased both trust and concern,
primarily because individuals have intuitions about uncertainty present
in a system, and mistrustful when it is not communicated. However,
Markon and Lemyre [114] argued that trust is not systematically af-
fected by the mention of uncertainty, and that communication of di-
verse sources in a risk message did not affect trust in government, but
divergence between experts or conflict in the data could. They thus
suggest that a message should be precise about the sources of un-
certainty involved, and how to effectively present disagreements be-
tween experts in a way that does not minimize the message or cred-
ibility, rather than conceal or downplay them. Wiedemann et al. [23]
highlight the connection between trust and ethics, where the audiences’
evaluation of the speakers’ credibility, their trust in them, their per-
ception about their motivation, degree of accountability, and supposed
goals, affects their perception of the message. Any previous experience
of a message or messenger is thus persuasive and difficult to change.
Thus new uncertainty information may collide with experience-based
beliefs. Non-experts can thus have difficulties differentiating among
different types of uncertainty and drawing conclusions, and thus Wie-
demann et al. [23] state that it is the expert’s job to help non-experts
make informed judgments.

While most papers indicate communicating uncertainty is prefer-
able, Longman et al. [60] discuss how large uncertainty ranges lead to
decreases in perceived credibility. This is in contrast to previous studies
that find it increases perceptions of honesty, enhances decision making
efficacy, and increases credibility (for example [174]). For this,
Longman et al. [60] consider credibility to encompass honesty, trust,
accuracy, fairness, unbiased, and telling the complete story, and reason
that this decrease in credibility may be due to people expecting experts
to provide knowledge of a precise nature in their field of expertise, and
misinterpreting the uncertainty as evasiveness or lack of knowledge.
This relates closely to how an individual’s ‘model’ of what science is, or
their mental model or map of the issues of importance and the re-
lationships between them, can impact uncertainty perceptions (see also
Section 4.2.2). As discussed by Maxim and Mansier [115], people re-
ference such models when interpreting science and uncertainty, and
this model can include not just the science itself but also non-scientific
aspects such as their model of science, how they trust science itself, and
their previous experience of a message or source, as well as the cred-
ibility or trust they have in that source.

1 For example, in NZ, universities (and their scientists and academics) are
legally described in clause 162 of the Education Act of 1989 to be ‘a repository
of knowledge and expertise’ that accepts ‘a role as critic and conscience of
society’ that ‘advances, disseminates, and assists the application of, knowledge’.
(http://www.legislation.govt.nz/act/public/1989/0080/latest/

DLM183668.html; accessed 1st September 2018).
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4.3. Techniques for communicating specific or complex uncertainties

The previous sections have focused on the approaches to create an
environment for effective communication. Considering our initial core
questions (Table 2), several challenges were identified regarding com-
plexities ranging from communicating ensemble models and expert
knowledge through to how to communicate specific uncertainties, such
as probabilities. A number of selected documents explored these in
relation to model confidence and bias (Section 4.3.1), consensus and
dissensus (Section 4.3.2), ensemble communications (Section 4.3.4),
and spatial visualisation of uncertainty (Section 4.3.4).

As listed in Table 12, numerous papers discussed the effective vi-
sualisation of uncertainty via graphs, tables and images (9 documents,
8%), communication of probabilities (18 documents, 16%), and com-
municating time frames and time dependent information (12 docu-
ments, 11%). Key lessons from these three themes are briefly sum-
marised in Appendix A, and we highlight here the point raised by both
Aven and Renn [101] and Han [85] that probability is often erro-
neously used to describe all uncertainty. This is an issue when com-
municating probabilities, as they thus do not usually include other
epistemological, structural uncertainties, and value judgements, nor
alternative definitions of risk and different understandings of prob-
ability (see Section 4.1). For time-dependent information, we also note
that communicators should consider well-specified questions and pro-
vide information over an appropriate range of decision-relevant time
frames, including information on when the uncertainty may be reduced
[18,140,144]. A number of typologies include time and uncertainty
related to time in their frameworks [87,89,106], which can provide a
way to communicate time dependence. However, no articles in-
vestigated the effective communication of information in different time
frames of a crisis (short near term vs. longer response or recovery time
frames), and we suggest this important issue be a subject of future re-
search.

4.3.1. Model confidence and bias
A key issue in model uncertainty communication concerns model

confidence, and the weighting or choice of model used. This becomes
particularly important for multi- or ensemble models as each is biased
by the value judgments and assumptions that informed the develop-
ment of the model [121]. Thirteen documents (12%, Table 12) consider
this issue in depth.

A primary suggestion is to include a scale of the confidence in a
model, or the choice or potential biases in a model, as one of the ca-
tegories in the overall typology developed for an uncertainty quantifi-
cation and communication [56], as discussed in Section 4.1. Secondly, a
number of documents recommend or advocated for the use of ‘con-
fidence guidelines’ to communicate the level of confidence in a model
[24,25,148]. In the guidance for the lead authors of the IPCC fifth as-
sessment report on the consistent treatment of uncertainties, Mastran-
drea and Field [24] include a metric for the communication of the
confidence in the validity of a finding, based on the type, amount,
quality and consistency of evidence (e.g. mechanistic understanding,
theory, data, models, expert judgment), and the degree of agreement.
This confidence is expressed qualitatively via a confidence scale chart
that relates level of evidence and level of agreement across available
evidence and models.

Busch et al. [148] utilise this IPCC approach in the context of ocean
acidification and highlight the importance of evaluating and commu-
nicating this state of knowledge. Gill et al. [25] recommend the use of
confidence indices in the definition of sources of forecast uncertainty,
as part of the World Meteorological Office communication guidelines,
citing as an example the approach of the Swiss Federal Office of Me-
teorology and Climatology who use a reliability measure in their
weather forecasts. Other techniques for communicating levels of con-
fidence, and the grading of quality of evidence can be found in Han
[85], who outlines approaches used for medical and clinical evidence.

These include formal qualitative rating schemes that grade the quality
of evidence according to key sources of ambiguity, including: incon-
sistency, imprecision, indirectness (limited generalizability and ap-
plicability) of results, and methodological problems that lead to bias.

However, the use of such guidelines or judgements of confidence
can represent another source of value judgement and add another level
of bias to the process [79,101,140,141]. Risbey and Kandlikar [141]
highlight that earlier IPCC approaches that utilised confidence needed
to include a quantitative scale to avoid ambiguity, but that the use of a
2 dimensional scale that considers likelihood and confidence (as still
advocated for in Mastrandrea and Field [24]), creates contradictory
combinations such as an “extremely likely low confidence” event. They
state that "this could result in a bias towards expressing results with
higher confidence, since it is meaningful with this scheme to present
only statements associated with higher confidence“ [141]. They thus
present an alternative approach that provides a mechanism for making
explicit the reasons for low or high confidence based upon assessments
of data quality and scientific knowledge.

Moss [140] also discusses the IPCC approach advocated by Mas-
trandrea and Field [24] identifying that the lead chapter authors were
actually uncomfortable quantifying their subjective judgments, pre-
ferring to consider uncertainty in qualitatively objective terms. They
state that the IPCC approach failed to ‘harmonize the “confidence”
language’ [140], resulting in the confusion between the use of these
confidence levels, and other qualitative levels of understanding out-
lined in the IPCC guidance note, as well as causing confusion between
the confidence scale and the quantitative likelihood scales used for
translating numerical probabilities into verbal terms (see also Appendix
A). They highlight that adopting intuitive approaches to rating con-
fidence is subject “to a variety of biases, including ambiguity, prob-
ability weighting towards the centre of a distribution, and context de-
pendency” [140; p. 650], particularly when using qualitative rather
than numerical terms. They review various experiments that have in-
vestigated the approach taken by the IPCC and demonstrated the in-
terpretation biases that can occur when using confidence and likelihood
ratings (see also [11,81,175]). Such evaluation is vital as it helps
identify ways to minimize such effects and ensure the effective use of
the “rigorous and insightful methodology” provided by these expert
elicitation methods [140; p. 656]. Evaluation is thus not just necessary
for public communication products, but also for the communication
terms and tools used by science advisors and decision-makers within an
assessment process (discussed further in Section 4.5, see also [176]).

