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We describe a quantum limit to the measurement of classical spacetimes. Specifically, we formulate a
quantum Cramér-Rao lower bound for estimating the single parameter in any one-parameter family of
spacetime metrics. We employ the locally covariant formulation of quantum field theory in curved
spacetime, which allows for a manifestly background-independent derivation. The result is an uncertainty
relation that applies to all globally hyperbolic spacetimes. Among other examples, we apply our method to
the detection of gravitational waves with the electromagnetic field as a probe, as in laser-interferometric
gravitational-wave detectors. Other applications are discussed, from terrestrial gravimetry to cosmology.
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I. INTRODUCTION

The geometry of spacetime can be inferred from physical
measurements made with clocks and rulers or, more gen-
erally, with quantum fields, sources, and detectors. We
assume that the ultimate precision achievable is determined
by quantum mechanics. In this paper we obtain parameter-
based quantum uncertainty relations that bound the preci-
sionwith whichwe can determine properties of spacetime in
terms of stress-energy variances. Such uncertainty relations
might become increasingly relevant to empirical observation
as, for example, laser-interferometric gravitational-wave
detectors are expected to approach quantum-limited sensi-
tivity across a wide bandwidth in the near future.
An informative, high-level way to quantify the precision

of a parameter measurement is by the inverse variance
hðδ~θÞ2i of an estimator ~θ. The best precision with which we
can measure a parameter is determined by the quantum
Fisher information [1,2]. For pure states, the Fisher infor-
mation reduces to a multiple of the variance hðΔP̂Þ2i of an
evolution operator P̂ that describes how the quantum state
changes with changes in the parameter. This determines a
parameter-based uncertainty relation [3,4],

hðδ~θÞ2ihðΔP̂Þ2i ≥ ℏ2

4
; ð1:1Þ

whose form is reminiscent of the Heisenberg uncertainty
relations.
Such parameter-based uncertainty relations can be

applied to parameters associated with local changes of
the spacetime metric. They are derived from a universal

connection between local changes in the metric and relative
changes in the states of quantum fields that live on the
spacetime. These changes, used to sense the spacetime
parameters, can be characterized in terms of an evolution of
the state driven by a stress-energy integral with respect to
the change in the metric, which gives the operator P̂.
For the universal connection between changes in states

of quantum fields and the stress-energy integrals, we rely
on the locally covariant formalism for quantum fields on
curved spacetime backgrounds [5]. For this purpose, we
treat gravity classically as in general relativity, determined
by a metric with signature ð−;þ;þ;þÞ on a spacetime
manifold. This is treated as a fixed background on which
the quantum fields used for measurements—we call these
“probe fields”—propagate. In particular, we do not con-
sider back action from the quantum fields on the metric. In
any case, we expect that such back action would transfer
uncertainty in the quantum field being measured to the
metric and reduce the achievable precision, for otherwise,
by an argument given in Refs. [6,7], the uncertainty
principle for matter would be violated (see also Ref. [8]
for a study of the problem of back action when measuring
the structure of spacetime).
We allow for the presence of classical fields that can

propagate on the spacetime background. We only consider
those fields that play a direct role as sources for the
quantum fields used for measurement. These sources are
determined by classical devices needed to implement the
measurement. For the types of measurement considered
here, the parametrized changes of the metric are indepen-
dent of these equipment-related classical fields. In particu-
lar, these classical fields contain no information about the
parameter of interest, and for this reason we do not model
them explicitly.*downes@physics.uq.edu.au
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Our work in this paper relies on the parameter-based
uncertainty relation (1.1). To put such uncertainty relations
in context, we consider now how the familiar Heisenberg
uncertainty relations generalize to parameter-based uncer-
tainty relations. The Heisenberg uncertainty relation for
position and momentum states that the product of the
uncertainties in position and momentum, for any quantum
state, must be greater than a constant. In terms of the
variances of position and momentum, the Heisenberg
uncertainty relation is written as

hðΔx̂Þ2ihðΔp̂Þ2i ≥ ℏ2

4
; ð1:2Þ

where ℏ is the reduced Planck’s constant. The Heisenberg
uncertainty relation is derived in standard quantum
mechanics, where position and momentum are both rep-
resented as Hermitian operators.
A similar relation, albeit with a different interpretation,

exists between time and energy:

hðδtÞ2ihðΔĤÞ2i ≥ ℏ2

4
: ð1:3Þ

Unlike position, time in standard quantum mechanics is a
classical parameter. The time-energy uncertainty relation is
an example of a quantum limit on parameter estimation.
One tries to estimate a classical parameter, in this case time,
by making measurements on a quantum system, a “clock,”
whose evolution depends on time. In the time-energy
uncertainty relation (1.3), hðδtÞ2i is the classical variance
of the estimate of t; this classical variance arises ultimately
from quantum uncertainties in clock variables conjugate to
the Hamiltonian H.
The most common way to make quantum mechanics

compatible with classical relativity is to demote position to
a parameter, just like time in the previous example. Physical
systems can then be thought of as living on, and intera-
cting with, the classical spacetime manifold. In this
relativistic context, the position-momentum uncertainty
relation naturally becomes a quantum limit on parameter
estimation [3].
This parameter-based approach is the natural, opera-

tional way to think of uncertainty relations. Nothing in the
traditional Heisenberg uncertainty relation (1.2) refers
directly to a measurement of position or momentum. In
the parameter-based approach, one considers measure-
ments of any sort whose results are used to estimate
changes in a parameter; quantum mechanics then says,
via the quantum Fisher information, that the uncertainty of
the estimate is limited by the uncertainty in the operator that
generates changes in the parameter, in a way that looks like
(but by being operational is more powerful than) a tradi-
tional Heisenberg uncertainty relation.

This approach was used by Braunstein, Caves, and
Milburn [4] to develop optimal quantum estimation for
spacetime displacements in flat Minkowski spacetime. In
spacetime, not only can one move a fixed proper distance or
time, one can also boost and rotate. Quantum parameter
estimation was thus also developed for the parameters
corresponding to these actions [4]. The results were
developed with the quantized electromagnetic field as
the probe. These results show that estimates of a spacetime
translation can be made increasingly accurate as the
uncertainty in the operator that generates the translation,
boost, or rotation is made very large.
In this paper we are interested in limits on the precision

of estimates of parameters of the classical gravitational
field. In general relativity the gravitational field is a
manifestation of the geometry of spacetime, which is
described by a metric. The metric determines the length
of the invariant (proper) interval between two spacetime
events according to [9]

ds2 ¼ gμνðxÞdxμdxν; ð1:4Þ

where gμνðxÞ is the metric tensor, with indices μ, ν ¼ 0, 1,
2, 3 for time and the three spatial coordinates. The dxμ are
infinitesimal coordinate differences. We assume the
Einstein summation convention, where repeated upper
and lower indices are summed over.
Before we describe the relevant quantum parameter

estimation, we ask the following: can any insight be found
by applying the Heisenberg uncertainty relation, in its
parameter-based form, directly to a proper distance? It was
along these lines that Unruh [10] derived an uncertainty
relation for a component of the metric tensor. Once
coordinates are chosen, there should only be quantum
uncertainty in the proper time and the proper distance. As
these are in turn related to the metric via Eq. (1.4), any
uncertainty in the proper distance is equivalent to uncer-
tainty in the metric. By applying the Heisenberg uncer-
tainty relation to a proper distance, Unruh found a simple,
yet insightful uncertainty relation for a single component of
the metric. The Unruh uncertainty relation for the g11
component of the metric (assuming particular Cartesian-
like coordinates), in terms of variances, is

hðδg11Þ2ihðΔT̂11Þ2i ≥ ℏ2

V2
; ð1:5Þ

where here, and henceforth, we use units such that
G ¼ c ¼ 1. The conjugate variable to g11 is the corre-
sponding component of the quantized stress-energy tensor,
in this case the pressure T̂11 in the x1 direction. The key
feature of this uncertainty relation is the inverse propor-
tionality to V2, the square of the four-volume of the
measurement.
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We provide a general framework for deriving such an
uncertainty relation, by formulating it as a problem in
quantum estimation theory. The metric gμνðxÞ is defined
for each point x on the manifold. If the quantum probe
(measurement device) occupies some four-volume V, then
the probe’s state depends on the metric at every point in
that region. If we consider the metric to be an arbitrary
function on the manifold, then we need to estimate an
infinite number of parameters to define it completely.
Instead, we consider regions of spacetime that can be
described by metrics characterized by a single parameter θ.
For example, the Schwarzschild metric, which describes
the spacetime around a static nonrotating black hole, is
defined by the single parameter M, the mass of the black
hole. The task is to estimate this mass parameter by
making measurements on physical systems living on the
spacetime manifold.
There has recently been some promising work in this

direction [11–13], focusing on quantum probes consisting
of scalar fields in Gaussian states. Here we present a
general formalism for relativistic quantummetrology, using
arbitrary fields and states. In so doing, we address several
related issues, which have, we believe, not previously
received enough attention in this context. Ensuring that
quantum observables in different spacetimes measure “the
same” physical parameter is nontrivial. If the spacetimes
differ by a global perturbation, the positions of measure-
ment devices therein might correspondingly differ, further
complicating the issue; more generally, spacetime points in
two such spacetimes cannot unambiguously be identified
with each other. Care must also be taken to ensure
coordinate independence.
Fortunately, a framework exists for comparing quantum

observables in perturbed, classical spacetimes in a coor-
dinate-independent manner [5]. This locally covariant
framework, which was developed in the context of alge-
braic quantum field theory, serves as our starting point. As
the current work is geared more towards physical experi-
ments than most literature invoking algebraic quantum field
theory, it is worth a comment. The aim of algebraic
quantum field theory is to put quantum field theory on
rigorous mathematical footing, while the aim of what might
be termed pragmatic quantum field theory is to make
experimental predictions [14,15]. Strides toward connect-
ing the two have been made recently [5,16–19], and this
progress makes the current work possible.
The locally covariant framework directly connects the

stress-energy to the change in state associated with a
compactly supported change in the metric. The connection
is via the concept of relative Cauchy evolution developed in
Ref. [5] and leads directly to our bounds on measurement
precision. An issue is that the bounds obtained are with
respect to the best observable supported in a region that can
be much bigger than the region containing the probes.
While this means that the bounds are guaranteed to be

optimistic in the sense that they suggest a higher-than-
achievable precision, we generally wish to make the
relationship between the measurement region, stress-
energy variance, and measurement precision tighter. For
this we show that the metric change can be localized,
provided that the sensitivity of our measurement to the
parameter of interest is not affected. Because the locally
covariant framework requires compactly supported regions,
the localization is necessary when the parameter is a global
property of spacetime.
Another important issue—perhaps the most important

issue for the interpretation and relevance of our results—is
that computations of the relevant stress-energy variances
can be difficult. In most situations, however, the probe
devices introduce fields that have large mean values
compared to a zero-mean reference state, which is typically
the vacuum state. In these cases, the calculation can be
simplified by recognizing that mean-field-independent
contributions become negligible.
Once we have determined the general parameter-based

uncertainty relations connecting measurement precision to
stress-energy variances, we apply them to several situations
of interest. The first involves estimating constant metric
components and recovers the Unruh uncertainty relations.
By considering specific metric components, we also obtain
the parametrized form of the Heisenberg uncertainty
relations. Next we study in detail the problem of interfero-
metric gravitational-wave detection with light. This
requires the full power of our approach. Here we take
advantage of localization by means of a “bump” function
supported in the region of the measurement devices and use
the large-mean-field property to enable the explicit calcu-
lation of a bound on precision that depends on the
amplitude of the light fields used. This recovers the
well-known shot-noise limit, but goes beyond this limit
in two ways. First, for the case of a wideband mean field on
top of vacuum fluctuations, we obtain a general shot-noise
bound that does not make an assumption of narrow
bandwidth detection of the probe field; in particular, we
find a wideband shot-noise limit in terms of a frequency-
weighted integration over mean photon numbers. Second,
we find that wideband squeezing gives the optimal,
sub-shot-noise sensitivity under the assumptions we are
making. We briefly discuss other examples, including
cosmological parameters and gravimetry.
Our work is organized as follows. In Sec. II we review

quantum estimation theory including, in particular, the
quantum Cramér-Rao bound, which is the expression of
parameter-based uncertainty principles. In Sec. III we
review the locally covariant approach to quantum field
theory in perturbed, classical spacetime developed by
Brunetti, Fredenhagen, and Verch [5]. In Sec. IV we show
that the application of the Cramér-Rao bound discussed in
Sec. II to such a perturbed spacetime results in a coordinate-
independent uncertainty relation between a local spacetime
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property and a quantum operator that depends on the probe
field. In Sec. V we generalize this uncertainty relation to
global spacetime properties. In Sec. VI we consider the
application of the formalism to the estimation of metric
components, proper time, and proper distance in a certain
class of perturbed spacetimes. In Sec. VII we derive a
quantum uncertainty bound on the detection of gravita-
tional waves using the electromagnetic field as a probe, as
in laser-interferometric gravitational-wave detectors. Then,
in Sec. VIII, we consider additional applications, and
finally we conclude in Sec. IX.

