4,559 research outputs found

    Acceptance checkout equipment - Spacecraft Monthly progress report, 15 Jan. - 15 Feb. 1966

    Get PDF
    Acceptance checkout equipment and spacecraft testin

    CO excitation in four IR luminous galaxies

    Get PDF
    The correlation between the CO and far infrared luminosities of spiral galaxies is well established. The luminosity ration, L sub FIR/L sub CO in IR luminous active galaxies is, however, systematically five to ten times higher than in ordinary spirals and molecular clouds in our Galaxy. Furthermore, the masses of molecular hydrogen in luminous galaxies are large, M (H2) approx. equals 10(exp 10) solar magnitude, which indicates the observed luminosity ratios are due to an excess of infrared output, rather than a deficiency of molecular gas. These large amounts of molecular gas may fuel luminous galaxies through either star formation or nuclear activity. This interpretation rests on applying the M (H2)/L sub CO ratio calibrated in our Galaxy to galaxies with strikingly different luminosity ratios. But are the physical conditions of the molecular gas different in galaxies with different luminosity ratios. And, if so, does the proportionality between CO and H2 also vary among galaxies. To investigate these questions researchers observed CO (2 to 1) and (1 to 0) emission from four luminous galaxies with the Institute for Radio Astronomy in the Millimeter range (IRAM) 30 m telescope. Researchers conclude that most of the CO emission from these Arp 193, Arp 220, and Mrk 231 arises in regions with moderate ambient densities similar to the clouds in the Milky Way molecular ring. The emission is neither from dense hot cloud cores nor from the cold low density gas characteristic of the envelopes of dark clouds

    First redshift determination of an optically/UV faint submillimeter galaxy using CO emission lines

    Full text link
    We report the redshift of a distant, highly obscured submm galaxy (SMG), based entirely on the detection of its CO line emission. We have used the newly commissioned Eight-MIxer Receiver (EMIR) at the IRAM 30m telescope, with its 8 GHz of instantaneous dual-polarization bandwidth, to search the 3-mm atmospheric window for CO emission from SMMJ14009+0252, a bright SMG detected in the SCUBA Lens Survey. A detection of the CO(3--2) line in the 3-mm window was confirmed via observations of CO(5--4) in the 2-mm window. Both lines constrain the redshift of SMMJ14009+0252 to z=2.9344, with high precision (dz=2 10^{-4}). Such observations will become routine in determining redshifts in the era of the Atacama Large Millimeter/submillimeter Array (ALMA).Comment: 5 pages, 3 figures, accepted by ApJ

    Quantum Estimation of Parameters of Classical Spacetimes

    Get PDF
    We describe a quantum limit to measurement of classical spacetimes. Specifically, we formulate a quantum Cramer-Rao lower bound for estimating the single parameter in any one-parameter family of spacetime metrics. We employ the locally covariant formulation of quantum field theory in curved spacetime, which allows for a manifestly background-independent derivation. The result is an uncertainty relation that applies to all globally hyperbolic spacetimes. Among other examples, we apply our method to detection of gravitational waves using the electromagnetic field as a probe, as in laser-interferometric gravitational-wave detectors. Other applications are discussed, from terrestrial gravimetry to cosmology.Comment: 23 pages. This article supersedes arXiv:1108.522

    Researching DIY Cultures: Towards a Situated Ethical Practice for Activist-Academia

    Get PDF
    The empirical study of DIY culture and feminist cultural activism is a flourishing interdisciplinary research area particularly in the USA, Canada, Australia and UK. This has enabled a growth in participant-researchers doing research on their own DIY cultures and activist communities of belonging. Tensions occur here for the participant-researcher in relation to conventional data collection methods, ethical and moral decisions and modes of research dissemination. This article develops discussions of dilemmas experienced by the authors during doctoral research projects on DIY punk, roller derby and queer feminist music cultures. We detail the possibilities and tensions met when the participant-researcher encounters existing subcultural theories, ethical codes of practice, data collection methods and the dissemination of academic research. In addition we offer insights into the under-documented emotional impacts and moments of crisis the participant-researcher needs to attend to when carrying out research with/in personal and political communities of belonging. In conclusion, we offer a series of recommendations for a situated ethical practice for research with/in DIY cultures in relation to engaged data generation