Aven and Renn [101] reiterate the issue of the difficulties in
quantifying estimates of confidence, and the poor and subjective use of
the recommended confidence scales in the actual IPCC assessment re-
ports themselves. Supporting our discussion in Sections 4.1 and 4.2,
they state the importance of communicating a “clear distinction be-
tween the model concepts and their estimations” (p. 10) to ensure the
structure and scientific quality of the uncertainty analysis. They con-
clude that the IPCC guidance note is not sufficiently precise on this and
that communicating our confidence or degree of beliefs in models of
uncertainty is subject to its own uncertainty that also needs to be
communicated. Additional assumptions made during this process
should also be communicated [88], and the sensitivity of any decisions
to such assumptions explored [157]. Additionally, Adler and Hirsch
Hadorn [79] question how to conceptually distinguish between agree-
ment, evidence, and consistency in the IPCC’s confidence scale, or
whether they are appropriate concepts to be considered for the purpose
of developing a confidence scale. They see this as particularly chal-
lenging as this scale lacks the ability to identify areas of ignorance or
controversy. This need to communicate the full range of values and bias
in the confidence of a model, or the scientific evidence, or in the model
choice itself, is further highlighted by similar discussions by Kloprogge
et al. [88], Wesselink et al. [94], and Demeritt et al. [50] (see also
Section 4.1). As discussed by Demeritt et al. [50] such transparent
communication is vital due to a ‘certainty trough’ whereby people can

E.E.H. Doyle et al. International Journal of Disaster Risk Reduction 33 (2019) 449–476

463



place undue confidence in models because they fail to appreciate the
judgements and construction of uncertainty associated with that model.

4.3.2. Consensus and dissensus
In their thorough review of 39 articles that discuss and critique the

IPCC’s treatment of uncertainties, Adler and Hirsch Hadorn [79]
highlight that the procedure used to attribute a degree of certainty in
scientific information (via likelihood and confidence scales) is reliant
on consensus among the lead authors, and is subject to diverse value
judgments of evidence. Thus, there is a need to develop a better way to
report on dissensus among experts, and to represent and interpret evi-
dence. They suggest that the answer is to move away from dissensus on
a particular position, ‘towards consensus on a plurality of relevant, even
controversial positions or findings, as assessment results for users’ (p.
674). They state that such an approach accounts for the purpose of
consensus (to reach inter-subjectivity), limits where consensus may be
mistaken, and can be adaptive within alternative decision-making fra-
meworks.

We found that 10 (9%, Table 12) of our reviewed documents also
discussed consensus. Busch et al. [148] support the approach of the
IPCC and its use of confidence scales to incorporate consensus levels of
evidence and levels of agreement. They state that particular challenges
arise when working in an interdisciplinary space, where different dis-
ciplinary perspectives can exist as to what constitutes certainty. This
can present particular difficulties for decision-makers, particularly if
one discipline identifies something as certain and another very un-
certain, resulting in delayed action when ‘good’ science may be inter-
preted as too ‘unsettled’ to warrant timely action. Busch et al. [148]
thus state that transparent non-persuasive communication which pro-
motes informed decision-making where all uncertainty is acknowl-
edged, should focus on how certain we are as “decision-makers are
more interested in whether potential consequences are adverse enough
or certain enough to justify the costs of action” (p. 37). Alternatively,
Budescu et al. [81] recommends that “communication of uncertainty
should be refined by conveying differential levels of uncertainty that
reflect the degree of consensus (or lack thereof) about the reliability
and quality of the available scientific evidence” (p. 306), similar to
Risbey and Kandlikar [141].

Stirling [98] state that it is unclear whether communicating con-
sensus or not is most accurate or useful for policy, highlighting that
communicating the array of contrasting specialist views and reasons for
different interpretations is more consistent with scientific rigour and
“democratic accountability” (p. 1030). They suggest the use of more
plural and conditional methods for science advice, via tools such as
their uncertainty matrix (discussed in Section 4.1). We note however,
that how this is accommodated and utilised by recipients needs to be
investigated further, given the political and economic biases that can
affect interpretation and use of such contingent information. Keohane
et al. [82] advocate that scientists must thus find ways of more precisely
explaining the “levels of consensus that characterizes a particular claim,
even if it is not a claim that they particularly as individuals wish to
advance” (p. 361), as there is no ethical argument for communicating
“only conclusions that command a consensus” (p. 362). When there is
no consensus, Keohane et al. [82] state that it is superior to provide a
range of possible results, with a statement explicitly stating that there is
great uncertainty about these propositions. Oppenheimer et al. [74]
raise the important related concept of ‘premature consensus’ which can
occur when all the uncertainties are not adequately accounted for,
particularly the structural model uncertainties. We note that this is
more likely when the process is driven by external pressures, including
political imperatives. Such uncertainties indicate less is known than the
numerical forecast model estimates may suggest, and thus they ad-
vocate for more transparency of all uncertainties, including giving
poorly understood phenomena and quantifiable uncertainties more
equal weighting.

The results of Markon and Lemyre [114] underscore the complexity

of communicating dissensus, particularly when communicating to the
public. They found that communicating a divergence between experts
(representing ambiguity in advice), or conflict in the data (representing
epistemic uncertainty), can null the influence of an advisory warning
(see also [21]). Different sources of uncertainty were found to affect
adherence to warnings differently, and sharing a lack of data did not
result in a downplaying of the message. They thus recommend that
public agencies should be precise about the source of uncertainty, and
not conceal or downplay existing disagreements between experts. Ra-
ther there is a need to identify better ways to present this to the public
in a way that “does not minimize the agency’s message and credibility”
[114; p.1119]. These findings are similar to that of Patt [64] who in-
vestigated the effect of conflict-based versus model-based framing of
uncertainty on action choice and timing, finding that while there was
no precise distinction between these two uncertainties in terms of ac-
tion, the way in which they were framed in a message did matter. Thus
they recommend that advisory panels should “pay close attention to the
social features of uncertainty, such as conflict between experts” ([64],
p. 37), and should communicate both the quantitative and qualitative
aspects of uncertainty, as any conflict that has arisen “about particular
estimates of the future may signal features not only of the science, but
also of the politics of that science, [which] are relevant for decision-
makers” ([64], p. 45).

Thus, Markon and Lemyre [114] suggest that communicators should
explain not just that a divergence exists between experts, but should
elaborate further on the nature of the disagreements, such that “citizens
feel more empowered and better able to forge their opinion on the
subject” (p. 1119). However, this itself creates a dilemma. Firstly, it is
important that this process is preceded by attempts to develop a shared
mental model that develops understanding of advisors and decision-
makers different world views, epistemologies, needs and demands
(discussed further in Section 4.2; see also Doyle and Paton [9]),
otherwise such advice may activate pre-existing mental models in-
cluding biases, and political and economic imperatives that could in-
tensify rather than ameliorate conflict. Secondly, as discussed by Moss
[140], different subjective expert interpretations of model results, and
the lack of methods for aggregating different expert characterizations of
uncertainty, can provide “an opportunity for special interests to confuse
and divert public discourse” (p. 643). They thus suggest more use of
expert elicitation techniques in the IPCC and other climate assessment
processes would enable more accurate and open uncertainty assessment
and communication. They highlight that concerns that such expert
elicitation methods make “knowledge seem more conditional” (p. 656)
and subjective are limiting the application of this useful methodology.
However, as discussed by O’Hagan et al. [177] all modelling involves
human decisions that are ultimately subjective, such that “all statistical
methods, classical/frequentist or Bayesian with either non-informative
priors or expert opinion priors, have some amount of subjectivity
within them” (p. 199) (see also Aspinall [178], Donovan et al. [179],
and Donovan et al. [180]).