II. QUANTUM ESTIMATION THEORY

In this paper we consider estimating an individual
parameter of a spacetime metric, so we only need the
theory of single-parameter quantum estimation. A general
scheme for quantum parameter estimation is depicted in
Fig. 1. A quantum state, represented by a density operator
ρ̂0, undergoes a unitary transformation ÛðθÞ that depends
on the parameter θ of interest, producing a one-parameter
family of states, ρ̂ðθÞ ¼ ÛðθÞρ̂0Û†ðθÞ. Measurements are
made on the system, with results ω, which are fed into an
estimator ~θðωÞ of the parameter.
We consider generalized measurements, described by

positive-operator-valuedmeasures (POVMs). For simplicity
we consider such POVMs given by a positive-operator-
valued density ÊðωÞ that satisfies the completeness property

Z
dωÊðωÞ ¼ 1̂; ð2:1Þ

where 1̂ is the identity operator. The outcomes of a particular
measurement follow a probability distribution pðωjθÞ con-
ditional on the parameter θ. The probability distribution for
the outcomes ω can be calculated as

pðωjθÞdω ¼ TrðÊðωÞρ̂ðθÞdωÞ: ð2:2Þ

The problem of estimating the parameter θ is essentially
that of choosing a value ~θ to make a good estimate of θ by
considering the observed ω in relation to the known
probability distributions pðωjθÞdω. A common example
is the maximum likelihood estimator, which is the choice of
~θ that retrospectively maximizes the probability of the
observed measurement outcomes.

The variance of an unbiased estimate of the parameter θ,
based on the distribution of measurement outcomes to be
observed, is bounded by the classical Cramér-Rao lower
bound [4],

hðδ~θÞ2i ≥ 1

FðθÞ ; ð2:3Þ

where FðθÞ is the classical Fisher information for the
measurement, given by

FðθÞ ¼
Z

dω
1

pðωjθÞ
�∂pðωjθÞ

∂θ
�

2

: ð2:4Þ

In this paper we consider the special case where ρ̂ is
differentiable at θ0, with differential generated by the self-
adjoint operator ĥ, as expressed by

dρ̂
dθ

¼ −
i
ℏ
½ĥ; ρ̂�: ð2:5Þ

Informally, we write

ρ̂ðθ0 þ dθÞ ¼ e−idθĥ=ℏρ̂ðθ0Þeidθĥ=ℏ: ð2:6Þ

It can then be shown that for any POVM, the classical
Fisher information satisfies FðθÞ ≤ 4hðΔĥÞ2=ℏ2 [1–3],
where hðΔĥÞ2i is the quantum variance of the generator
ĥ; moreover, there is a POVM that saturates this bound
when ρ̂ðθ0Þ is pure [3]. Applying this bound to Eq. (2.3)
yields the quantum Cramér-Rao lower bound [4],

hðδ~θÞ2ihðΔĥÞ2i ≥ ℏ2

4
: ð2:7Þ

One can now construct examples by identifying parameters
and their corresponding generators. For example, since the
Hamiltonian is the generator of time translations, this gives
the time-energy uncertainty relation (1.3) presented in the
Introduction. Since the momentum operator generates
displacements, using it as the generator gives the
parameter-based version of the Heisenberg uncertainty
relation. Another important example is provided by the
number operator and phase, which is the basis of
Heisenberg-limited phase estimation [20–22].

III. RELATIVE CAUCHY EVOLUTION

We employ the locally covariant formulation of quantum
field theory in curved spacetime as developed by Brunetti,
Fredenhagen, and Verch [5]. The approach has been used to
develop a notion of “identical physics” on different space-
times [23]. A key result is a method for calculating how
quantum observables respond to local changes in the
background spacetime. Say we believe some particularFIG. 1. Scheme for quantum parameter estimation.
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region of the universe to be well described by a metric gðsÞμν

that depends on a parameter s. If s is assumed to para-
metrize a compactly supported perturbation, the locally
covariant approach can be used to calculate how any
observable ÊðsÞ responds to such a change. The response
is evaluated as the rate of change of the observable with
respect to the parameter. As we noted in the Introduction,
this is just what we need to calculate the quantum Cramér-
Rao lower bound.
We emphasize, however, that only compactly supported

perturbations in spacetime were considered in Ref. [5]. The
motivation for this restriction is similar to that for restrict-
ing the domain of distributions to test functions and ensures
that relevant quantities are well defined. We consider how
to approach more general perturbations in Sec. IV.
The locally covariant approach is formulated in a

category-theory framework. It involves the category of
globally hyperbolic spacetimes and the mapping of each to
an algebra of observables. By this formalism, which is
summarized in Appendix A, the evolution of an observable
in response to a spacetime perturbation is made math-
ematically well defined.
Note that here a spacetime is a pair ðM; gÞ, whereM is a

four-manifold admitting a Lorentzian metric and g is a
Lorentzian metric. The additional property of global hyper-
bolicity is a restriction on the causal structure on the
manifold. It removes the possibility of closed time-like
curves and ensures the spacetime can be foliated into
Cauchy surfaces. This in turn ensures that any hyperbolic
field equation (Klein-Gordon, Maxwell, etc.) has a well-
posed initial-value formulation.
A one-parameter family of spacetimes fM; gðsÞg was

considered in Ref. [5], all sharing “initial” and “final”
Cauchy surfaces, as well as respective neighborhoods N−
and Nþ of those Cauchy surfaces. These spacetimes differ
only in their geometry, and only within a compact region
between N− and Nþ. We refer to the metric gðsÞ as
perturbed when s ≠ 0 and fiducial when s ¼ 0.
To be more precise, we make the following geometric

assumptions:
(1) ðM; gð0ÞÞ is a globally hyperbolic spacetime.
(2) We choose a Cauchy surface C in ðM; gð0ÞÞ and two

open subregions ðN�; g
ð0Þ
N�Þ with the following prop-

erties:
(a) Nþ is within the future and N− is within the past

causal regions of the Cauchy surface C.
(b) ðN�; g

ð0Þ
N�Þ are globally hyperbolic spacetimes.

(c) N� contain Cauchy surfaces for the whole
spacetime ðM; gð0ÞÞ.

(3) fgðsÞgs∈½−1;1� is a set of Lorentzian metrics onM with
the following properties:
(a) Each gðsÞ deviates from gð0Þ only on a compact

subset of the region in the past of Nþ and the
future of N−.

(b) Each ðM; gðsÞÞ is a globally hyperbolic
spacetime.

(c) C is also a Cauchy surface for each ðM; gðsÞÞ.
The geometric assumptions listed here can be seen in
greater mathematical detail in Sec. 4.1 of Ref. [5].
Consider now a Hilbert-space operator Âð0Þ defined on

ðM; gð0ÞÞ; this is an operator acting on a representation of
the algebra generated by the quantum fields on ðM; gð0ÞÞ.
This operator could, for example, be a POVM element for a
particle detector and belong to the algebra of operators
localized to the spatiotemporal extent where the detector is
active.
It was shown in Ref. [5] that Âð0Þ unitarily transforms

under an s-parametrized metric perturbation into a new
operator ÂðsÞ. The functional derivative of the action of this
unitary transformation with respect to the metric is
defined as

d
ds

����
0

ÂðsÞ ¼
Z
M
dμ
∘ðxÞ δÂðsÞ

δgμνðxÞ
d
ds

����
0

gðsÞμν ðxÞ; ð3:1Þ

where dμ
∘ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gð0Þj

q
dx0dx1dx2dx3 is the proper

volume element for the metric gð0Þ. The interpretation of
this is as follows: fields are prepared inN−, they then scatter
off an intermediate region (the compact subset of geometric
assumption 3) and aremeasured inNþ; s controls a localized
perturbation within this region, and Eq. (3.1) gives the
infinitesimal movement of the observables in the Hilbert-
space representation of AðM; gð0ÞÞ due to an infinitesimal
perturbation ds around s ¼ 0. Further properties and inter-
pretations of this functional derivative and the relative
Cauchy evolution can be found in Refs. [5,23,24].
For the case of the Klein-Gordon field, with its corre-

sponding Weyl algebra of observables, it can be shown that
both elements of this algebra and polynomials of field
operators constructed from it obey the following relation
(Theorem 4.3 from Ref. [5]):

δÂðsÞ
δgμνðxÞ

����
s¼0

¼ i
2ℏ

½Âð0Þ; T̂μνðxÞ�: ð3:2Þ

Here T̂μνðxÞ is the renormalized stress-energy tensor on the
relevant Hilbert space as discussed in Ref. [5] and satisfy-
ing Theorem 4.6.1 of Ref. [25]. We assume, more specifi-
cally, that it is normally ordered in accordance with the
procedure advocated by Brown and Ottewill [26].
Inserting Eq. (3.2) into Eq. (3.1), we have

d
ds

����
0

ÂðsÞ ¼
Z
M
dμ
∘ðxÞ i

2ℏ
½Âð0Þ; T̂μνðxÞ� d

ds

����
0

gðsÞμν ðxÞ; ð3:3Þ

where we emphasize that the operator Â does not depend on
x. By defining the operator P̂ as
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P̂ ¼ 1

2

Z
M
dμ
∘ðxÞT̂μνðxÞ d

ds

����
0

gðsÞμν ðxÞ; ð3:4Þ

we have

d
ds

ÂðsÞj
s¼0

¼ i
ℏ
½Âð0Þ; P̂�: ð3:5Þ

The above relative Cauchy evolution equation has also
been shown to hold for spin-1

2
and spin-1 fields [16–18],

with an appropriately defined stress-energy tensor. For
example, for the electromagnetic field, which we consider
in Sec. VII, the Weyl algebra of the Klein-Gordon field is
simply replaced by the Weyl algebra of gauge-equivalence
classes of the vector potential. Then by Theorem 3.2.9 in
Ref. [17], the functional derivative with respect to the
perturbed metric of an operator Â is again given by the
commutator with the stress-energy tensor, as in Eq. (3.2).