    The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies

    Full text link
    We present CO observations of a large sample of ultraluminous IR galaxies out to z = 0.3. Most of the galaxies are interacting, but not completed mergers. All but one have high CO(1-0) luminosities, log(Lco [K-km/s-pc^2]) = 9.92 +/- 0.12. The dispersion in Lco is only 30%, less than that in the FIR luminosity. The integrated CO intensity correlates Strongly with the 100 micron flux density, as expected for a black body model in which the mid and far IR radiation are optically thick. We use this model to derive sizes of the FIR and CO emitting regions and the enclosed dynamical masses. Both the IR and CO emission originate in regions a few hundred parsecs in radius. The median value of Lfir/Lco = 160 Lsun/(K-km/s-pc^2), within a factor of two of the black body limit for the observed FIR temperatures. The entire ISM is a scaled up version of a normal galactic disk with densities a factor of 100 higher, making even the intercloud medium a molecular region. Using three different techniques of H2 mass estimation, we conclude that the ratio of gas mass to Lco is about a factor of four lower than for Galactic molecular clouds, but that the gas mass is a large fraction of the dynamical mass. Our analysis of CO emission reduces the H2 mass from previous estimates of 2-5e10 Msun to 0.4-1.5e10 Msun, which is in the range found for molecular gas rich spiral galaxies. A collision involving a molecular gas rich spiral could lead to an ultraluminous galaxy powered by central starbursts triggered by the compression of infalling preexisting GMC's.Comment: 34 pages LaTeX with aasms.sty, 14 Postscript figures, submitted to ApJ Higher quality versions of Figs 2a-f and 7a-c available by anonymous FTP from ftp://sbast1.ess.sunysb.edu/solomon/

    Dense Molecular Gas and the Role of Star Formation in the Host Galaxies of Quasi-Stellar Objects

    Get PDF
    New millimeter-wave CO and HCN observations of the host galaxies of infrared-excess Palomar Green quasi-stellar objects (PG QSOs) previously detected in CO are presented. These observations are designed to assess the validity of using the infrared luminosity to estimate star formation rates of luminous AGN by determining the relative significance of dust-heating by young, massive stars and active galactic nuclei (AGN) in QSO hosts and IRAS galaxies with warm, AGN-like infrared colors. The HCN data show the PG QSO host IZw1 and most of the warm IRAS galaxies to have high L_IR / L'_HCN (>1600) relative to the cool IRAS galaxy population for which the median L_IR / L'_HCN ~ 890(+440,-470). If the assumption is made that the infrared emission from cool IRAS galaxies is reprocessed light from embedded star-forming regions, then high values of L_IR / L'_HCN are likely the result of dust heating by the AGN. Further, if the median ratio of L'_HCN / L'_CO ~ 0.06 observed for Seyfert galaxies and IZw1 is applied to the PG QSOs not detected in HCN, then the derived L_IR / L'_HCN correspond to a stellar contribution to the production of L_IR of ~ 7-39%, and star formation rates ~ 2-37 M_sun/yr are derived for the QSO hosts. Alternatively, if the far-infrared is adopted as the star formation component of the total infrared in cool galaxies, the stellar contributions in QSO hosts to their L_FIR are up to 35% higher than the percentages derived for L_IR. This raises the possibility that the L_FIR in several of the PG QSO hosts, including IZw1, could be due entirely to dust heated by young, massive stars. Finally, there is no evidence that the global HCN emission is enhanced relative to CO in galaxies hosting luminous AGN.Comment: LaTex, 31 pages, including 9 postscript figures, AJ, in press (December 2006

    On-chip generation of heralded photon-number states

    Get PDF
    Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, \textit{i.e.}, non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5±\pm8\% and 95.0±\pm8\%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits

    The Stellar Populations and Evolution of Lyman Break Galaxies

    Get PDF
    Using deep near-IR and optical observations of the HDF-N from the HST NICMOS and WFPC2 and from the ground, we examine the spectral energy distributions (SEDs) of Lyman break galaxies (LBGs) at 2.0 < z < 3.5. The UV-to-optical rest-frame SEDs of the galaxies are much bluer than those of present-day spiral and elliptical galaxies, and are generally similar to those of local starburst galaxies with modest amounts of reddening. We use stellar population synthesis models to study the properties of the stars that dominate the light from LBGs. Under the assumption that the star-formation rate is continuous or decreasing with time, the best-fitting models provide a lower bound on the LBG mass estimates. LBGs with ``L*'' UV luminosities are estimated to have minimum stellar masses ~ 10^10 solar masses, or roughly 1/10th that of a present-day L* galaxy. By considering the effects of a second component of maximally-old stars, we set an upper bound on the stellar masses that is ~ 3-8 times the minimum estimate. We find only loose constraints on the individual galaxy ages, extinction, metallicities, initial mass functions, and prior star-formation histories. We find no galaxies whose SEDs are consistent with young (< 10^8 yr), dust-free objects, which suggests that LBGs are not dominated by ``first generation'' stars, and that such objects are rare at these redshifts. We also find that the typical ages for the observed star-formation events are significantly younger than the time interval covered by this redshift range (~ 1.5 Gyr). From this, and from the relative absence of candidates for quiescent, non-star-forming galaxies at these redshifts in the NICMOS data, we suggest that star formation in LBGs may be recurrent, with short duty cycles and a timescale between star-formation events of < 1 Gyr. [Abridged]Comment: LaTeX, 37 pages, 21 figures. Accepted for publication in the Astrophysical Journa
    corecore