Several expert elicitation approaches exist. These range from simple
averaging of opinions, through to the Delphi method (see [177,181]),
and on to more advanced mathematically based pooling approaches
where experts are weighted differentially according to ratings of their
performance expertise [e.g. 181,182], which can be both objective or
subjective. Aspinall [183] adopted the Cooke approach to provide
structured elicitation for probabilistic volcanic hazard assessment (see
also [184,185]). Alternative non-statistical approaches include the re-
cent work of Dessai et al. [186] that utilised expert elicitation to build
qualitative narratives of future regional rainfall change, and physically
plausible evolutions of future regional climate.

4.3.3. Ensemble communication
Fifteen of the selected documents (14%, Table 12) explicitly dis-

cussed issues arising due to communicating ensemble model outputs,
one of our core questions (Table 2). These include issues around
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perceptions of the ensemble models, challenges of communicating
them, and the misunderstanding of uncertainty and biases that ensue
[50,58,59,68,121,142]. Other examples and case studies of ensemble
communications were found [51,65,66,92,108,109,145,147]. These
include transforming the ensemble forecasts into a single deterministic
forecast time line with uncertainty [92], an aggregate visualisation plot
of ensemble outputs (which explore the input data and parameter
space) which incorporates uncertainty via a probability that a threshold
is exceeded [108], the use of colour coded frequency figures to help
interpret ensemble outputs for flood inundation models [51], and a
novel form of a box plot to display ensemble weather forecasts outputs
[66].

A popular technique for ensemble communications is the use of
‘spaghetti plots’ particularly for forecasts. In these, the output variable
is plotted on a chart for each model through time allowing for a com-
parison of results and an assessment of the range of possible outcomes.
However, both van der Zwaag et al. [145] and Bruen et al. [147] dis-
cuss the communication issues with these spaghetti plots, which can
become very confusing as high number of ensembles are included. They
state that there is no universally preferred method to communicating
ensemble forecasts, and that regular meetings should be held with users
to enhance the use of uncertainty information. Examples of conveying
ensemble data via a range of different spaghetti plots and other charts
can also be found in Tak et al. [118] and in the World Meteorological
Guidelines [25].

Bruen et al. [147] review alternatives to these ensemble spaghetti
plots, such as dividing the forecasted variable or uncertainty into bands
or warning levels, colour-coded by the forecaster. van der Zwaag [145]
suggests 3 techniques for flood mapping that could be used as alter-
natives. These include a) alpha blending (where each ensemble is
rendered with transparency and overlain, resulting in the most opaque
portion of the graph representing the highest probability of inunda-
tion), b) box and whisker plots in 2D, 3D that include cross sections,
profile views, and plan views, and c) colour mapping. However, they
stress that many of these methods have not been evaluated and that
there is an imperative need for evaluation of ensemble communica-
tions, as discussed in Section 4.4.

A particular challenge with forecasts that utilise the output of many
alternative models combined into ensemble models, is the identification
of one of these forecasts as the ‘best’ for a forecast which is then often
communicated without the uncertainty representing the spread in the
range of models. Winkler [146] highlights that this was a particular
issue during Storm Juno in January 2015, where a worst-case scenario
forecast was issued based upon the output of a single (European) model
forecast which had the best track record to date. The uncertainty based
on the other multiple model forecasts was not communicated. When
this worst-case scenario did not eventuate, there were high costs in-
volved to New York City financially, and to the credibility and re-
putation of the National Weather Service forecasters. The latter was
compounded by the fact that the Weather Channel updated their fore-
cast as new evidence came in, adapting their choice of model resulting
in a more accurate forecast. Winkler [146] state that the issue here is
not necessarily the choice of model forecast used, but rather the lack of
communication about the uncertainty in that forecast.

Parker [68] point out that ensemble models (particularly those
based on Monte Carlo type approaches) are challenged by the high
dimensionality of uncertainty due to the larger initial condition un-
certainty space than non-ensemble models, as well as the computational
intensity and structural uncertainty issues. They highlight how prob-
ability density functions are not always appropriate to display the un-
certainty of ensemble outputs due to high structural or epistemic un-
certainties. In those cases they suggest the use of alternatives such as
the likelihood a value will fall in a range, the expected sign change, or
the change of magnitude. Building on this, Parker [58] argues that
interpretation of ensemble results in climate change modelling in po-
litical and public spheres can be problematic, indicating that while

ensemble models provide a lower bound on response uncertainty, they
do not provide an upper bound as they do not explore structural,
parametric, and initial condition uncertainty, which is often mis-
understood. Thus, the practice of transforming ensembles to precise
probabilistic estimates of uncertainty can be problematic because these
uncertainties and assumptions made in model development and choice
are not considered or communicated. Parker [58] makes the point that
decision-makers may thus make poorer decisions than would have been
made had these other ‘second-order’ uncertainties and assumptions
been more apparent. These second order uncertainties include as-
sumptions and judgments in the models, and the value-ladenness be-
hind them (relating to practical, epistemic, political, and socio-political
issues), which could be communicated via the Kloprogge et al. [88]
pedigree matrix (see Section 4.1). Demeritt et al. [50] also identified
that flood forecasters didn’t fully understand the uncertainty around the
mean of an ensemble prediction system, or how to use it. However, in
contrast, when uncertainty was provided in the form of a standard error
around a point forecast for a suite of ensemble weather temperature
forecasts, Roulston et al. [142] found that decisions improved.

This relates to the discussion of Winsberg [121], who argues that
ensemble models are often erroneously considered a ‘conceptually co-
herent set’ when transformed into precise estimates, because current
methods assume all models within an ensemble are equally good, or
that they can actually be weighted, or that the ensemble models re-
present a sample of independent draws from all available. However, the
choice of models used can be subject to bias, some may be weaker in
terms of performance and validity than others, and each are full of
value judgments due to the various social and ethical values and as-
sumptions made throughout. They suggest that Bayesian expert elici-
tation to separate epistemic from normative aspects of the models used
would help enhance communication by enabling more accurate un-
certainty quantification (see also Aspinall and Cooke [185] and
O’Hagan [177]).

4.3.4. Effective visualisation of uncertainty: mapping, spatial, and GIS
Numerous papers (29, 26%, Table 12) consider techniques and ap-

proaches for the visualisation of spatial uncertainty, with a focus on
maps and GIS. They discuss the range of different media and methods
available [10,25,48], the range of decision-maker perspectives and
understanding related to their prior knowledge and numeracy [127],
whether visualisation actually enhances decision making [128], issues
with probability shading colour schemes and biases [129], as well as
display issues [103] in terms of how much information to include in a
single image or display. Two documents [109,130] discuss in detail the
technical and numerical aspects of employing visualisation options.

To explain the available uncertainty visualisation techniques de-
scribed by these documents in depth would be beyond the scope of this
paper. However, of particular use for future natural hazard commu-
nication endeavours are those documents that summarise the range of
different approaches available to incorporate uncertainty into a map or
GIS [10,48,77,103–107,109,118,122–124]. These include the mod-
ification of ‘free graphical variables’ [107] or ‘intrinsic graphic prop-
erties’ [118] which can be varied by focus, clarity, fuzziness, trans-
parency, crispness, colours, size, position and angle; the addition of
‘extrinsic information’ via graphical, geometric objects or glyphs which
can be altered by colour, size and symbology; and the use of animation
such as blinking regions, blinking pixels, or blinking objects. Other
general cartographic techniques that can be altered include isosurface
rendering, lighting, blurring, shading, contours, contour format, colour
schemes, saturation, hue, opacity, pseudo-colouring and texture. Blur-
ring and similar techniques can be described as an ‘image discontinuity’
technique [105]. Such approaches and techniques can then be classified
by their appropriateness for communicating scalar, vector, or multi-
value uncertainty [10,48]

In addition to the visual depiction of uncertainty, Griethe and
Schumann [107] state that uncertainty can be communicated using
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other human senses, such as acoustic, touch, and vibration. However,
they argue that studies that adopt this approach often only focus on a
single uncertainty value and may not be appropriate for abstract data,
or that very few consider it for visualising ‘error, precision and validity
at the same time’ (p .31). Bearman et al. [133] suggest the novel use of
sonification and evaluates the use of sound to represent uncertainty (see
https://player.vimeo.com/video/37252584 for an example), finding
better user performance when sound is used rather than simple visual
systems [see also 48,77]. Examples of various uncertainty visualisation
techniques in use can be found in Nadav-Greenberg et al. [131], Beven
et al. [111], Gould et al. [91], Gill et al. [25], Retchless [132]; and the
technical aspects of developing such visualisations in Bastin et al.
[130].