IV. ESTIMATION OF SPACETIME
PERTURBATION

Due to the dual nature of operators and states, a
consequence of Eq. (3.5) is that we can write

ρ̂ð0þ dsÞ ¼ e−idsP̂=ℏρ̂ð0ÞeidsP̂=ℏ; ð4:1Þ
where ρ̂ðsÞ is a density operator in the Gelfand-Neimark-
Segal [27–29] representation of the algebra on ðM; gð0ÞÞ
after the action of ÛðsÞ, the unitary in the Hilbert-space
representation corresponding to the relative Cauchy evo-
lution (more precisely to a unit-preserving automorphism
on the algebra of observables, called βgðsÞ in Appendix A).
Then, noting the equivalence of Eqs. (4.1) to (2.6), we
obtain [30]

hðδ~sÞ2ihðΔP̂Þ2i ≥ ℏ2

4
ð4:2Þ

where ~s is the estimator for the perturbation parameter.
A limitation of the quantum Cramér-Rao bound (4.2) is

that the spacetime perturbation is restricted to compact
support, whereas physically interesting perturbations are
typically not so restricted. For example, a variation in the
mass of the Earth would vary the metric at unbounded
distances away. To apply our formalism to this situation, we
approximate global perturbations compactly. As a first
attempt, one might consider using compact perturbations
that approach the global one in some limit, but this might
lead to unbounded values of ðΔP̂Þ2, which would trivialize
the bound (4.2). To avoid this we take advantage of the fact
that the measurements that yield an estimate of ~θ are of
observables that are accessible in a compact measurement
region determined by the measurement device. Given this,
the bounds above are necessarily conservative for pertur-
bations with large extent: they apply to all observables in
the region of the perturbation, even those causally separated

from the measurement device. We can take advantage of a
flexibility built into quantum estimation theory whereby we
can obtain an uncertainty bound from any parameter that
our estimator ~θ is sensitive to.
To see this, let Θ denote the global parameter of interest

for a spacetime with metric gμνðΘÞ, with Θ0 being the

fiducial value of the parameter and ~θ denoting its estimator.
We can choose a smooth, compactly supported “bump”
function, 0 ≤ χ ≤ 1, with χðxÞ ¼ 1 on the measurement
region. We consider the localized perturbation
gμνðθÞ≡ gμνðθ0 þ ðθ − θ0ÞχÞ, parametrized in terms of θ,
with θ0 ¼ Θ0. If χ has sufficiently large extent and
transitions to 0 sufficiently slowly (say, adiabatically),
we can argue that the sensitivity of ~θ to θ, given by
ðdh~θθi=dθÞjθ¼θ0

approaches that of ~θ to Θ, which is

ðdh~θiΘ=dΘÞjΘ¼Θ0
¼ 1, where the latter identity follows

from the assumption that ~θ is an unbiased estimator to first
order in Θ − Θ0. This means that ~θ is also an unbiased
estimator of θ, to first order in θ − θ0, so that the Cramér-
Rao bound applies to ~θ with gμνðθÞ, giving

hðδ~θÞ2ihðΔP̂Þ2i ≥ ℏ2

4
; ð4:3Þ

where

P̂ ¼ 1

2

Z
M
dμ
∘
T̂μν d

dθ

����
θ0

gμνðθÞ: ð4:4Þ

How the bump function transitions from 1 on the
measurement region to 0 is arbitrary. The choice affects
the bound, however, through excess contributions to the
variance hðΔP̂Þ2i in the bump function’s support outside
the measurement region. To get the best bounds on
precision, we choose bump functions that minimize this
excess variance while achieving the desired sensitivity. In
the examples to be considered, this excess variance can be
attributed to contributions from a reference state such as the
Minkowski vacuum. This is because the state associated
with the measurement and from which the bound is
computed is a localized deviation from the reference state
and the bump function necessarily extends beyond the
region of localization. We observe that the shape of the
transition of the bump function from 1 to 0 affects
the excess variance [31–33]. In particular, the excess can
be reduced by ensuring that the transition from 1 to 0 is
slow. This is analogous to the adiabatic limit. For the case
of the Minkowski vacuum, the reference-state contribution
can be made arbitrarily small by this method, as demon-
strated for example in Ref. [31].
The use of slowly varying bump functions is expected

to reduce excess variance from the reference state, but
does not necessarily lead to readily computable bounds. For
this, we observe that informative measurements rely on
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deviations from the reference state with relatively large
localized mean fields. This is both out of necessity and to
maximize the signal-to-noise. Typical measurements are
designed not to detect the reference-state contributions to
the variance, but rather to detect an effect in the presence of
a strong mean field, which greatly enhances the signal we
are looking for. Indeed, for arbitrary curved spacetimes, it is
not known how to calculate the reference-state contribu-
tions, nor is it known how to design a measurement on the
probe field that detects the corresponding mean-field-
independent effects. The neglect of reference-state contri-
butions can then be regarded as a way of finding quantum
limits on the kinds of measurements we know how to do,
which involve large mean fields.
For the case of free fields, the large-mean-field scenario

is formalized by considering the measurement state as a
displacement by a local Weyl unitary of a reference state
with mean field zero. In Minkowski space, these displace-
ments are enacted by conventional modal displacement
operators, where the displacement is by an amount deter-
mined by the mean field. We show in Sec. VII that the
variance hðΔP̂Þ2i has terms that grow with the mean field as
well as mean-field-independent terms. We identify the
mean-field-independent terms as the reference-state con-
tribution to the variance. For a fixed bump function, but
large mean field, the reference-state contribution becomes
negligible. This is the main strategy used for the analysis of
gravitational-wave detection in Sec. VII.
For the above discussion, we assumed that the meas-

urement device is contained in a finite measurement region,
where an incoming reference state such as the vacuum state
is temporarily modified for the measurement. This modi-
fication is usually necessary to enhance the signal that we
are looking for. In the case of an interferometric measure-
ment using light, the modification is accomplished by
introducing a large-amplitude light field confined between
mirrors. To accommodate these modifications in the gen-
erally covariant formalism, the background includes exter-
nally introduced classical sources with fixed relationships
to the manifold, meaning that these relationships are
unchanged by the perturbation of the metric under inves-
tigation. The formalism and relative Cauchy evolution still
applies, as suggested in Ref. [5]. For the example of
gravitational-wave detection, the fixed relationship can
be justified by the observation that the classical sources
follow geodesics for the original as well as the perturbed
metric and are thus manifestly independent of the pertur-
bation in Gaussian normal coordinates.
While our examples involving large mean-field devia-

tions are on flat backgrounds, we expect that the justifi-
cation for neglecting reference-state contributions based on
large mean-field deviations also applies to general curved
backgrounds. For any free field in a (globally hyperbolic)
spacetime, there exist zero-mean-field reference states,
called Hadamard states, characterized by well-defined

two-point correlators [16,19,25]. Such a reference state
allows us to perform normal ordering via the point-splitting
approach. A corresponding stress-energy tensor can then be
constructed, with a well-defined expectation value [25],
which is unique up to terms which cancel in the commu-
tator (3.5) and in the variance (and is thus sufficient for our
purposes). Moreover, while Hadamard reference states are
generally not unique, their contribution to the relevant
variance is mean field independent.

V. COORDINATE INDEPENDENCE AND
COMPACT PERTURBATIONS

The formulation given so far is generally covariant.
Consider two compactly supported perturbations of the
metric where one is obtained from the other by a local
isometry, that is one acting as the identity except on a
compact region in the past of Nþ and the future N−. Then
both perturbations induce the same relative Cauchy evo-
lution, as shown in Ref. [5] (see also Appendix B).
A complication to this obvious conclusion of general
covariance arises, however, when the parameter of interest
is expressed in a coordinate-dependent way and we require
the use of a bump function to localize the associated metric
perturbation. This is the situation when estimating global
parameters. An example is the invariant mass of a black
hole, where there are a number of different standard
coordinate systems to choose from. When the bump
function is expressed in the first coordinate system so as
to be independent of the invariant mass, in the second it can
depend on the invariant mass. This means that in the second
coordinate system, the bump-function-modified metric
perturbation includes a term coming from the derivative
of the mass-dependent bump function with respect to mass,
and this leads to discrepancies in the values of the variances
and Cramér-Rao bounds depending on which coordinate
system is used to define the bump function. If our
sensitivity argument for the choice of bump function is
valid, we should obtain valid bounds regardless of coor-
dinate system. It is desirable, however, to choose bump
functions for which the dependence on coordinate system is
negligible. In this section, we show that such is the case for
the variance of P̂ in an arbitrary spacetime, assuming a
sufficiently large mean field. To demonstrate the basic
mechanism by which coordinate independence is achieved,
we first consider as an illustrative example the expectation
of P̂ in Schwarzschild spacetime.
The fiducial metric in Schwarzschild coordinates is

gSμνdx
μ
Sdx

ν
S ¼ −

�
1 −

2m0

r

�
dt2 þ

�
1 −

2m0

r

�
−1
dr2

þ r2dΩ2; ð5:1Þ

and in isotropic coordinates it is

QUANTUM ESTIMATION OF PARAMETERS OF CLASSICAL … PHYSICAL REVIEW D 96, 105004 (2017)

105004-7



gIμνdx
μ
I dx

ν
I ¼ −

�
1 −m0=2ρ
1þm0=2ρ

�
2

dt2

þ
�
1þm0

2ρ

�
4

ðdρ2 þ ρ2dΩ2Þ: ð5:2Þ

By our prescription for approximating a global pertur-
bation by a compact perturbation, we add to every instance
of the fiducial mass m0 a bump function of the form
ðm −m0Þχðt; r; θ;ϕÞ or ðm −m0Þχðt; ρ; θ;ϕÞ:

gSμνdx
μ
Sdx

ν
S ¼ −

�
1−

2ðm0 þ ðm−m0ÞχÞ
r

�
dt2

þ
�
1−

2ðm0 þ ðm−m0ÞχÞ
r

�
−1
dr2 þ r2dΩ2;

ð5:3Þ

gIμνdx
μ
I dx

ν
I ¼ −

�
1 − ½m0 þ ðm −m0Þχ�=2ρ
1þ ½m0 þ ðm −m0Þχ=2ρ�

�
2

dt2

þ
�
1þm0 þ ðm −m0Þχ

2ρ

�
4

ðdρ2 þ ρ2dΩ2Þ:

ð5:4Þ

The resulting metrics gSμνðmÞ and gIμνðmÞ are not related
by a coordinate transformation and thus are no longer
physically equivalent. This reflects the fact that there is no
unique way to approximate a global perturbation with a
compact perturbation. Our particular choice depends on our
initial coordinates, out of convenience. These metrics are,
however, locally related by a coordinate transformation on
a patch restricted to the region where χ ¼ 1. Therein, both
metrics are locally indistinguishable from that of a black
hole with mass m and are related by the m-dependent
coordinate transformation that relates Schwarzschild and
isotropic coordinates.
Now letting m0 ¼ 0 for simplicity, consider the (nor-

mally ordered) expectation value of P̂, where the nonzero
expectation value of the stress-energy is assumed to be
confined to a region K in which χ ¼ 1, i.e., K ¼
suppðh∶T̂μν∶iÞ and χðxÞ ¼ 1 for x ∈ K. Note that K is
strictly contained in the interior of suppðχÞ, since as
discussed in the previous section we assume the transition
of the bump χ from 1 to 0 is both smooth and gradual. We
have

h∶P̂∶i ¼ 1

2

Z
K
dμ
∘h∶T̂μν∶i d

dm

����
0

gμνðmÞ: ð5:5Þ

Notice that gSμνð0Þ ¼ gIμνð0Þ, since both Schwarzschild and
isotropic coordinates reduce to standard spherical coordi-
nates in this limit. Yet

d
dm

����
0

gSμνðmÞ ≠ d
dm

����
0

gIμνðmÞ; ð5:6Þ

nor are these two tensor fields related by any coordinate
transformation. To understand this, observe that gSμνðmÞ −
gSμνð0Þ and gIμνðmÞ − gIμνð0Þ also represent distinct tensor
fields; the first terms in the two tensor fields can be made
equal by an m-dependent coordinate transformation, but
not without making the second terms unequal. It should
come as no surprise, then, that h∶P̂S∶i and h∶P̂I∶i appear to
be unequal:

h∶P̂S∶i ¼
Z
K

1

r
ðh∶T̂tt∶i þ h∶T̂rr∶iÞr2 sin ϑdtdrdϑdφ;

ð5:7Þ

h∶P̂I∶i ¼
Z
K

1

r
ðh∶T̂tt∶i þ h∶T̂rr∶i þ r2h∶T̂ϑϑ∶i

þ r2sin2ϑh∶T̂φφ∶iÞr2 sin ϑdtdrdϑdφ: ð5:8Þ

This appearance is deceptive, however, as we see fromZ
K
h∶∇αT̂

αr∶ir2 sin ϑdtdrdϑdφ

¼
Z
∂K

dλnαh∶T̂αr∶i −
Z
K
ðrh∶T̂ϑϑ∶i

þ rsin2ϑh∶T̂φφ∶iÞr2 sinϑdtdrdϑdφ; ð5:9Þ

where dλ is the surface element induced on the boundary
∂K of K and nμ is the corresponding surface normal. Since
h∶T̂μν∶i vanishes on ∂K and assuming ∇μT̂

μν ¼ 0 (as
required for a properly defined stress-energy tensor [25]),
which implies that the left-hand side of Eq. (5.9) vanishes
identically, we conclude that

h∶P̂I∶i− h∶P̂S∶i

¼
Z
K
ðrh∶T̂ϑϑ∶i þ rsin2ϑh∶T̂φφ∶iÞr2 sinϑdtdrdϑdφ¼ 0:

