3,127 research outputs found

    Is there value in a two-step diagnostic algorithm to confirm SARS-CoV-2 in South Africa?

    Get PDF

    Coherent and Squeezed Vacuum Light Interferometry: Parity detection hits the Heisenberg limit

    Get PDF
    The interference between coherent and squeezed vacuum light can produce path entangled states with very high fidelities. We show that the phase sensitivity of the above interferometric scheme with parity detection saturates the quantum Cramer-Rao bound, which reaches the Heisenberg-limit when the coherent and squeezed vacuum light are mixed in roughly equal proportions. For the same interferometric scheme, we draw a detailed comparison between parity detection and a symmetric-logarithmic-derivative-based detection scheme suggested by Ono and Hofmann.Comment: Change in the format from aps to iop since we decided to submit it to NJP; Minor changes in tex

    Cumulative Effect of the Application of N and P Fertilizers on Soil Total and Labile Concentrations After 12 Cereal Crops on a Black Vertosol

    Get PDF
    Soil organic carbon is commonly used as a key indicator of sustainability of farming systems due to effects on nutrient availability, structural stability and its central role in soil biotic processes. Trends in total carbon content (CT) and lability of carbon (CL) in soil have been measured in a long-term nitrogen (N) x phosphorus (P) fertiliser experiment in continuous cereal cropping to assess the effect of increasing crop nutrient supply on soil carbon accretion and partitioning. Increasing N supply in each crop by 80 kg/ha or more was effective in creating significantly different total and labile carbon content

    Entanglement of indistinguishable particles in condensed matter physics

    Get PDF
    The concept of entanglement in systems where the particles are indistinguishable has been the subject of much recent interest and controversy. In this paper we study the notion of entanglement of particles introduced by Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] in several specific physical systems, including some that occur in condensed matter physics. The entanglement of particles is relevant when the identical particles are itinerant and so not distinguished by their position as in spin models. We show that entanglement of particles can behave differently to other approaches that have been used previously, such as entanglement of modes (occupation-number entanglement) and the entanglement in the two-spin reduced density matrix. We argue that the entanglement of particles is what could actually be measured in most experimental scenarios and thus its physical significance is clear. This suggests entanglement of particles may be useful in connecting theoretical and experimental studies of entanglement in condensed matter systems.Comment: 13 pages, 6 figures, comments welcome, published version (minor changes, added references

    Recognition of Familiar and Unfamiliar Melodies in Normal Aging and Alzheimers-Disease

    Get PDF
    We tested normal young and elderly adults and elderly Alzheimer\u27s disease (AD) patients on recognition memory for tunes. In Experiment 1, AD patients and age-matched controls received a study list and an old/new recognition test of highly familiar, traditional tunes, followed by a study list and test of novel tunes. The controls performed better than did the AD patients. The controls showed the \u27\u27mirror effect\u27\u27 of increased hits and reduced false alarms for traditional versus novel tunes, whereas the patients false-alarmed as often to traditional tunes as to novel tunes. Experiment 2 compared young adults and healthy elderly persons using a similar design. Performance was lower in the elderly group, but both younger and older subjects showed the mirror effect. Experiment 3 produced confusion between preexperimental familiarity and intraexperimental familiarity by mixing traditional and novel tunes in the study lists and tests. Here, the subjects in both age groups resembled the patients of Experiment 1 in failing to show the mirror effect. Older subjects again performed more poorly, and they differed qualitatively from younger subjects in setting stricter criteria for more nameable tunes. Distinguishing different sources of global familiarity is a factor in tune recognition, and the data suggest that this type of source monitoring is impaired in AD and involves different strategies in younger and older adults

    Quantum reflection of atoms from a solid surface at normal incidence

    Full text link
    We observed quantum reflection of ultracold atoms from the attractive potential of a solid surface. Extremely dilute Bose-Einstein condensates of ^{23}Na, with peak density 10^{11}-10^{12}atoms/cm^3, confined in a weak gravito-magnetic trap were normally incident on a silicon surface. Reflection probabilities of up to 20 % were observed for incident velocities of 1-8 mm/s. The velocity dependence agrees qualitatively with the prediction for quantum reflection from the attractive Casimir-Polder potential. Atoms confined in a harmonic trap divided in half by a solid surface exhibited extended lifetime due to quantum reflection from the surface, implying a reflection probability above 50 %.Comment: To appear in Phys. Rev. Lett. (December 2004)5 pages, 4 figure

    Perception of Mode, Rhythm, and Contour in Unfamiliar Melodies: Effects of Age and Experience

    Get PDF
    We explored the ability of older (60-80 years old) and younger (18-23 years old) musicians and nonmusicians to judge the similarity of transposed melodies varying on rhythm, mode, and/or contour (Experiment 1) and to discriminate among melodies differing only in rhythm, mode, or contour (Experiment 2). Similarity ratings did not vary greatly among groups, with tunes differing only by mode being rated as most similar. In the same/different discrimination task, musicians performed better than nonmusicians, but we found no age differences. We also found that discrimination of major from minor tunes was difficult for everyone, even for musicians. Mode is apparently a subtle dimension in music, despite its deliberate use in composition and despite people\u27s ability to label minor as sad and major as happy

    Continuation Sheaves in Dynamics: Sheaf Cohomology and Bifurcation

    Full text link
    Continuation of algebraic structures in families of dynamical systems is described using category theory, sheaves, and lattice algebras. Well-known concepts in dynamics, such as attractors or invariant sets, are formulated as functors on appropriate categories of dynamical systems mapping to categories of lattices, posets, rings or abelian groups. Sheaves are constructed from such functors, which encode data about the continuation of structure as system parameters vary. Similarly, morphisms for the sheaves in question arise from natural transformations. This framework is applied to a variety of lattice algebras and ring structures associated to dynamical systems, whose algebraic properties carry over to their respective sheaves. Furthermore, the cohomology of these sheaves are algebraic invariants which contain information about bifurcations of the parametrized systems

    Single and Biphoton Imaging and High Dimensional Quantum Communication

    Get PDF
    Here, we present recent developments in the field of quantum imaging focusing on the high dimensionality aspects of single and biphoton imaging. We discuss some systems that have a “quantum advantage” over classical counterparts. We highlight some recent experiments in single-photon image discrimination, large alphabet quantum key distribution and image buffering

    The time-reversal test for stochastic quantum dynamics

    Get PDF
    The calculation of quantum dynamics is currently a central issue in theoretical physics, with diverse applications ranging from ultra-cold atomic Bose-Einstein condensates (BEC) to condensed matter, biology, and even astrophysics. Here we demonstrate a conceptually simple method of determining the regime of validity of stochastic simulations of unitary quantum dynamics by employing a time-reversal test. We apply this test to a simulation of the evolution of a quantum anharmonic oscillator with up to 6.022Ă—10236.022\times10^{23} (Avogadro's number) of particles. This system is realisable as a Bose-Einstein condensate in an optical lattice, for which the time-reversal procedure could be implemented experimentally.Comment: revtex4, two figures, four page
    • …
    corecore