A particularly interesting issue for a hazard forecast situation is
whether uncertainty is better visualised in a series of separate maps, or
in a single combined map [91,103,125]. The former approach can be
considered to be ‘univariate’ (comparing one map for data to another
for uncertainty) and the latter ‘bivariate’ [103]. In the bivariate ap-
proach, uncertainty is displayed via the extrinsic techniques described
above (adding geometry to symbols, etc.) or intrinsic approaches
(where the visual variable of a symbol is modified, such as colour
shading). Through an empirical study, Kubíček and Šašinka [125]
identify that maps combined (bivariate) encourages parallel processing
of data, while separate maps (univariate) encourages serial processing
as information has to be held in memory to enable a comparison be-
tween maps. The former resulted in quicker decisions, but more in-
accuracies for complex tasks. The latter resulted in slower but more
accurate decisions.

Similar to the issue of maps combined or separate, several docu-
ments review the different static and dynamic approaches to displaying
uncertainty in maps [72,116,126]. Kunz et al. [103] discuss the benefits
of interactive cartographic information systems due to their ability for
users to interactively query and drill down into the relevant data. This
expands on the work of MacEachren et al. (as cited in Bostrom et al.
[62]) who identify that intrinsic representation (changing the appear-
ance of an object) is better for communicating overall uncertainty,
while extrinsic representations (using additional symbols) are more
suitable for specific locational uncertainty. Similar to MacEachren,
Deitrick and Wentz [116] state that techniques can be classified into
‘visually integral’ approaches (where one alters the data symbology so
both the data and the uncertainty are represented by a single variable),
or ‘visually separable’ approaches (where patterns, textures or geo-
metric objects that depict uncertainty are overlain on the map). They
find that in general, evaluation demonstrates that decision-makers
prefer visually integral maps due to the simpler image produced, while
researchers prefer visually separable images which allow them to
identify and evaluate the uncertainty. We also direct readers to the
systematic review of geospatial uncertainty visualisation by Kinkeldey
et al. [187], found separate to our systematic search, within which they
discuss five ‘dichotomous categories’ for uncertainty visualisation ex-
pressions and properties, including 1) explicit/implicit; 2 2) intrinsic/
extrinsic; 3) visually integral/separable; 4) coincident/adjacent; and 5)
static/dynamic. They advocate for a systematisation of future empirical
studies on uncertainty visualisation, and recommend a move towards
user-centred task-oriented uncertainty visualisation typologies (see also
Sections 4.1.1 and 4.1.2).

Different user preferences highlight the need to tailor communica-
tion techniques to audience needs (see Section 4.2). Pang [10] explore
this further by identifying an approach to communicating uncertainty
defined as ‘task-oriented visual mapping’ (p. 282–283), where they
state that it is not possible to develop a one-size-fits-all approach to a
hazard communication due to the many stakeholders, different needs,
and users. As discussed in Sections 4.1 and 4.2, there is a need to de-
velop schemes that address both the communication issue at hand and
is tailored to the needs of the decision-maker [71,77,99]. Pang [10]
proposes a framework which identifies types of users (scientists,

engineers, doctors; policy makers, decision-makers, court cases; op-
erational users; casual users), types of tasks (analysis; monitoring; ex-
ploration, data mining; persuasion, communication), and types of data
(data dimensionality; data type; multivariate data; multi-value; ordinal,
categorical, cardinal). Through this framework “different visualisation
methods can be used to match the needs of a particular user, task and
data combination” (p. 285). This is vital as any information presenta-
tion should be simplified to the core needs such that it does “not
overload the cognitive tasks” of the decision-maker (p. 282), enabling
users to focus on the important aspects of the data.

Appropriate use of such uncertainty visualisation techniques is
particularly challenging. There is a danger that sophisticated visuali-
sation methods and graphics could misrepresent the data, where the
design used to graphically represent information can intentionally or
unintentionally mislead, over-simplify, overload, or misrepresent a
message (see reviews in [188,189]). Thus, the visualisation technique
used must be theoretically justified by the data [72]. There is a trade-off
between the appeal of visualisation media and the correctness of in-
formation which of itself can result in additional ‘uncertainties in vi-
sualisation’ [122]. Griethe and Schumann [107] thus recommend that
communicators first reduce the complexity by focusing on the data and
uncertainty relevant to the decision, rather than to try and visualise
everything It is also vital to evaluate the visualisation method chosen
[190], to ensure the communication meets it’s intended objectives
(discussed further in Section 4.5). Unfortunately there is a lack of such
evaluation of uncertainty visualisations, as discussed by both Brus and
Svobodova [106] and Tak et al. [118]. This results in both a lack of
understanding as to what constitutes effective visualisation commu-
nication, as well as uncertainty as to which visual communication
strategy is most appropriate for different contexts and audiences, dis-
cussed next.

4.4. Evaluation

The lack of evaluation of uncertainty visualisation techniques is
raised by 8 (Table 12, 7 %) of the documents in our review
[62,105,106,116,118,123,128,134], who highlight that we cannot
continue to develop and use new techniques if we do not know how
useful the visualisation of uncertainty actually is for decision making.
As stated by Tak et al. [118], there is no “comprehensive understanding
of the parameters that influence successful uncertainty visualisation”
(p. 6). Thus, it is vital that one tests interpretations of uncertainty vi-
sualisations prior to dissemination, as the intentions of a designer do
not necessarily match interpretations of the viewer, particularly as
perceived uncertainty does not necessarily map linearly to visual fea-
tures. Found separately to our selected papers, both Fisher [190] and
Rohrmann [176] also discuss in depth the need for empirical evaluation
to ensure a communication meets its intended objectives, to prove its
effectiveness, to facilitate the improvement of future communication, to
identify context specific approaches, and to provide an empirical basis
to choose between different communication strategies. In addition,
Rohrmann [176] highlight that “intuitive assessments of … effective-
ness can easily fail because of wrong cause-effect attributions” (p. 172).
Thus, through empirical evaluation of communication we can aim to
identify the true cause of any miscommunication.

From our selected papers, Hope and Hunter [134] argue that when
evaluating the representation of uncertainty in GIS data, it is not just
the comprehension of the information we should be assessing, but the
impact that visualisation has upon decisions, which is currently se-
verely understudied. They present a cautionary tale supporting the need
for empirical evaluation of ‘best practice’ communication re-
commendations. They empirically found that the presence of un-
certainty information in GIS output actually lead to “irrational deci-
sions being made” (p. 199), whereby people made unexpected decisions
due to a misunderstanding of, or due to the influence of, the way the
uncertainty itself was presented (rather than the uncertainty values
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themselves). They thus state that attention should be paid towards how
we visually present the data as the presentation itself can affect deci-
sions. This is similar to the ‘framing’ affects that have been identified
through extensive investigations into text based messaging, where two
objectively equivalent statements worded differently can result in dif-
ferent actions (see reviews in [18,139,191,192]). Hope and Hunter
[134] highlight that most studies of visualisation and representation of
GIS data focus on the extra cognitive demands the visualisations place
on decision-makers (whether users can cope with the additional in-
formation), and less on how the representations themselves affect the
decision being made. To date, much research into effective techniques
for communication have been identified as those that do not detract
from the accuracy or speed of decision, or ones which users rate as
easiest to understand and use, however Hope and Hunter [134] draw
attention to a need to consider how the uncertainty information impacts
the outcome and efficacy of the decision itself. The importance of this
was reiterated by Broad et al.'s [193] and Tak et al.'s [118] discussion of
how the public misunderstand hurricane forecast track maps and the
areas at risk (see also Section 4.3.4). While these visualisations describe
the most likely path of the central eye of the storm, and a cone depicting
the range of its possible tracks, many people assume the cone actually
depicts the full width and extent of the hurricane itself and fail to un-
derstand the hurricane can actually impact a much larger area outside
the cone.