ð5:10Þ

Note the critical role played by the vanishing divergence of
T̂μν in the above demonstration of coordinate independ-
ence. This is no coincidence; for more discussion of the
relevance of the stress-energy tensor to diffeomorphism
invariance in the context of relative Cauchy evolution,
see Ref. [5].
In the above example, we only considered the first

moment of P̂, whereas the Cramér-Rao bound involves
the variance of P̂. We deal with this question now by
considering an arbitrary s-dependent coordinate transfor-
mation from unprimed coordinates to primed coordinates,
on a coordinate patch that is assumed to cover the support
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K of the mean stress-energy (for a more general treatment
see Appendix B). In classic index notation, the metric
components in the two systems are related by

gðsÞα0β0 ðx0Þ ¼ Lμ
α0 ðsÞLν

β0 ðsÞgðsÞμν ðxÞ; ð5:11Þ

where Lμ
α0 ðsÞ ¼ ∂xμðx0; sÞ=∂xα0 . We are interested in the

tensor fields

∂
∂s

����
0

gðsÞαβ ðxÞ and
∂
∂s

����
0

gðsÞα0β0 ðx0Þ; ð5:12Þ

where we now write the s derivatives as partial derivatives
to emphasize that the respective coordinates are held fixed
while taking the s derivative. Because the coordinate
transformation is s dependent, these two tensors are not
the same, but are related by

∂
∂s

����
0

gðsÞα0β0 ðx0Þ ¼ Lμ
α0 ð0ÞLν

β0 ð0Þ
� ∂
∂s

����
0

gðsÞμν ðxÞ þ ∂Xγ

∂xμ g
ð0Þ
γν þ ∂Xγ

∂xν g
ð0Þ
μγ þ Xγ ∂gð0Þμν

∂xγ
�

¼ Lμ
α0 ð0ÞLν

β0 ð0Þ
� ∂
∂s

����
0

gðsÞμν ðxÞ þ∇νXμ þ∇μXν

�

¼ Lμ
α0 ð0ÞLν

β0 ð0Þ
∂
∂s

����
0

gðsÞμν ðxÞ þ∇β0Xα0 þ∇α0Xβ0 ; ð5:13Þ

where

Xγ ¼ ∂
∂s

����
0

xγðx0; sÞ: ð5:14Þ

Now we find

Z
K
dμ
∘ 0T̂α0β0 ∂

∂s
����
0

gðsÞα0β0 ¼
Z
K
dμ
∘
T̂μν

� ∂
∂s

����
0

gðsÞμν þ∇νXμ þ∇μXν

�

¼
Z
K
dμ
∘
�
T̂μν ∂

∂s
����
0

gðsÞμν þ 2∇μðT̂μνXνÞ − 2ð∇μT̂
μνÞXν

�

¼
Z
K
dμ
∘
T̂μν ∂

∂s
����
0

gðsÞμν þ 2

Z
∂K

dλnμT̂
μνXν; ð5:15Þ

where in the last line we assume that ∇μT̂
μν ¼ 0 and where we convert a volume integral over K to a surface integral over

the boundary ∂K.
As before, let K ¼ suppðh∶T̂μν∶iÞ, so that h∶T̂μν∶ij∂K ¼ 0, and we assume that χjK ¼ 1 [and thus K is strictly contained

within suppðχÞ]. In addition, consider a θ0-dependent coordinate transformation of gμνðθ0Þ, denoted g0μνðθ0Þ, where we
switch back from classic index notation to denoting a coordinate change with a prime on the tensor itself. As previously
prescribed, to each instance of θ0 in the coordinate components of this new metric, add ðθ − θ0Þχ, denoting the result as
g0μνðθÞ ¼ g0μνðθ0 þ ðθ − θ0ÞχÞ. It proves convenient to divide P̂ and P̂0 into two parts,

P̂ ¼ 1

2

Z
M
dμ
∘
T̂μν d

dθ

����
θ0

gμνðθÞ ¼
1

2

Z
K
dμ
∘
T̂μν d

dθ

����
θ0

gμνðθÞ þ
1

2

Z
K̄
dμ
∘
T̂μν d

dθ

����
θ0

gμνðθÞ ¼ P̂K þ P̂K̄; ð5:16Þ

P̂0 ¼ 1

2

Z
M
dμ
∘ 0T̂ 0μν d

dθ

����
θ0

g0μνðθÞ ¼
1

2

Z
K
dμ
∘ 0T̂ 0μν d

dθ

����
θ0

g0μνðθÞ þ
1

2

Z
K̄
dμ
∘ 0T̂ 0μν d

dθ

����
θ0

g0μνðθÞ ¼ P̂0
K þ P̂0̄

K; ð5:17Þ

where K̄ ¼ MnK. The integrals over K̄ are restricted to the neighborhood of K where the bump function is nonzero, but in
which h∶T̂μν∶i ¼ 0. The content of Eq. (5.15) is that

P̂0
K ¼ P̂K þ

Z
∂K

dλnμT̂
μνXν ¼ P̂K þ B̂; ð5:18Þ

where B̂ is the boundary term. By construction, we have h∶P̂0̄
K∶i ¼ h∶P̂K̄∶i ¼ h∶B̂∶i ¼ 0, so
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h∶P̂0∶i ¼ h∶P̂0
K∶i ¼ h∶P̂K∶i ¼ h∶P̂∶i; ð5:19Þ

this is the general version of what we showed for the particular case of Schwarzschild and isotropic coordinates.
What we need for the Cramér-Rao bound (4.3) are variances, not mean values, and it is in the variances that the problem

with reference-state contributions arises. Equation (5.16) gives us

hðΔP̂Þ2i ¼ h∶P̂∶∶P̂∶i − h∶P̂∶i2
¼ h∶ðP̂K þ P̂K̄Þ∶∶ðP̂K þ P̂K̄Þ∶i − h∶P̂K∶i2
¼ hðΔP̂KÞ2i þ h∶P̂K∶∶P̂K̄∶i þ h∶P̂K̄∶∶P̂K∶i þ h∶P̂K̄∶∶P̂K̄∶i; ð5:20Þ

where hðΔP̂KÞ2i ¼ h∶P̂K∶∶P̂K∶i − h∶P̂K∶i2. We now decompose ∶P̂K∶ into its expectation value and a correction,
∶P̂K∶ ¼ h∶P̂K∶i þ ∶ΔP̂K∶, and use the fact that h∶P̂K∶∶P̂K̄∶i ¼ h∶P̂K∶ih∶P̂K̄∶i þ h∶ΔP̂K∶∶P̂K̄∶i ¼ h∶ΔP̂K∶∶P̂K̄∶i to
write the variance in the form

hðΔP̂Þ2i ¼ hðΔP̂KÞ2i þ h∶ΔP̂K∶∶P̂K̄∶i þ h∶P̂K̄∶∶ΔP̂K∶i þ h∶P̂K̄∶∶P̂K̄∶i: ð5:21Þ

The final three terms are all reference-state contributions: the middle two terms express correlations between the reference
state inside and outside of K; the third term is a reference-state contribution from outside the support of the probe’s mean
stress-energy.

Now, using Eqs. (5.17) and (5.18) to write P̂0 ¼ P̂K þ Q̂, with Q̂ ¼ B̂þ P̂0̄
K , the same considerations give us

hðΔP̂0Þ2i ¼ h∶P̂0∶∶P̂0∶i − h∶P̂0∶i2
¼ h∶ðP̂K þ Q̂Þ∶∶ðP̂K þ Q̂Þ∶i − h∶P̂K∶i2
¼ hðΔP̂KÞ2i þ h∶P̂K∶∶Q̂∶i þ h∶Q̂∶∶P̂K∶i þ h∶Q̂∶∶Q̂∶i
¼ hðΔP̂KÞ2i þ h∶ΔP̂K∶∶Q̂∶i þ h∶Q̂∶∶ΔP̂K∶i þ h∶Q̂∶∶Q̂∶i: ð5:22Þ

Again, the final three terms are reference-state contri-
butions with the same sort of interpretation as that given
above for hðΔP̂Þ2i, except that now there is a contribution
from the boundary ∂K.
If we take advantage of the improved signal-to-noise that

comes from a large mean field, we expect that our probe
fields have a sufficiently substantial mean component that
hðΔP̂KÞ2imakes the dominant contribution to the variances
and thus determines the quantum Cramér-Rao bound.
Under these assumptions we conclude that hðΔP̂0Þ2i and
hðΔP̂Þ2i are both equal to hðΔP̂KÞ2i up to subleading,
mean-field-independent terms.
A complementary point of view acknowledges that for a

real perturbation, not one that has been modified by a bump
function, the changes in the reference state do contribute to
the quantum Cramér-Rao bound. These changes in the
reference state (in some cases, the reference state could be
vacuum, when that can be properly defined) could pre-
sumably be used to detect the perturbation in the absence of
a mean field. Yet we do not know how to calculate the
reference-state contributions in general curved spacetimes,
nor do we know how to measure the corresponding
modifications of the reference state. It would be desirable
to determine how to do the necessary measurements, which
might involve particle emission or Casimir-type effects.

What we can say in the present context is that when we
assume that the mean-field terms predominate, we are
finding quantum Cramér-Rao bounds on measurements
that we do know how to perform, which involve large mean
fields.

VI. SIMPLE EXAMPLES

A. Estimation of constant metric components

Consider now making measurements in a local inertial
frame where the fiducial metric g(0) is flat or sufficiently
flat for differences to be negligible in our calculations. In
this case we define a local inertial coordinate system where
the fiducial metric is ημν. Now further suppose that the
perturbed metric has variation gμνðθÞ ¼ ημν þ θδμ0μ δ

ν0
ν , for

some fixed μ0 and ν0. In other words, assume that the
parameter of interest is θ, and the fixed local coordinates
are such that δgμ0ν0 ¼ θ. Then the uncertainty relation (4.3)
becomes

hðδgμ0ν0Þ2i
��

Δ
Z
K
dμ
∘
T̂μ0ν0

�
2
�

≥ ℏ2; ð6:1Þ

where in this case there is no sum over the repeated indices
as we are dealing with a particular metric component
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specified by the fixed values μ0 and ν0. This inequality is
reminiscent of the Unruh uncertainty relation (1.5). Indeed,
the same restrictions were needed to derive Eq. (1.5) as
were used to produce Eq. (6.1).
It should be emphasized that the stress-energy tensor T̂μν

in Eq. (6.1) is for the probe field. It is not the stress-energy
tensor for the matter distribution which gives rise to gμν via
Einstein’s field equations. This is to be expected, as
Eq. (6.1) is essentially an uncertainty relation for the probe
field: we are estimating the metric with field measurements,
so the uncertainty in the field in Eq. (6.1) has been replaced
by uncertainty in our estimate of the metric, just as
uncertainty in some “clock” variable is replaced by
uncertainty in a time estimate in the time-energy uncer-
tainty relation (1.3). The uncertainty relation (6.1) can be
thought of as the minimum uncertainty achievable when
attempting to verify with measurements that the metric
takes the Minkowski form in the local coordinate system
one has defined.

