The calculation of quantum dynamics is currently a central issue in
theoretical physics, with diverse applications ranging from ultra-cold atomic
Bose-Einstein condensates (BEC) to condensed matter, biology, and even
astrophysics. Here we demonstrate a conceptually simple method of determining
the regime of validity of stochastic simulations of unitary quantum dynamics by
employing a time-reversal test. We apply this test to a simulation of the
evolution of a quantum anharmonic oscillator with up to 6.022×1023
(Avogadro's number) of particles. This system is realisable as a Bose-Einstein
condensate in an optical lattice, for which the time-reversal procedure could
be implemented experimentally.Comment: revtex4, two figures, four page