Examples of evaluation processes for a communicated product can
be found via cases studies [128], the brief survey tool presented [123],
or the empirical approaches used to test particular visualisation tech-
niques (such as [125,127,129,131,134]). Bonneau et al. [105] provide
a review of available evaluation techniques, including theoretical eva-
luation (identifying whether a map follows graphical design principles),
low level visual evaluation via psychometric visual user studies, and
finally via task oriented user studies, providing examples from medical,
weather and climate, and security and intelligence. Bostrom et al. [62]
reiterate that there are not enough empirical studies to evaluate the
techniques, and future research should focus on evaluation and un-
derstanding rather than developing more of these techniques. Based on
existing research they thus identify five measures for the effectiveness
of cartographic visualisations of risk and uncertainty, including: 1)
accuracy and congruence, 2) accessibility, 3) retention, 4) change in
perceived risk, and 5) subjective measures of quality and usefulness;
measures which should also be considered for general risk visualisa-
tions and communications of model outputs. Additional evaluation
examples can be found beyond our reviewed papers in the fields of
communicating risk and warning design (e.g., [194,195]) and health
emergencies (e.g., [196]). While these are considering a different
communication challenge to our focus here, the process by which they
conduct their evaluations provide important lessons for the evaluations
of the communication of model uncertainty. We also direct readers to
the recommendations of Kinkeldey et al. [187,197], found since our
systematic search, who also identify a lack of systematic evaluation
strategies, and highlight the need for research to “better understand the
process of working with information on uncertainty as a basis for
subsequent studies of its visualisation” [197; p. 18], highlighting a need
for ‘task-centred typologies and guidelines’ [187; p. 385] as well as a
“typology of uncertainty representations” that defines “categories of
reasoning tasks or decisions that uncertainty could make a difference
for” [197; p. 19].

5. Existing guidelines and recommendations, and key lessons
from this review

Twenty of the selected documents (18%, Table 12) conclude with
some clear specified recommendations for the communication of
modelling uncertainty, model related uncertainty, or the suite of un-
certainties associated with a risk analysis or model assessment, that are
of particular relevance to our core questions. An additional 4

documents (4%) contained specific agency guidelines for the Nether-
lands Environmental Assessment Agency [76], the World Meteor-
ological office [25], and for the IPCC assessment reports [24,150]. Eight
documents (7%, Table 12) contain recommendations based upon a
critique or experimental review of the IPCC approach, alongside a
further 3 who critique the IPCC guidelines [79,141,148], but don’t
generate specific guidelines themselves. From these, key cross-cutting
issues can be identified, including:

- That it is vital to acknowledge the uncertainties, and the specific
type and nature and sources of uncertainty [25,81,84,101,132] to
assist the effectiveness of decision making;

- The need to communicate more than just the scientific and technical
uncertainty, but also the ‘social history of uncertainty’ and to solicit
social science expertise in communications [64,140], which can
include communicating explicitly the potential value-ladenness of
assumptions in a risk or model assessment [88];

- The importance of understanding a decision-makers perspective and
needs to facilitate effective communication [84,85,93,132,137,140]. To
which we add the importance of understanding the social and organi-
sational context and capabilities of decision-makers, which can impact
their interpretations of uncertainty information [9];

- The need to also communicate when the identified uncertainties can
be reduced in the future [81,140];

- The importance of traceable accounts to describe evaluations of
evidence and identification of uncertainties [24,150];

- The need to standardize the language and methods used to represent
and communicate uncertainty [24,85,150], while remembering
disciplinary, context, and individual differences in understanding
that will affect the appropriate terminology to use [11,81,84]. This
includes the need to recognise that ‘science for policy’ is a different
enterprise to ‘science’ itself due to its need to be responsive to pol-
icymakers’ needs [150];

- Specific recommendations for ways to represent individual uncertainties
linguistically or visually [11,24,25,72,76,81,94,132,137,139,150];

- The need to communicate the degree of confidence in a particular
analysis [24,56,101,150], or to communicate the range of assess-
ments and the confidence experts have in them to represent the
range of views, [e.g., 94];

- The importance of evaluating the communications of uncertainty,
and using empirically tested approaches wherever possible, [e.g.,
24,84,137,140].

Hyden et al. [149] reference a number of other specific organisa-
tional guidelines recently developed, including the Joint Committee for
Guides in Meteorology and their Guide to the Expression of Uncertainty
in Measurement, as well as the Seventh Framework programme ap-
proach to communicating uncertainty for the Open Geospatial Con-
sortium via a standard ‘markup’ language called UncertML. We re-
commend future research should consider a search targeted at finding
and summarising the existing recommendations across international
organisations. While some of these recommendations have been de-
veloped for non-natural hazard settings [e.g., 84,85,93], the lessons
they identify are very valuable for the natural hazard model uncertainty
communications we are considering here. Beyond the literature sur-
veyed here, a number of books also provide further lessons for the
communication and analysis of uncertainty in the natural hazards, in-
cluding Rougier et al. [198], Riley et al. [199], Crichton et al. [200],
and Bammer and Smithson [201], and we direct readers to those for
further reading. In particular, Rougier [202] and Rougier and Beven
[203], respectively review frameworks for representing aleatory un-
certainty in terms of probabilities, and a framework for epistemic un-
certainty. In addition, Beven et al. [157] outline methods to quantify
epistemic uncertainties, such that the impact of assumptions upon de-
cisions can be examined, enabling the communication of uncertainty
estimates, discussed further here in Section 7.
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5.1. Key lessons from this meta-synthesis

The key themes and lessons drawn from our review of the literature
supplement the above existing recommendations, and cut across our
initial core questions, as follows:

• The use of the term ‘model related uncertainty’ to encompass the
full range of uncertainties throughout the modelling process (from
defining the problem, through to computational issues, initial con-
ditions, verification, and beyond), helps to avoid the confusion
when ‘model uncertainty’ is sometimes used in the literature to re-
present ‘structural uncertainty’ (see Section 3.1).
• A typology system guides a scientist communicator through a
process of identifying and classifying, articulating and prioritising
critical uncertainties, and knowing what to communicate. It pre-
vents the assumption that the statistical output provides a compre-
hensive account of uncertainty (including interdependencies). By
specifying sources of uncertainty, scientists can also set realistic
expectations about whether these uncertainties can be reduced in
the future, when, and how best to include them in analyses.
• The choice of typology system depends on the context, and there
are many general systems (Section 4.1) and systems developed
specifically for visualisation and geospatial uncertainty (Section
4.1.1) to choose from. Multiple typologies may be required for in-
dividual decisions or throughout the process
• Typology schemes can facilitate communication by bridging epis-
temological and cultural differences between disciplines, by
creating a system of shared uncertainty management that ac-
knowledges and accounts for their different priorities and perspec-
tives, recognises the conditional nature of knowledge, and provides
for a more equal partnership between social and natural science in
advice.
• Typology schemes should be developed through an engagement or
elicitation approach to develop a mutual understanding between
scientists and decision-makers of the relevant uncertainties that
must be assessed and communicated for their decision needs.
Science advisers can act as a bridge to facilitate this understanding.
Through engagement, a typology system can be advanced by in-
cluding scores for the qualification of the knowledge base and for
the value-ladenness of any assumptions, as well as the value-la-
denness inherent to practical aspects, epistemic, disciplinary-bound
epistemic, and socio-political issues.
• Adopting an engagement process supports scientists in meeting the
decision making process of respective users, creating credible and
legitimate two-way participatory type communications, where the
depth of scientific uncertainty analysis is decided upon with the
operational decision-makers and led by their decision-making needs.
It also enables the development of shared mental models, which
help scientists and decision-makers make complementary contribu-
tions to the management of complex, evolving events. These models
include the process under consideration, representations or visua-
lisations of the system, its concepts, relationships, and the role of
model factors within that system.
• For such engagement and participatory approaches to work, a code
of practice and professional guidelines must be developed to en-
compass the uncertainty estimation and translational discourse,
which considers funding, leadership and ethical standards which
can vary significantly between different disciplines. This should
accommodate the five ethical principles to communicating science
under uncertainty, including: 1) honesty, 2) precision, 3) audience
relevance, 4) process transparency, and 5) specification of un-
certainty about conclusions (see also [82]). To this can be added a
need to support decision-makers to increase uncertainty tolerance
[85].
• Ethically the focus of the communication of model uncertainty should
be on decision-maker centredness which is flexible and matches their

uncertainty needs and tolerance, and is best achieved through partici-
patory or two-way type dialogues. Uncertainty identification and
quantification (through a typology approach) can thus act as a com-
munication tool as it attempts to separate epistemic from normative
issues and divides intellectual labour by leaving the normative value
laden considerations to the political decision-makers.

Considering the technical aspects of communicating complex un-
certainties, we summarise that:

• For ensemble models, we found no overall recommended approach
to communication, and recommend that user and decision-maker
preference and evaluation is vital to identify the appropriate ap-
proach. Several documents present examples of the different ap-
proaches (see Section 4.3.3) and solutions to specific communica-
tion challenges.
• For model confidence, a scale of the confidence in a model, or the
choice or potential biases in a model, should be included as one of
the categories in the overall typology developed for an uncertainty
quantification and communication. This is particularly important
when we consider that each model is biased by the value judgments
that went in to the development of the model, and the various as-
sumptions made along the way. This can be built upon ‘confidence
guidelines’ to communicate the level of confidence. Such a scale can
be a qualitative rating scheme rather than quantitative, and grade
the quality of evidence according to key sources of ambiguity, in-
cluding: inconsistency, imprecision, indirectness (limited general-
izability and applicability) of results, and methodological problems
that lead to bias. We recognise however the important point that
such guidelines or judgements of confidence are seen themselves to
add in another level of bias and value judgments that themselves
need to be evaluated and acknowledged.
• A key challenge identified was the reliance on consensus amongst
scientists [and models] to form advice, and the difficulties com-
municating conflict between experts. Thus, there is a need to de-
velop a better way to report dissensus. Scientists can incorporate
consensus and dissensus into a typology framework to communicate
the array of contrasting specialist views and reasons for different
interpretations, which is more consistent with scientific rigour and
“democratic accountability”. By communicating conflict about fu-
ture estimates, scientists also indicate features of the science, and
the politics of that science, which are also relevant for decision-
makers.
• When visualising uncertainty, the focus must be on the data and
uncertainty relevant to the decision. There is thus a need to adapt
the communication to the context and the decision-maker, and to
evaluate such communications whether they are being used in a
typology based participatory type communication scheme or not
[64].
• There is a lack of evaluation of uncertainty communication approaches,
particularly when using visualisation techniques. Evaluation studies
should be prioritised in future research, with a particular focus on the
link between visualisation and decision making. This is important not
only to ensure that producers and users are making comparable inter-
pretations and applications of uncertainty, but also that the commu-
nication is being used as intended.

Thinking of these lessons in the context of the wider issue of com-
municating general uncertainty, we note that thirteen of our reviewed
documents (12%, Table 12), discussed these general issues beyond
model uncertainty that are also of relevance. Leung et al. [151] high-
light the importance of tailoring communications to suit the socio-po-
litical context, and to acknowledge socio-political and other perspec-
tives that can arise between social and natural science in uncertain
advice, via a plural approach to communication [98] which provides a
basis for a more equal partnership. This requires a high level of
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transparency and an understanding of receivers’ needs, where what is
communicated (in level of detail and level of quantification) depends on
the needs of the audience or partner [135]. Research by Morss et al.
[143] demonstrates that receivers (or partners) are keen to receive such
uncertainty, so long as supplementary and context details are included
to enhance understanding and confidence. For such a partnership to be
successful, communicators and scientists in turn desire more informa-
tion about the user uncertainty requirements and training as to how to
actually communicate uncertainty [59].

Such a partnership approach to uncertainty communication ad-
vances upon the 1949 deficit model of risk communication (reviewed
by Markon and Lemyre [114]), and builds upon the more recent models
that acknowledge people are not irrational when they respond differ-
ently, due to risk being dependent on individual, social and cultural
values (see also [7]). A strategic and partnership approach to commu-
nication has more emphasis on consultation than persuasion, where
transparency is key, and the public and decision-makers are partners in
a constructive dialogue around risk (described as a ‘strategic risk
communication model’ [114]). Key to this increased transparency is the
expectation that sources of uncertainty are acknowledged, and the need
to be more precise about the source of uncertainty involved to improve
decision-making and trust [114]. This is particularly important, as if
individuals have an intuition about uncertainty being present and it is
not included in a communication, it can severely damage their trust in
the communication and source [113].

Developing such partnerships, and understanding needs prior to
communication, such that trust and confidence is increased is of par-
ticular importance as model complexity increases. Future models will
have wider, not narrower, uncertainty due to the added complexities
and cascading uncertainties [144]. Thus, scientists will appear to know
less not more, creating a particular communication problem that re-
quires new transparent communication strategies. There is also the
potential for extreme negative impacts if uncertainty is not included.
For example, the 2008 United States financial crisis has been linked to a
failure to communicate and understand model uncertainty, and a lack
of understanding of the model, resulting in financial firms “vastly un-
derestimating systematic risk” [149; p. 1094, 204]. By omitting un-
certainty from communications, we may actually be disempowering
decision-makers. This is highlighted by Wiedemann et al. [23] who
state that the underlying cognitive framework that empowers people to
make informed judgments should be considered more when developing
risk communication. For example, the effects of uncertainty on decision
making behaviour have been found to be mediated through feelings of
efficacy, and when a positive rather than a negative frame was used in
uncertain scenarios (highlighting possibility of losses not materializing)
stronger intentions to act were identified [152].

6. Limitations and future research

As discussed in the methodology, this literature review’s goal was to
identify the dominant themes and constructs from across a range of
literature that was selected through a targeted search criteria, based on
core questions, and selectively sampled through inclusion, exclusion,
and relevance criteria [37,41]. We did not aim to capture and describe
or critique the entire body of relevant literature on this topic through an
exhaustive comprehensive review, as this would have been a significant
challenge given the extremely large body of literature. There are thus
some limitations to the review presented here, mainly that important
and relevant texts may have been missed in our key word search, or
omitted through the relevance scoring and filtering process (which was
based only on abstracts). We thus recommend that future research
conduct more comprehensive critical reviews of each individual theme
identified here, including further research into the efficacy and prac-
ticality of approaches recommended by the literature (e.g. through
empirical investigations or via case studies), particularly given that
these approaches must be accommodated and utilised by recipients

where political, economic, social, and organisational biases can affect
interpretation and use. Other limitations in this study include the time
between the date of our search, and publication. As we are not aiming
for an exhaustive review, any additional sources found after our search
were introduced as ‘secondary sources’ by being raised as comparative
texts to further explore issues identified and discussed in the ‘primary
sources’.