B. Estimation of proper time and proper distance

Suppose we are interested in the proper time as measured
by a stationary observer in a perturbed Minkowski space-
time. Assuming the metric perturbation is compactly
supported in space, we might consider the passage of time
as measured by an atomic clock at rest within the perturbed
region, relative to the passage of time as measured by an
atomic clock at rest in flat spacetime outside the perturbed
region. Both can be considered proper time, but the latter is
also equivalent to our Minkowskian coordinate time. The
proper time in our locally defined inertial frame is related to
the coordinate time by

τ ¼
Z

dt
ffiffiffiffiffiffiffiffiffiffi
−g00

p
: ð6:2Þ

In these coordinates, then, we are interested in a metric

perturbation of the form gðsÞ00 ¼ η00 þ saðxÞ, where a is a
smooth function of the coordinate four-position x. Using
the approximation

h½δfðXÞ�2i≃
�
df
dX

����
X¼hXi

�
2

hðδXÞ2i; ð6:3Þ

the uncertainty in the metric is related to the uncertainty in
the proper time by

hðδsÞ2i ¼ 4

�Z
dtaðxÞ

�
−2
hðδτÞ2i: ð6:4Þ

Then the relation (4.2) becomes

�Z
dtaðxÞ

�
−2
hðδτÞ2i

��
Δ
Z

d4xT̂00ðxÞaðxÞ
�

2
�

≥
ℏ2

4
:

ð6:5Þ

Now we assume that the effective spatial volume of the
confined probe field is small enough that the spacetime
perturbation can be considered spatially uniform through-
out. Then, recognizing that the integral of the energy
density over the spatial component of the four-volume is
the Hamiltonian, we haveZ

d4xT̂00ðxÞaðtÞ ¼
Z

dtĤðtÞaðtÞ: ð6:6Þ

Further assuming a time-independent Hamiltonian, the time
integrals cancel and the uncertainty relation reduces to

hðδτÞ2ihðΔĤÞ2i ≥ ℏ2

4
: ð6:7Þ

This demonstrates that the standard time-energy uncer-
tainty relation is a special case of the metric uncertainty
relation (4.2).
Using a similar argument, one can derive a correspond-

ing uncertainty relation for proper distance X:

hðδXÞ2ihðΔP̂XÞ2i ≥
ℏ2

4
: ð6:8Þ

This is the parametric version of the Heisenberg uncertainty
relation, where P̂X is the momentum in the direction of the
displacement. It demonstrates the consistency between the
metric uncertainty relation (4.2) and the earlier work on
parameter-based uncertainty relations for the Lorentz group
in flat spacetime [4].

VII. QUANTUM-LIMITED
GRAVITATIONAL-WAVE DETECTION

We now consider estimating the amplitude of a gravi-
tational wave. To a good approximation, a gravitational
wave can be modeled by a small perturbation of Minkowski
spacetime satisfying the linearized Einstein equations. Thus
we write

gμν ¼ ημν þ hμν; ð7:1Þ

where for a plane-fronted, parallel-propagating wave,
linearly polarized along the x and y axes and cast in the
transverse-traceless gauge [9], the nonvanishing compo-
nents of the metric perturbation are

hxx ¼ −hyy ¼ Aþfðz − tÞ: ð7:2Þ

Physical solutions have a suitably localized envelope along
the propagation direction, which can be approximated by a
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compactly supported function of z − t. Physical solutions
also are not exactly plane-fronted, but rather are confined in
the directions transverse to the propagation direction or, as
in the case of astrophysical sources, have spherical wave
fronts. We assume for our analysis that any physical
deviations from a plane-fronted wave are negligible on
the spatial scales of our probe field. Assuming that the
gravitational-wave detector, which might be the electro-
magnetic field confined within a laser-powered interfer-
ometer, is compactly supported in space, the intersection
with the detector’s support is compactly supported in
spacetime. The volume integrals of concern to us are
therefore well defined.
For simplicity, however, we analyze broadband detection

of a gravitational wave, i.e., detection that is essentially
instantaneous compared to the scale of variation (period or
wavelength) of the gravitational wave. What this means is
that the probe field’s support is sufficiently confined
spatially and temporally relative to the gravitational wave’s
envelope and wavelength that within the probe’s window of
observation, the gravitational wave is well approximated by
a constant:

hxx ¼ −hyy ≃ A: ð7:3Þ

For consistency with this assumption and to ensure that
the relevant volume integrals remain well defined, we
assume a finite duration of detection. Since our perturbed
metric happens to be in Gaussian normal coordinates (i.e.,
g00 ¼ −1 and g0i ¼ 0), the resulting coordinate bounds of
integration are independent of the perturbation. Our
assumptions amount to saying that the probe field is to
be turned on and off, i.e., emitted and absorbed, within a
compact spatial region in such a way that it senses an
essentially instantaneous amplitude of the gravitational
wave over this compact spatial region.
The generator (4.4) of changes in the probe field is

P̂ ¼ 1

2

Z
d4xT̂μν d

dA

����
0

gμνðAÞ

¼ 1

2

Z
d4x

�
T̂xx d

dA

����
0

gxxðAÞ þ T̂yy d
dA

����
0

gyyðAÞ
�

¼ 1

2

Z
d4xðT̂xx − T̂yyÞ; ð7:4Þ

where we have assumed the fiducial amplitude is zero (i.e.,
perturbation about flat spacetime). The domain of integra-
tion encloses the finite extent of the probe mean field.
We now take the probe field to be the electromagnetic

field, having a large mean field that is turned on and off, as
we have discussed. We assume that the domain of inte-
gration in Eq. (7.4) is large, both temporally and spatially,
compared to the scales of variation (periods and wave-
lengths) of the mean electromagnetic field. We could regard

the probe electromagnetic field as being confined within a
laser-powered interferometer, as in the LIGO detectors
[34–36], but there is no need to specialize to this particular
field configuration. Instead, we let the probe be a free
electromagnetic field: the field is turned on, receives an
imprint from the gravitational wave as it propagates freely
through the gravitational wave, and is then turned off.
Recall that the Cramér-Rao bound optimizes over all
measurements we could make on the probe field, so we
do not have to specify what measurement is used to read out
the imprint of the gravitational wave on the electromagnetic
field, although we will have something to say about this as
we proceed. This approach allows us to use the free
electromagnetic field and the free-field commutators. In
this approach, it is clear that we do not find a “standard
quantum limit” that is enforced by back-action forces that
act on masses that confine the field, because there are no
such masses.
Notice that if we did regard the field as being in an

interferometric configuration, there would need to be beam
splitters and mirrors to split, confine, and recombine the
field. To neglect back-action and thus to be consistent with
the present calculation, we could make these optical
elements sufficiently massive that they are unaffected by
the field’s back-action radiation-pressure noise and thus
move on geodesics. All of this is consistent with the now
well-established result that there is no back-action-enforced
“standard quantum limit” that fundamentally limits inter-
ferometric gravitational-wave detectors. The absence
of a back-action-enforced fundamental limit for interfero-
metric detectors follows from a substantial body of work
on specialized, back-action-evading designs for laser-
interferometer gravitational-wave detectors [37–39] and
from general analyses of quantum limits on the detection
of waveforms [40,41].
For the electromagnetic field, the diagonal components

of the stress tensor are

T̂jj ¼ 1

8π
ðÊ2

x þ Ê2
y þ Ê2

z þ B̂2
x þ B̂2

y þ B̂2
zÞ−

1

4π
ðÊ2

j þ B̂2
jÞ;
ð7:5Þ

where Ê2
j and B̂2

j are normally ordered and we use cgs
Gaussian units with c ¼ 1. The local generator of changes
in the field due to the gravitational wave is

1

2
ðT̂xx − T̂yyÞ ¼ 1

8π
ðÊ2

y − Ê2
x þ B̂2

y − B̂2
xÞ

¼ 1

8π

X
σ

rσ∶f̂2σ∶: ð7:6Þ

Here we let f̂1 ¼ Êy, f̂2 ¼ Êx, f̂3 ¼ B̂y, f̂4 ¼ B̂x and
r1 ¼ r3 ¼ 1, r2 ¼ r4 ¼ −1. Beginning with the last form,
we indicate normal ordering explicitly where it is needed.
The generator (7.4) becomes
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∶P̂∶ ¼ 1

8π

X
σ

rσ

Z
d4x∶f̂2σ∶: ð7:7Þ

Now we express the electric and magnetic fields as a sum
of a mean field and field fluctuations, defined as the
deviation from the mean:

f̂σðx; tÞ ¼ hf̂σðx; tÞi þ Δf̂σðx; tÞ: ð7:8Þ

This puts the generator in the form

∶P̂∶ ¼ Pþ ΔX̂1 þ ∶F̂∶; ð7:9Þ

where

P ¼ 1

8π

X
σ

rσ

Z
d4xhf̂σi2; ð7:10Þ

X̂ 1 ¼
1

4π

X
σ

rσ

Z
d4xhf̂σif̂σ; ð7:11Þ

∶F̂∶ ¼ 1

8π

X
σ

rσ

Z
d4x∶ðΔf̂σÞ2∶: ð7:12Þ

Notice that we do not need to normal order X̂1 because it is
linear in field operators.
Note that by our formalism, the quantum fields in

Eqs. (7.5)–(7.12) need only be evaluated in the fiducial
spacetime, which in the present case is flat. Therefore, the
vacuum state is unambiguous, and the splitting of the field
operators into positive- and negative-frequency parts and
the use of normal ordering are appropriate and well defined.
(For a discussion of the issues arising in curved spacetime,
see Sec. 1 of Ref. [5].) Thus we have

∶Δf̂2σ∶ ¼ ∶½Δf̂ðþÞ
σ þ Δf̂ð−Þσ �2∶

¼ 2Δf̂ð−Þσ Δf̂ðþÞ
σ þ Δf̂ðþÞ2

σ þ Δf̂ð−Þ2σ : ð7:13Þ

The free-field commutators and vacuum correlators that
we need are summarized in Appendix C.
Our separation of the field operators into a mean field

plus field fluctuations is different from our treatment in
Sec. V, where we separated the stress-energy, which is
generally quadratic in field operators, into its mean and its
fluctuation about the mean. To identify the mean-field-
independent contributions to the variance, we view the state
as being obtained from a zero-mean-field state by a
displacement operator D, which is generated by a linear
function of the fields. This operator is determined by
requiring that D†fσD ¼ fσ þ hfσi. The displacement
parameter is the mean field. For the present purposes,
the zero-mean-field state is the reference state and is
considered fixed. One example is where this reference
state is the vacuum state. Our initial arguments apply to all

zero-mean-field reference states, except where noted oth-
erwise, and we eventually get to the case of a squeezed-
vacuum state as the reference state that provides optimal
sensitivity under the assumptions we make. Our main
conclusions are aimed at the case where the displacement
is large, in which case we only keep the terms that are
leading order in the displacement.
The expectation value of the generator (7.9) is

h∶P̂∶i ¼ Pþ h∶F̂∶i: ð7:14Þ

Using

∶P̂∶∶P̂∶ ¼ P2 þ 2P∶F̂∶þ ðΔX̂1Þ2 þ ∶F̂∶∶F̂∶

þ 2PΔX̂1 þ ΔX̂1∶F̂∶þ ∶F̂∶ΔX̂1; ð7:15Þ

we have

h∶P̂∶∶P̂∶i ¼ P2 þ 2Ph∶F̂∶i þ hðΔX̂1Þ2i þ h∶F̂∶∶F̂∶i
¼ h∶P̂∶i2 þ hðΔX̂1Þ2i þ h∶F̂∶∶F̂∶i − h∶F̂∶i2:

ð7:16Þ

Here we assume that the odd moments of the reference
(zero-mean-field) state are zero, which is the case if the
reference state is Gaussian or is invariant under parity and
time reversal.
Rewriting Eq. (7.16) in terms of the variance, we get

hðΔP̂Þ2i ¼ h∶P̂∶∶P̂∶i − h∶P̂∶i2 ¼ hðΔX̂1Þ2i þ hðΔF̂Þ2i:
ð7:17Þ

We subsume the normal ordering into the definition of the
definition of the variance ðΔF̂Þ2 when using this notation.
The term hðΔF̂Þ2i is mean field independent, so for large
mean field, we can drop it. Before doing so, however, it is
worth taking a closer look at the mean-field-independent
contributions. When we put the right-hand side of
Eq. (7.13) into the spacetime integral (7.12) to get ∶F̂∶,
we can expand the field operators in the last two terms of
Eq. (7.13) into integrals over the wave vectors of free-field
plane-wave modes, as in Appendix C. Performing the
spacetime integral first, the amplitudes for a pair of wave
vectors, k and k0, average to nearly zero, except for field
modes whose period and wavelength are as large or larger
than the temporal and spatial extent of the region of
integration. Realistic measurement devices such as laser
interferometers are neither designed for nor capable of
detecting such low-frequency photons. If we neglect these
essentially dc contributions, we are left with