The themes discussed herein have been identified by holistically
drawing from lessons across a full range of complex situations, dis-
ciplines, and a range of decision-making situations (in terms of scope
and time). Thus, future research should consider how these core lessons
should be tailored or adapted for more specific decision-making situa-
tions, ranging from short-time high pressure response scenarios through
to longer-time mitigation decisions, as well as to explore the efficacy
and practicality of the approaches across different contexts. For ex-
ample, how do we adopt a decision-relevant needs assessment process
for a communication within a high-pressure time dependent inter-
agency wide response vs. a longer term readiness communication be-
tween two individuals representing their respective agencies? As dis-
cussed in Section 3, our literature has also not answered how to com-
municate the propagation of uncertainty, as literature found for this
question focused on the very technical aspects of its calculation rather
than its communication. However, by adopting a typology approach
that identifies all the uncertainties, this propagating uncertainty should
be accounted for. In addition to this, our review was not able to address
a number of other questions, which we suggest should be the subject of
future reviews, including:

- The effective communication of information in different time frames
of a crisis (short near term vs. longer response or recovery time
frames), and how model uncertainty communications in one phase
of emergency management (e.g. readiness) will influence those in
another (response and recovery).

- How to communicate the role of time, and what visualisation ap-
proaches are most effective for different time scales (short, medium,
long, time dependent).

- The role of the precautionary principle, and cognitive biases, on
what model uncertainties a scientist chooses to communicate.

- How the specific type of model (physical, probabilistic, insurance,
etc.) affects the communication of uncertainty.

- How to communicate model performance in low data situations,
model selection, and the role of the expert in uncertainty assess-
ments.

- How cultural characteristics (such as different levels of uncertainty
avoidance and power distance, and different individual and orga-
nisational values of science) impact the recommendations made
herein, and the appropriateness of them across different cultures.

Finally, we recommend that future reviews should consider a search
targeted at finding and summarising the existing recommendations
across all international organisations, and reiterate the conclusions of
Bostrom et al. [62] that future research should focus on evaluation of
communication techniques and visualisation, rather than developing
more of them, focusing in particular on how their format affects deci-
sion making.

7. Conclusions

Modelling, and the insights provided by numerical models, are vital
for natural hazard risk management and response. Communicating the
uncertainty inherent to these hazard models, their outputs, and the
hazard modelling process is a challenging task. Currently there is no
clear recommended approach to address these issues, even though there
is a growing appetite and expectation amongst operational decision-
makers for the communication of uncertainty to help facilitate effective
decisions in hazard settings. We found that the majority of literature on
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uncertainty communication focuses primarily on the need to disclose
uncertainties rather than the technical process of how to do so.
However, through our systematic thematic review of 111 publications,
we find a dominant message: Fundamental to the effective communication
of uncertainty is to first understand the needs of the decision-maker.
Scientists should then concentrate efforts on evaluating and communicating
the uncertainties relevant to those specific decision needs and time frames,
rather than communicate all uncertainties which can overwhelm a com-
munication and decision making process. For this to be effective, scien-
tists, communicators and other stakeholders should actively collaborate
with users to co-develop typologies or taxonomies of uncertainties
suitable for their needs and the hazard modelling and communication
situation, including how events evolve over time. They should adopt
participatory and engagement-based approaches to the co-develop-
ment, production and application of information management systems
such as these to support decision making procedures (see Doyle and
Paton [9]). This is particularly important for evolving events where
uncertainty is also an implicit component of the operating environment,
and where the management of uncertainty has scientific, political,
economic and social implications.

It is the process of engagement in the development of information
and uncertainty typology schemes, as well as their use, that is critical to
effective communication, management and prioritisation of un-
certainties [47,67,69,71,99,110,111]. Through this scientists can move
towards a ‘shared management’ of uncertainty [50,56,97] which ac-
knowledges and accounts for the different priorities and perspectives in
a decision making process, including different degrees of analysis de-
pending on the decision requirements. A typology could be adapted
from one of the many available in the existing literature (see Section
4.1), to enable the identification of all uncertainties and a prioritisation
of those for estimation and communication, depending upon their im-
pact on decisions. Typologies should be developed in partnership with
decision-makers to ensure the prioritisation of uncertainties considers
their decision needs (see Section 4.2). We also envision that some
complex or cascading hazards may require multiple typology systems to
categorise the uncertainty at the different stages of the assessment and
communication processes. Such an approach should consider the dif-
ferent epistemological perspectives inherent to this uncertainty, as well
as the value ladenness of any assumptions and judgements (e.g., [88]
see Section 4.1 and Section 4.2.1).

The goal is thus to identify which uncertainties are most relevant to
respective end users, and will have the greatest impact on their decision
making, such that resources and efforts can be concentrated on redu-
cing and communicating them. Through the engagement process sci-
entists should thus aim to communicate the complete story of un-
certainty, including its social, historical, quantitative and qualitative
aspects [64]. Ideally such engagement with decision-makers, and the
use of tools such as typologies, should be included from the outset of
model development and communication, and tested and used at all
stages in the risk management cycle and associated DRR planning ac-
tivities. However, in time limited situations where such a framework or
typology does not exist, the principles of a typology outlined here could
still be used to guide the systematic categorisation and communication
of decision-relevant uncertainties, as far as is possible under the crisis
situation. Such an approach is thus designed to meet the needs of in-
dividual audiences, and move beyond the unsuccessful one-size-fits-all
approaches to communication (see also [10]).

The development of one (or many) typologies in a model or risk
assessment limits the risk of the accidental omission of uncertainties
interacting to create escalating uncertainties. Further, given that some
level of uncertainty will always be present in response and risk as-
sessment settings and the development of more complex and compre-
hensive hazard models will increase both the existence of and knowl-
edge of uncertainties [144], the process of developing such typologies
with decision-makers can help increase uncertainty tolerance, un-
certainty literacy, and uncertainty familiarity with users.

We acknowledge the ability to develop a typology with decision-
makers depends upon a number of factors, including capacity and re-
sources; different priorities, politics and agendas; as well as other bar-
riers to collaboration including trust, transparency and partner equity
[9,205–207]. As discussed by Kloprogge et al. [88], a typology or
pedigree matrix should be used in situations where the assumptions and
uncertainties impact the decisions and policy the most. The above
processes and suggestions also assume that scientists and users are
engaging from the beginning of model development. However, in many
cases we will be drawing from existing available models. We thus
conclude with a proposed framework for ‘effective practice’ in the
communication of decision-relevant model related uncertainties in a
situation where time and resources allow for effective engagement. For
an existing model, this involves:

1. The systematic identification of all uncertainties in the model, ca-
libration data, and any layers, including assumptions and the po-
tential value-ladenness of those assumptions [88].

2. Rating of these uncertainties on two potential scales: a) the degree
to which they will affect the simulated model outcomes or calcu-
lations, and b) how well they can currently be addressed.

3. Categorisation of these uncertainties into a typology (or multiple),
using one of the schemes presented in Section 4.1.

4. Collaboration with users and decision-makers to rank uncertainties
and assumptions in terms of how they affect their specific decisions,
considering both risk management, response, and recovery, as ap-
propriate.

5. Collaboratively decide which uncertainties and assumptions to
concentrate evaluation and communication efforts upon.

6. For the prioritised uncertainties, quantify, propagate, analyse, and
communicate following best practice communication guidance (see
Section 4.3), using empirically evaluated methods if possible (ac-
knowledging that many visual best practice methods have not ac-
tually been evaluated, Section 4.4).