∶F̂∶ ¼ 1

4π

X
σ

rσ

Z
d4xΔf̂ð−Þσ Δf̂ðþÞ

σ ; ð7:18Þ
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where the equals sign now assumes that we have omitted the dc contributions. The corresponding variance is

hðΔF̂Þ2i ¼ h∶F̂∶∶F̂∶i − h∶F̂∶i2

¼ 1

16π2
X
σ;σ0

rσrσ0
Z

d4xd4x0ðhΔf̂ð−Þσ ðx; tÞΔf̂ðþÞ
σ ðx; tÞΔf̂ð−Þσ0 ðx0; t0ÞΔf̂ðþÞ

σ0 ðx0; t0Þi

− hΔf̂ð−Þσ ðx; tÞΔf̂ðþÞ
σ ðx; tÞihΔf̂ð−Þσ0 ðx0; t0ÞΔf̂ðþÞ

σ0 ðx0; t0ÞiÞ: ð7:19Þ

If the electromagnetic field is excited into a coherent
state, where the field fluctuations are those of vacuum, both
h∶F̂∶i and hðΔF̂Þ2i, as calculated from Eqs. (7.18) and
(7.19) vanish. For coherent states, the only mean-field-
independent contributions to the total variance of F̂ come
from the dc terms discarded in going from Eqs. (7.13)
to (7.18).
If the field fluctuations are redistributed relative to

vacuum, as in the squeezed state discussed below, the
terms of hðΔF̂Þ2i given in Eq. (7.19) make the dominant
mean-field-independent contribution, expressing the fact
that these nonvacuum field fluctuations are affected by the
presence of a gravitational wave and can be used to detect
the wave. For sufficiently large mean field, these mean-
field-independent contributions are small compared to
hðΔX̂Þ21i, leaving us with

hðΔP̂Þ2i ¼ hðΔX̂1Þ2i; ð7:20Þ

as we assume henceforth.
We can now summarize our results by saying that the

Cramér-Rao bound (4.2) on the estimate of the gravita-
tional-wave amplitude A is

hðδ ~AÞ2ihðΔX̂1Þ2i ≥
ℏ2

4
: ð7:21Þ

We could stop here, having confirmed the valuable lesson,
generic to Cramér-Rao bounds, that the precise determi-
nation of the gravitational-wave amplitude requires that the
observable X̂1, which in the presence of a large mean field
generates the change in the probe-field state, be as
uncertain as possible. In this case, however, we can say
considerably more.
Since X̂1 is linear in the fields, one can find an

observable X̂2, conjugate to X̂1 and also linear in the
fields, which is the observable one should measure to effect
the precise determination of A. The commutator of X̂1 and
X̂2 is

½X̂ 1; X̂2� ¼ iℏC; ð7:22Þ

where the real constant C is to be determined (we can
make C positive by, say, changing the sign of X̂2). The

commutator implies a Heisenberg uncertainty relation,
precisely analogous to the position-momentum uncertainty
relation (1.2),

hðΔX̂1Þ2ihðΔX̂ 2Þ2i ≥
ℏ2

4
C2: ð7:23Þ

To put these two observables on the same footing relative to
vacuum, we require that

h0jX̂2
1j0i ¼ h0jX̂2

2j0i ¼
ℏ
2
C: ð7:24Þ

The observables X̂1 and X̂2 are generalized quadrature
components [42–44] for the single field mode that is
determined with respect to the Minkowski vacuum by
the mean field according to the definition of X̂1, with their
vacuum level of noise given by ℏC=2. We calculate X̂2

explicitly below after restricting to the case of a plane wave.
Equation (3.5) specifies the response of X̂2 to the

gravitational wave,

dX̂2

dA
¼ i

ℏ
½X̂2; X̂1� ¼ C: ð7:25Þ

Linear-response analysis gives the variance of an estimate
of A based on a measurement of X̂2,

hðδ ~AÞ2i ¼ hðΔX̂2Þ2i
jdhX̂2i=dAj2

¼ hðΔX̂2Þ2i
C2

≥
ℏ2

4

1

hðΔX̂1Þ2i
;

ð7:26Þ

matching the Cramér-Rao bound (7.21). If the probe field is
placed in a minimum-uncertainty state relative to the
uncertainty relation (7.23), the bound (7.26) is saturated,
and it is particularly useful to write the variance of the
estimate as

hðδ ~AÞ2i ¼ hðΔX̂2Þ2i
C2

¼ ℏ
2C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔX̂2Þ2i
hðΔX̂1Þ2i

s
: ð7:27Þ

We stress that Eq. (7.27) is not a general expression for the
Cramér-Rao bound, but rather is the form the bound
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assumes for minimum-uncertainty states relative to the
uncertainty relation (7.23).
The physical content here is that if the field is excited

into a coherent state, the uncertainties in the quadrature
components are equal, and the variance of the estimate of A,
equal to ℏ=2C, is set by the vacuum-level noise in X̂1 and
X̂2. To achieve a sensitivity better than ℏ=2C, one should
squeeze the vacuum so that the uncertainty in X̂2 decreases
and the uncertainty in X̂1 increases, as in the original
proposal for decreasing shot noise in a laser-interferometer
gravitational-wave detector by using squeezed light [45], a
proposal that has been implemented in large-scale laser-
interferometer detectors [46,47] and might be incorporated
into Advanced LIGO [48].
There is one task remaining, quite an important one, and

that is to evaluate the constant C. To do that, we specialize a
bit, to the case where the mean probe field is that of a nearly
plane wave propagating in the x direction and linearly
polarized along the y axis. We do not need to assume that
this wave is close to monochromatic, but we do assume that
the transverse extent of the wave is much larger than the
wave’s typical wavelengths. We neglect the small correc-
tions to a plane wave due to the finite transverse extent.
With these assumptions, we have hÊxi ¼ hÊzi ¼ hB̂xi ¼
hB̂yi ¼ 0 and

hÊyi ¼ hB̂zi ¼ E1ðx; tÞ; ð7:28Þ

where the (real) waveform E1ðx; tÞ is mainly a function of
x − t and only a weak function of y and z. With these
assumptions, we have

X̂1 ¼
1

4π

Z
d4xE1ðx; tÞÊyðx; tÞ: ð7:29Þ

It is useful to divide E1 into positive- and negative-
frequency parts and to write these in terms of the Fourier
transform,

E1ðx; tÞ ¼ EðþÞ
1 ðx; tÞ þ Eð−Þ

1 ðx; tÞ; ð7:30Þ

EðþÞ
1 ðx; tÞ ¼ Eð−Þ�

1 ðx; tÞ

¼ i
X
σ

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffi
2πℏω

p
α1;kσekσ · eyeiðk·x−ωtÞ

¼ i
Z

d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffi
2πℏω

p
α1;keiðk·x−ωtÞ; ð7:31Þ

where α1;kσ ¼ hakσi. The assumption of a nearly plane
wave propagating in the x direction is that α1;kσ has
substantial support only for k pointing nearly along the
x direction, with linear polarization nearly along the y
direction, in which case we drop the polarization index and
write it as α1;k (formally, we might write α1;kσ ¼ δσyα1;k);
this leads to the final form in Eq. (7.31).
We assume that X̂ 2 looks the same as X̂ 1,

X̂2 ¼
1

4π

Z
d4xE2ðx; tÞÊyðx; tÞ; ð7:32Þ

but with a different (real) waveform E2, which is also a
nearly plane wave propagating in the x direction, with
linear polarization nearly along the y direction,

E2ðx; tÞ ¼ EðþÞ
2 ðx; tÞ þ Eð−Þ

2 ðx; tÞ; ð7:33Þ

EðþÞ
2 ðx; tÞ ¼ Eð−Þ�

2 ðx; tÞ

¼ i
X
σ

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffi
2πℏω

p
α2;kσekσ · eyeiðk·x−ωtÞ

¼ i
Z

d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffi
2πℏω

p
α2;keiðk·x−ωtÞ: ð7:34Þ

Again we understand that α2;k has support only for k
close to the x direction and corresponds to linear polari-
zation nearly along the y direction (α2;kσ ¼ δσyα2;k).
The following calculations show that the above assumption
is warranted. Specifically, we find in Eq. (7.43) that E2 can
be obtained from E1 by a 90° phase shift of every
monochromatic mode that contributes to E1, as one might
expect for a broadband version of conjugate quadrature
components.
Notice that in the expressions (7.29) and (7.32) for X̂1

and X̂2, we can extend the spatial integrals over all of space
because the waveforms E1ðx; tÞ and E2ðx; tÞ are zero
outside the original domain of spatial integration.
To determine C, we use the field commutators and

vacuum correlators of Appendix C [see Eqs. (C12) and
(C14)] to find the commutator (7.22) and the second
moments (7.24):

½X̂1; X̂2� ¼
1

16π2

Z
d4xd4x0E1ðx; tÞE2ðx0; t0Þ½Êyðx; tÞ; Êyðx0; t0Þ�

¼ iℏ
16π2

Z
d4xd4x0E1ðx; tÞE2ðx0; t0Þ

� ∂2

∂t2 −
∂2

∂y2
�
Gðx − x0; t − t0Þ; ð7:35Þ
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h0jX̂2
aj0i ¼

1

16π2

Z
d4xd4x0Eaðx; tÞEaðx0; t0Þ 1

2
h0j½Êyðx; tÞÊyðx0; t0Þ þ Êyðx0; t0ÞÊyðx; tÞ�j0i

¼ ℏ
16π3

Z
d4xd4x0Eaðx; tÞEaðx0; t0Þ

�
−

∂2

∂t2 þ
∂2

∂y2
�
Dðx − x0; t − t0Þ; a ¼ 1; 2: ð7:36Þ

Here Gðx; tÞ, the difference between retarded and advanced Green functions, is defined in Eq. (C10), and Dðx; tÞ, the
principal value of the inverse of the invariant interval, is defined in Eq. (C11).
In Eqs. (7.35) and (7.36), we can integrate by parts twice on the y derivatives. The boundary terms vanish because

we can take the boundary of the region of integration to be outside the spatial extent of the waveforms E1 and E2,
and we can neglect the resulting integrals because E1 and E2 are weak functions of y. The upshot is that we can omit
the y derivatives in Eqs. (7.35) and (7.36). Using Eqs. (C10) and (C11) to start getting back into the Fourier domain, we
have

½X̂1; X̂ 2� ¼
iℏ
4π

Im
Z

d3k
ð2πÞ3 ω

�Z
dte−iωt

Z
d3xE1ðx; tÞeik·x

��Z
dt0eiωt0

Z
d3x0E2ðx0; t0Þe−ik·x0

�
; ð7:37Þ

h0jX̂ 2
aj0i ¼

ℏ
8π

Re
Z

d3k
ð2πÞ3 ω

�Z
dte−iωt

Z
d3xEaðx; tÞeik·x

��Z
dt0eiωt0

Z
d3x0Eaðx0; t0Þe−ik·x0

�
; a ¼ 1; 2: ð7:38Þ

The spatial Fourier transforms are

e−iωt
Z

d3xEaðx; tÞeik·x ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2πℏω

p
ð−iα�a;k þ iαa;−ke−2iωtÞ: ð7:39Þ

The counter-rotating terms average to nearly zero in the
temporal integrals, so we discard them and obtainZ

dte−iωt
Z

d3xEaðx; tÞeik·x ¼ −iτ
ffiffiffiffiffiffiffiffiffiffiffiffi
2πℏω

p
α�a;k; ð7:40Þ

where τ is the time interval over which the mean field is
turned on. Our final results for the commutator and vacuum
second moment are

½X̂1; X̂ 2� ¼ iℏ

�
1

2
ℏ
Z

d3k
ð2πÞ3 ðωτÞ

2Imðα�1;kα2;kÞ
�
; ð7:41Þ

h0jX̂ 2
aj0i ¼

ℏ
2

�
1

2
ℏ
Z

d3k
ð2πÞ3 ðωτÞ

2jαa;kj2
�
; a ¼ 1; 2:

ð7:42Þ

A glance at Eqs. (7.22) and (7.24) shows that the quantities
in large parentheses are all equal to C. Since we want this to
be true whatever the probe waveform is, we must have

α2;k ¼ iα1;k; ð7:43Þ

i.e., as promised, E2 is obtained from E1 by a 90° phase
shift of every monochromatic mode that contributes to E1.
Finally, we obtain

C ¼ 1

2
ℏ
Z

d3k
ð2πÞ3 ðωτÞ

2jα1;kj2: ð7:44Þ

Consider now a nearly monochromatic mean field with
wave vector k ¼ ωex. The vacuum level of noise in the
estimate of the gravitational-wave amplitude is
ℏ=2C ¼ 1=ðωτÞ2n̄, where n̄ is the number of photons

carried by the mean field. We have EðþÞ
1 ∝ α2eiωðx−tÞ and

EðþÞ
2 ∝ iα2eiωðx−tÞ; writing α2 ¼ jα2jeiϕ, we have E1 ∝

α2 cos½ωðt − xÞ − ϕ� and E2 ∝ α2 sin½ωðt − xÞ − ϕ�. Thus
X̂1 and X̂2 are proportional to the standard quadrature
components for a monochromatic field mode.
In the case of a nearly monochromatic mean field, the

quantum-limited sensitivity (7.27) for detecting a gravita-
tional-wave amplitude becomes

hðδ ~AÞ2i ¼ 1

ðωτÞ2n̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔX̂2Þ2i
hðΔX̂1Þ2i

s
: ð7:45Þ

If the field is excited into a nearly monochromatic coherent
state, the quadrature components have equal, vacuum-
level uncertainties, n̄ ¼ hn̂i ¼ hðΔn̂Þ2i is the expectation
value and the variance in the number of photons, and
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the sensitivity is shot-noise-limited, i.e., hðδ ~AÞ2i1=2 ¼
1=ωτhn̂i1=2. This result has a physically intuitive interpre-
tation. The gravitational wave changes the coordinate
speed of light in the x direction by −A=2, leading to a
phase shift δϕ ¼ ðωτÞA=2; the shot-noise limit on detec-
ting the gravitational-wave amplitude translates to
hðδϕÞ2ihðΔn̂Þ2i ¼ 1

4
, which is the conventional uncer-

tainty-principle bound on phase and photon number. To
do better than shot noise, one can squeeze the X̂ 2 quad-
rature, reducing its uncertainty while increasing the uncer-
tainty in the X̂2 quadrature.
A bonus of our approach is that Eq. (7.27) gives us the

quantum limit on detecting a gravitational wave using a
nearly plane-wave, but broadband probe field:

hðδ ~AÞ2i¼
�Z

d3k
ð2πÞ3 ðωτÞ

2jα1;kj2
�−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔX̂ 2Þ2i
hðΔX̂ 1Þ2i

s
: ð7:46Þ

Comparison to the monochromatic sensitivity (7.45) shows
that the way to generalize ðωτÞ2n̄ to a broadband mean field
is to integrate over contributions from all the monochro-
matic modes. If the field is excited into a broadband
coherent state, the quantum-limited sensitivity is given
by a sort of generalized shot noise quantified by this
frequency-weighted integration over mean photon numbers
in the monochromatic modes.
To do better than shot-noise-limited sensitivity, one

should put the appropriate field mode into a squeezed
state. We can write down the required squeezed state by
noting that for a nearly plane wave, the field quadra-
tures take the form X̂1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
ℏC=2

p ðb̂þ b̂†Þ and X̂2 ¼ffiffiffiffiffiffiffiffiffiffiffi
ℏC=2

p ð−ib̂þ ib̂†Þ (see Appendix C), where

b̂ ¼ τffiffiffiffiffiffiffiffiffi
2ℏC

p
Z

d3k
ð2πÞ3 ℏωα

�
1;kâky ð7:47Þ

and b̂† satisfy the canonical bosonic commutation
relation, ½b̂;b̂†�¼1. This means that the desired minimum-
uncertainty state is the squeezed state

eμb̂
†−μ�b̂ exp

�
1

2
r½ðb̂†Þ2 − b̂2�

�
j0i; ð7:48Þ

where μ and r are real, with μ chosen to give the assumed
mean field E1ðx; tÞ. Indeed, one can see that this state has

hakyi ¼
μτffiffiffiffiffiffiffiffiffi
2ℏC

p ℏωα1;k; ð7:49Þ

so consistency requires that μ ¼ ffiffiffiffiffiffiffiffiffi
2ℏC

p
=ℏωτ. The sque-

ezed state (7.48) has hb̂i ¼ μ, hX̂1i ¼
ffiffiffiffiffiffiffiffiffi
2ℏC

p
μ ¼ 2C=ωτ,

hX̂2i ¼ 0, and

hðΔX̂1Þ2i ¼
ℏC
2

e2r;

hðΔX̂2Þ2i ¼
ℏC
2

e−2r: ð7:50Þ

It thus beats shot-noise-limited sensitivity by a factor
of e−2r.

VIII. OTHER APPLICATIONS

We now consider briefly a few of the many other
applications of our formalism.
Cosmology is one field where accurate measurement of

gravitational parameters is of obvious interest. For a simple
example, consider the spatially closed Friedmann-
Lemaître-Robertson-Walker spacetime. This is a universe
filled with a uniform density of matter, e.g., “galaxies,” and
radiation. At any instant in time, in the comoving frame of
the galaxies, the universe looks the same everywhere
(homogeneous) and in all directions (isotropic). The metric
for this universe is given by [9]

ds2¼−dt2þa2ðtÞ½dχ2þsin2χðdθ2þsin2θdϕ2Þ�; ð8:1Þ

where t is the proper time of an observer comoving with
any of the galaxies. The spatial coordinates χ; θ;ϕ describe
homogeneous and isotropic three-spheres of constant
proper time t. The function aðtÞ, known as the expansion
parameter, is the ratio of the proper distance between any
two galaxies at the initial time t ¼ 0 and the time t.
During an infinitesimal duration of proper time dt a

photon travels the distance dη ¼ dt=aðtÞ. It is convenient
to use η, known as the conformal time coordinate, as the
time parameter. Transforming to conformal time has the
effect of shunting the time dependence into a conformal
factor. We furthermore consider a universe dominated by
matter, in which case aðηÞ ¼ amaxð1 − cos ηÞ and the
metric becomes

ds2 ¼ a2max

4
ð1 − cos ηÞ2½−dη2 þ dχ2

þ sin2χðdθ2 þ sin2θdϕ2Þ�; ð8:2Þ

where η runs between 0 at the beginning of expansion to 2π
at the end of recontraction. We wish to estimate the
parameter amax which controls the maximum size the
universe reaches before contraction commences. Since
dgμν=damax ¼ ð2=amaxÞgμν, the operator (4.4) becomes

P̂ðamaxÞ ¼
a3max

16

Z
M
dηdχdθdϕð1− cosηÞ4sin2χ sinθgμνT̂μν

¼ a5max

64

Z
M
dηdχdθdϕð1− cosηÞ6sin2χ sinθ½−T̂ηη

þ T̂χχ þ sin2χðT̂θθ þ T̂ϕϕsin2θÞ�: ð8:3Þ
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It is interesting to note that since we are estimating a
scale factor, the above integrand is proportional to the trace
of the stress-energy tensor. Thus, for any field with a
traceless stress-energy tensor, such as the free electromag-
netic field, hðΔP̂Þ2i vanishes, and we get no information
about the scale factor. This is an expression of the well-
known scale invariance of the electromagnetic field.
To give another cosmological example, suppose we are

interested in measuring the cosmological constant Λ in a de
Sitter universe. Again using the conformal time coordinate,
the line element can be written as

ds2 ¼ 3

Λ
sec2ηð−dη2 þ dχ2 þ sin2χðdθ2 þ sin2θdϕ2ÞÞ;

ð8:4Þ

which gives us

P̂ðΛÞ¼−
9

2Λ3

Z
M
dηdχdθdϕsec4ηsin2χ sinθgμνT̂

μν: ð8:5Þ

Again, because we are estimating a scale factor, the
integrand is proportional to the trace of the stress-energy
tensor, which vanishes for the free electromagnetic field.
These and other cosmological parameters represent

overall scale factors of the universe. As such, the con-
formally invariant electromagnetic field alone is not an
adequate probe. For example, it is only possible to measure
the cosmological redshift of light if the atomic emission
spectrum of its source is also known. Indeed, Penrose has
essentially argued that should all matter in the universe
decay into photons, the scale of the universe would become
unobservable and thus physically irrelevant [49]. So a more
useful calculation should include fermionic fields, which
break this scale invariance. Alternatively, a massive scalar
or boson field would also yield a finite Cramér-Rao bound,
since its stress-energy has nonvanishing trace.
A more down-to-earth application is that of a gravimeter.

One way to deal with this case is to approximate the near-
earth spacetime by a Schwarzschild metric, and assume the
floor of the laboratory has constant Schwarzschild coor-
dinate radius; then the problem of gravimetry becomes one
of estimating the Schwarzschild mass of the Earth. This
problem certainly lends itself to our method, provided the
appropriate stress-energy correlations in a Schwarzschild
background are calculated. Of course, the same calculation
would also be applicable to a black hole.
Our method is also applicable to the estimation of

dynamical quantities of a probe in flat spacetime, such
as acceleration, rotation, etc. One approach is to assume
such dynamics are due to coupling with a nongravitational,
classical field. The locally covariant approach then
“applies, mutatis mutandis, also to this case” [5], and so
also does our Cramér-Rao bound.

IX. CONCLUSION

In this paper we presented the quantum Cramér-Rao
lower bound for the uncertainty in estimating parameters
describing a spacetime metric. Our specific derivation
applies for any quantum state on an arbitrary globally
hyperbolic manifold. To demonstrate the utility of our
formalism, we applied it to the estimation of metric
components and found uncertainty principles akin to those
found by Unruh [10] using heuristic arguments. We also
considered the quantum estimation of gravitational-wave
amplitudes and obtained generalizations of known quantum
limits for laser interferometers such as LIGO.
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APPENDIX A: CATEGORY THEORY
FRAMEWORK

In this appendix we briefly review category theory as
employed by Brunetti, Fredenhagen, and Verch in Ref. [5].
A primary motivation is that it provides a convenient way to
rigorously define the change in a quantum observable due
to a spacetime perturbation, which we outline here. To
begin with, a category (or more precisely, a concrete
category) consists of objects and functions between objects
called morphisms. A category of particular relevance for
our purposes, given in Ref. [5], is the following:
Definition. Man is the category whose objects are

globally hyperbolic spacetimes and whose morphisms are
isometric embeddings (or in other words inclusion maps).
We next consider quantum fields in those spacetimes,
formulated in terms of C�-algebras. The relevant category
of C�-algebras is given in Ref. [5] as follows:
Definition. Alg is the category whose objects

are C�-algebras and whose morphisms are injective
*-homomorphisms.
To associate C�-algebras to our spacetimes, we use a

covariant functor from the spacetimes to C�-algebras.
A functor is a function between categorieswhichmaps objects
to objects andmorphisms tomorphisms, such that the identity
maps to the identity and compositions map to compositions.
A covariant functor is a functor thatmaps domains to domains
and images to images (pictorially, it preserves the directions of
morphism arrows). Thus we arrive at the following [5]:
Definition. A locally covariant quantum field theory is a

covariant functor,
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A∶Man → Alg:

Note that a locally covariant quantum field theory is local in
the sense that it maps submanifolds of manifolds to
subalgebras of the corresponding algebras.
We further require that any causal, locally covariant

quantum field theory obey the following axiom [5]:
Axiom. (Time-slice axiom) If A is a locally covariant
quantum field theory, ðN; gÞ; ðM; gÞ ∈ Man, and ψ ∈
homððN; gÞ; ðM; gÞÞ such that ψðN; gÞ contains a Cauchy
surface of ðM; gÞ, then AðψÞðAðN; gÞÞ ¼ AðM; gÞ.
In other words, the algebra associated with a Cauchy
surface of a manifold determines the algebra associated
with the entire manifold.
The perturbed spacetime discussed above, along with the

embedded subregions N�, the locally covariant quantum
field theory thereon, and the relevant morphisms, can all be

represented by the diagram in Fig. 2, where g
∘ ¼ gð0Þ and

g ¼ gðsÞ. Note that the assumption of the time-slice axiom
implies the morphisms AðN�; gN�Þ → AðM; gÞ are bijec-
tive. Therefore, the arrows on the right-hand side of the
diagram are invertible. This allows these morphisms to be
composed in such a way as to construct an automorphism
on AðM; gð0ÞÞ:

βg ¼ αψ−∘ ∘ α−1ψ−
g
∘ αψþ

g
∘ α−1

ψþ∘
: ðA1Þ

By the Gelfand-Neimark-Segal construction [27–29],
every C�-algebra admits a linear *-representation π by
bounded operators on a Hilbert space. Thus βg induces an
automorphism on Hilbert-space operators. Thus any oper-
ator Â ¼ πðAÞ, where A ∈ AðM; gð0ÞÞ, i.e., any operator
associated with our fiducial spacetime, can be said to
evolve under our s-parametrized spacetime perturbation

into ÂðsÞ ¼ πðβgðsÞAÞ. This process is termed relative
Cauchy evolution [5].