7. Evaluate the communication for efficacy and audience needs, and
adapt as appropriate for future communications.

For situations where a model or analysis process has not yet been de-
veloped, the above process can be prefaced by engaging with users earlier to
identify a needs based modelling approach, which utilises the simplest
models to adequately solve their problems, acknowledging that increasing
model complexity will increase uncertainties. This relates to the framework
of Beven et al. [157] for good practice in natural hazards modelling, which
includes 1) establishing the purpose of the risk analysis, 2) evaluating
available data, 3) eliciting opinions about sources of uncertainty, 3)
choosing methodologies for correct analysis, 4) conducting sensitivity
analysis to explore how those identified uncertainties impact decisions, and
5) communicating the meaning of the uncertainty analysis through a con-
dition tree or audit trail, including visualising the outcomes (p.2).

Fundamental to the framework we propose here, is the importance
of identifying with decision-makers what the decision-relevant un-
certainties are, and focusing analysis and communication upon those.
To identify these, the elicitation and sensitivity analysis approach
outlined by Beven et al. [157] above could be employed, or the ‘task-
oriented visual mapping’ of Pang [10]. In addition, it may be helpful to
employ scenario planning tools to develop potential ‘futures’ that ac-
curately reconcile the needs, goals, and expectations of diverse agencies
[2,164–167]. These could also use qualitative expert elicitation pro-
cesses that provide narratives of future scenarios, as demonstrated by
Dessai et al. [186] for climate change.

Collaborative exercises and simulations can also be used to scope
out the potential information needs and decision time frames, and to
develop similar mental models of the communication task at hand [2,9,
208–213]. A collaborative approach thus aims to overcome the lack of
ownership of uncertainty inherent to one way communications, and by
adopting a ‘translational discourse’ [69] a joint decision about which
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uncertainties should be modelled, evaluated, and communicated can be
made. This goal will be enhanced by further research to “understand
how different decision-makers conceptualize uncertainty for specific
domains” [116]. Further, by participating in such activities, decision-
makers and scientists can develop a greater understanding of each
other’s operational uncertainties, such as those arising from economic,
social, and political influences [9].

In addition, by utilising techniques inherent to the mental model
approach for participatory communication [214], differences between
the natural hazard scientists and decision-makers understandings of the
model can be identified, to help facilitate more effective discussions in
the development of a shared decision-relevant typology of the un-
certainties related to natural hazard models. Such an approach thus
aims to ensure that our advice follows the ethical principle of ‘audience
relevance’ [82,171], is ‘useful, useable, and used’ [215,216], and ‘so-
cially responsible’ [217] in terms of societal goals and values, where the
“transparent information and involvement of stakeholders during the
research process can mitigate uncertainties and risks and is a morally
responsible action” (p. 4). This is further supported by Benessia and De
Marchi [218] who show contradictions, controversies and conflicts are
bound to arise when expert advice is communicated with an “improper
reduction of the overall situational uncertainty to its scientific

component only”, particularly when it is analysed in isolation from
ethical, political, and societal concerns (p. 35).
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Appendix A

Brief summary of key lessons relating to the themes on effective visualisation of uncertainty via graphs, tables and images (9 documents, 8%),
communication of probabilities (18 documents, 16%), and communicating time frames and time dependent information (12 documents, 11%).

Study Key Lessons
Effective visualisation of graphs, tables, and images – note many have not been empirically evaluated

Bostrom et al. [62] • Outline various methods for visualising seismic risk and uncertainty, including a
review of individual techniques and the effects they have on comprehension.

• Considers risk ladders, stick and facial figures, statistical graphs, line graphs, dots, pie
charts, histograms, attributes (such as colour, interactivity, animation, and texture), 2D
and 3D issues, and virtual reality.

Pappenberger et al. [57] • Conducted an empirical study to identify what formats experts like to use to
communicate probabilities at a single location visually. Recommends a list of
approaches.

• User preference is not sufficient to choose an appropriate technique, and more research
is needed to identify actual comprehension aspects for content and visualisation types.

Loucks [135] • Considers visualisation of risk magnitude. Presents different graph and table methods
for illustrating uncertainty.

• Communicators must listen and learn from their stakeholders in order to craft effective
risk messages and communications that better reflect “the perspectives, technical
knowledge, and concerns of the audience” (p. 50) [see also 10].

Marimo et al. [136] • Participants made decisions faster when presented with a graph rather than a table of
uncertainty information.

• Preferences and interpretation accuracy is context dependent.
Tak et al. [118] • Presents interesting methods for conveying ensemble data via spaghetti plots and

other charts.
Gill et al. [25] • World Meteorological Guidelines - Lists various example visualisation displays.
Potter et al. [66] • Present an ‘advanced box plot’ to combine uncertainty data, which incorporates an

abbreviated box plot, histogram, moment data (mean and stdev, skew, kurtosis,
tailing), and distribution fitting, and propose a way to adapt it to 2D data.

Slavin et al. [119] • Present an interactive approach that adapts a risk and uncertainty visualisation based
upon the risk perception of the user, utilising the mental models approach of Morgan
et al. [170]. Uses the user’s perceptions to create individualised visualisations for
perceived risk and uncertainty, addressing their misconceptions and providing
normatively accurate information.

Probabilities (see also reviews in Doyle et al. [18,139]).
Bostrom et al. [137], Budescu et al. [53], Handmer and Proudley [52]. Marimo et al.

[136], Moss [140], Risbey and Kanlikar [141], Spiegelhalter et al. [73], Van Steen-
bergen et al. [138]

• Focus on the issues of framing and misinterpretations of verbal likelihood statements
and numerical probabilistic statements.

Budescu et al. [53], Budescu et al. [81], Doyle et al. [139], Gill et al. [25], Mastrandrea
and Field [24]

• The use of translation tables to help facilitate consistent use of verbal terms.

Gill et al. [25], Spiegelhalter et al. [73], Thompson et al. [129] • The use of probability statements alongside probabilistic map representations.
Budescu et al. [81], Han et al. [61], Longman et al. [60], Patt and Dessai [11] • Consider the communication of point and range probabilities and uncertainty bounds

around probabilities, and how people interpret or act upon them.
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Spiegelhalter et al. [73] • Present a wide range of examples for how to communicate probabilities visually,
including bar charts, pie graphs, and methods for portraying proportional represen-
tation and continuous quantities - fan charts, probability distributions, roulette
wheels, uncertainty intervals, map based uncertainty, and infographics.

Communicating time dependent advice and different timeframes
Moss [140] • To communicate forecasts effectively to policy and decision-makers, communicators

should focus on well-specified questions and decisions and ‘provide information on
the prospects for reducing uncertainty on decision-relevant time frames’ (p. 656) (see
also Doyle et al. [18]).

Maslin [144] • States that scientists should focus on communicating when not if a threshold limit will
be reached, such that the focus of the uncertainty is on when not if – to increase
actions and constructive dialogue about mitigating decisions.

van Steenbergen [138] • Graphical time dependent forecast communications found to be better for forecast
professionals and their decisions.

• Linguistic communication is more suited to “communicate to the larger public” (p. 104).
Doyle et al. [139] • Communicators must be consistent with the use of linguistic terms that describe time

(e.g. “within the next X days” vs “in the X next days) due to their statistically
significant different interpretations.

Laurent et al. [92] • Considers how to communicate uncertainty with a time component via an ensemble
flood forecast time line graph that includes uncertainty.

Nadav-Greenberg [131] • Investigates wind speed maps that use a box plot of predictions at specific times and
locations.

Roulston [142] • Investigated decisions made dependent upon weather forecast temperatures over
time.

Joslyn and LeClerc [113] • Empirical studies found that people anticipated an increase in uncertainty as the lead-
time increases.

Morss et al. [143] • Found people’s confidence decreased in a forecast as the lead time increased.
However, participants still preferred to receive forecasts with uncertainty than not,
depending on the context and local experience of forecasts and subsequent weather.

Höllermann and Evers [89], Ekström et al. [87], Brus and Svobodova [106] • Consider time, and uncertainty related to time, in their typology frameworks. In
particular, Höllermann and Evers [89] consider how the uncertainties change in
different time frames for flood risk management, including response, medium and
long term uncertainties.
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