APPENDIX B: COORDINATE INDEPENDENCE

In this appendix we derive Eq. (5.15), and thus the
coordinate independence of ðΔP̂Þ2, without the assumption
of a single coordinate patch covering K. This assumption is
not valid, for example, when the interior of K is not
homeomorphic to R4. More generally, it is often simply
more convenient to use multiple coordinate patches.
For the purposes of this proof, however, we avoid

explicitly juggling multiple coordinate transition maps
by considering each to be locally induced by a global
diffeomorphism φðsÞ∶M → M that depends continuously

on the parameter s ∈ ½0; 1�. This induces a pushforward φðsÞ
�

of a contravariant tensor field or (in the same direction) a
pullback of the inverse diffeomorphism ððφðsÞÞ−1Þ� of a

covariant field, which we will also denote by φðsÞ
� . Note that

if it is restricted to a coordinate patch φðsÞ
� is related to the

transformation Lμ
α0 ðsÞ of Sec. V by ðφðsÞ

� vÞα0 ¼ Lμ
α0 ðsÞvμ.

(And notice that in the classic index analysis of Sec. V, the
prime serves double duty, denoting both this s-dependent
coordinate transformation, and its s ¼ 0 instance.)
To further obviate the need for explicit coordinate charts,

we use here Penrose’s abstract index notation [50], denoted
by latin indices. Like coordinate component indices, the
number of such subscripted/superscripted indices indicate
tensor ranks, and repeated indices indicate tensor contrac-
tions. But Penrose’s abstract indices do not index coor-
dinate components; rather they signify entire tensors.
For example, gμν ∈ R while gab ∈ T�M ⊗ T�M. Thus
Penrose’s abstract indices provide all the convenience of
indices without any of the commitment to coordinates. In
these terms, our objective is to show

FIG. 2. Diagram of the perturbed spacetime, along with the embedded subregions N�, the locally covariant quantum field theory

thereon, and the relevant morphisms, where g
∘ ¼ gð0Þ and g ¼ gðsÞ.
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Z
K
dμ

φðsÞ
� gðsÞφ

ðsÞ
� Tab d

ds
φðsÞ
� gðsÞab

����
s¼0

¼
Z
K
dμgðsÞT

ab d
ds

gðsÞab

����
s¼0

: ðB1Þ

Assuming that ∇aT̂
ab ¼ 0, we have

Z
K
dμ
∘ 0T̂ 0ab d

ds

����
0

φðsÞ
� gðsÞab ¼

Z
K
dμ
∘ 0T̂ 0ab d

ds

����
0

ϕðsÞ
� gðsÞ0ab

¼
Z
K
dμ
∘ 0T̂ 0ab

��
d
ds

����
0

gðsÞab

�0
þ d
ds

����
0

ϕðsÞ
� gð0Þ0ab

	

¼
Z
K
dμ
∘ 0T̂ 0ab

��
d
ds

����
0

gðsÞab

�0
þ∇0

aX0
b þ∇0

bX
0
a

	

¼
Z
K
dμ
∘
T̂ab

�
d
ds

����
0

gðsÞab þ∇aXb þ∇bXa

	

¼
Z
K
dμ
∘
�
T̂ab d

ds

����
0

gðsÞab þ 2ð∇aðT̂abXbÞ − ð∇aT̂
abXbÞÞ

	

¼
Z
K
dμ
∘
T̂ab d

ds

����
0

gðsÞab þ 2

Z
K
dμ
∘∇aðT̂abXbÞ

¼
Z
K
dμ
∘
T̂ab d

ds

����
0

gðsÞab þ 2

Z
∂K

dλnaT̂
abXb; ðB2Þ

where ϕðsÞ ¼ φðsÞ∘ðφð0ÞÞ−1, X0
a generates ϕðsÞ, dλ is the

surface element induced on the boundary of K, na is the
corresponding surface normal, and primes denote ϕð0Þ

� .
Then neglecting the boundary term, as explained in Sec. V,
we achieve the desired diffeomorphism independence.
Note that ϕðsÞ above corresponds to ϕðsÞ in the proof of

Theorem 4.2 in Ref. [5]. That theorem implies that ∇aT̂
ab

must vanish if the above integral is invariant with respect to

the transformation ϕðsÞ
� of the metric. The above result is a

generalization of the converse.

APPENDIX C: COMMUTATORS AND VACUUM
CORRELATION FUNCTIONS FOR THE

ELECTROMAGNETIC FIELD

The field operators for the free electric and magnetic
fields can be written as (we use cgs Gaussian units with
c ¼ 1)

Êðx; tÞ ¼ ÊðþÞðx; tÞ þ Êð−Þðx; tÞ; ðC1Þ

B̂ðx; tÞ ¼ B̂ðþÞðx; tÞ þ B̂ð−Þðx; tÞ; ðC2Þ

where the positive- and negative-frequency parts of the
fields are given by

ÊðþÞ ¼ Êð−Þ† ¼ i
X
σ

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffi
2πℏω

p
âkσekσeiωðn·x−tÞ;

ðC3Þ

B̂ðþÞ ¼ B̂ð−Þ† ¼ i
X
σ

Z
d3k
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffi
2πℏω

p
âkσn× ekσeiωðn·x−tÞ:

ðC4Þ

Here k ¼ ωn is the wave vector (ω ¼ jkj is the angular
frequency and n is a unit vector), and âkσ and ekσ are the
annihilation operator and unit (transverse) polarization
vector for the plane-wave mode with wave vector k and
polarization σ. The creation and annihilation operators
satisfy the canonical commutator,

½âkσ; â†k0σ0 � ¼ ð2πÞ3δðk − k0Þδσσ0 : ðC5Þ

The Hamiltonian for the electromagnetic field is

Ĥ ¼
Z

d3x∶T̂00∶ ¼ 1

8π

Z
d3x∶Ê · Êþ B̂ · B̂∶

¼ 1

2π

Z
d3xÊð−Þ · ÊðþÞ ¼

X
σ

Z
d3k
ð2πÞ3 ℏωa

†
kσakσ

ðC6Þ

where the integral extends over all space.
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The positive- and negative-frequency parts of the fields have the free-field commutators,

½ÊðþÞ
j ðx; tÞ; Êð−Þ

k ðx0; t0Þ� ¼ ½B̂ðþÞ
j ðx; tÞ; B̂ð−Þ

k ðx0; t0Þ� ¼ 2πℏ

�
−δjk

∂2

∂t2 þ
∂2

∂xj∂xk
�Z

d3k
ð2πÞ3

1

ω
eiω½n·ðx−x0Þ−ðt−t0Þ�; ðC7Þ

½ÊðþÞ
j ðx; tÞ; B̂ð−Þ

k ðx0; t0Þ� ¼ −½B̂ðþÞ
j ðx; tÞ; Êð−Þ

k ðx0; t0Þ� ¼ 2πℏϵjkl
∂2

∂t∂xl
Z

d3k
ð2πÞ3

1

ω
eiω½n·ðx−x0Þ−ðt−t0Þ�: ðC8Þ

The integral on the right evaluates to

Z
d3k
ð2πÞ3

1

ω
eiω½n·ðx−x0Þ−ðt−t0Þ� ¼ −

i
4π

Gðx − x0; t − t0Þ þ 1

2π2
Dðx − x0; t − t0Þ; ðC9Þ

where

Gðx; tÞ ¼ −4πIm
Z

d3k
ð2πÞ3

1

ω
eiωðn·x−tÞ ¼ δðt − jxjÞ − δðtþ jxjÞ

jxj ðC10Þ

is the difference between retarded and advanced Green functions, i.e., the solution of the homogeneous wave equation for
an incoming spherical wave that reflects off the origin and becomes an outgoing spherical wave, and

Dðx; tÞ ¼ 2π2Re
Z

d3k
ð2πÞ3

1

ω
eiωðn·x−tÞ ¼ p:v:

1

−t2 þ jxj2 ¼ p:v:
1

ðΔsÞ2 ðC11Þ

is the principal value of the inverse of the invariant interval. From these follow the free-field commutators and vacuum
correlators [51]:

½Êjðx; tÞ; Êkðx0; t0Þ� ¼ ½B̂jðx; tÞ; B̂kðx0; t0Þ�
¼ 2iImð½ÊðþÞ

j ðx; tÞ; Êð−Þ
k ðx0; t0Þ�Þ

¼ iℏ

�
δjk

∂2

∂t2 −
∂2

∂xj∂xk
�
Gðx − x0; t − t0Þ; ðC12Þ

½Êjðx; tÞ; B̂kðx0; t0Þ� ¼ −½B̂jðx; tÞ; Êkðx0; t0Þ�
¼ 2iImð½ÊðþÞ

j ðx; tÞ; B̂ð−Þ
k ðx0; t0Þ�Þ

¼ −iℏϵjkl
∂2

∂t∂xl Gðx − x0; t − t0Þ; ðC13Þ

1

2
h0j½Êjðx; tÞÊkðx0; t0Þ þ Êkðx0; t0ÞÊjðx; tÞ�j0i ¼

1

2
h0j½B̂jðx; tÞB̂kðx0; t0Þ þ B̂kðx0; t0ÞB̂jðx; tÞ�j0i

¼ Reð½ÊðþÞ
j ðx; tÞ; Êð−Þ

k ðx0; t0Þ�Þ

¼ ℏ
π

�
−δjk

∂2

∂t2 þ
∂2

∂xj∂xk
�
Dðx − x0; t − t0Þ; ðC14Þ

1

2
h0j½Êjðx; tÞB̂kðx0; t0Þ þ B̂kðx0; t0ÞÊjðx; tÞ�j0i ¼ −

1

2
h0j½B̂jðx; tÞÊkðx0; t0Þ þ Êkðx0; t0ÞB̂jðx; tÞ�j0i

¼ Reð½ÊðþÞ
j ðx; tÞ; B̂ð−Þ

k ðx0; t0Þ�Þ

¼ ℏ
π
ϵjkl

∂2

∂t∂xl Dðx − x0; t − t0Þ: ðC15Þ
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The field quadratures (7.29) and (7.32) for a nearly plane-wave mean field can be evaluated in the Fourier domain as
follows (a ¼ 1, 2):

X̂a ¼
1

4π

Z
d4xEaðx; tÞÊyðx; tÞ ¼

1

4π

Z
dtd3xEð−Þ

a ðx; tÞÊðþÞ
y ðx; tÞ þ H:c:

¼ 1

2
τ

Z
d3k
ð2πÞ3 ℏω

X
σ;σ0

αa;kσâkσ0 ðey · e�kσÞðey · ekσ0 Þ þ H:c:

¼ 1

2
τ

Z
d3k
ð2πÞ3 ℏωαa;kâky þ H:c:: ðC16Þ

In the first line we discard counter-rotating terms that
average to nearly zero over the temporal integral; in the
second line, we insert the Fourier transforms of the field
operators and the wave forms and do the temporal integral
over the duration τ for which the mean fields are turned on;
in the third line, we use the fact that αa;kσ has support only
for k pointing nearly in the x direction, with polarization
nearly along the y direction, to restrict the two sums over
polarization to y linear polarization.
Using Eq. (7.43), we can write

X̂1¼
ffiffiffiffiffiffiffi
ℏC
2

r
ðb̂þ b̂†Þ; X̂ 2¼

ffiffiffiffiffiffiffi
ℏC
2

r
ð−ib̂þ ib̂†Þ; ðC17Þ

i.e., b̂ ¼ ðX̂1 þ iX̂2Þ=
ffiffiffiffiffiffiffiffiffi
2ℏC

p
, where

b̂ ¼ τffiffiffiffiffiffiffiffiffi
2ℏC

p
Z

d3k
ð2πÞ3 ℏωα

�
1;kâky ðC18Þ

[the constant C is given in Eq. (7.44)]. One can verify that
the quadrature components obey the commutation relation
(7.22) or, equivalently, that b̂ and b̂† satisfy the canonical
bosonic commutation relation, ½b̂; b̂†� ¼ 1.
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