3 research outputs found

    MIP-based extraction techniques for the determination of antibiotic residues in edible meat samples : Design, performance & recent developments

    Get PDF
    Misusing or overusing antibiotics in livestock and poultry can result in the accumulation of mentioned drugs in the animal meat. Consequently, its consumption by humans and therefore increasing the risks of antibiotic resistance emergences. In order to decrease these risks, constant monitoring of the meat samples is necessary. Therefore, the concentration of antibiotics needs to be lower than maximum residue limits. As meat is a complex matrix, sample preparation is a mandatory step in the analysis. Molecularly imprinted polymers are one of the extensively studied tools in this aspect. These polymers exhibited great affinity and selectivity towards the target compound/s. In this work, a collection of studies from 2017 to 2021 is reviewed. Inclusion criteria were formed around papers incorporating molecularly imprinted polymers as a means of extraction or detection of antibiotics in meat samples. This review represents different synthesis methods of these polymers and their applications in the extraction and determination of antibiotics from meat samples. It also demonstrates the advantages, gaps and weakness of these systems in the food chemistry field. It can also act as a guide for the design and development of novel polymer-based analytical methods for food applications. Throughout this review, the methods for determination of antibiotic residues in food samples using conventional and novel MIP based techniques are discussed, by coupling MIPs with other analytical techniques, Limit of detection and quantification and recovery rates will improve significantly, which results in designing of platforms in food chemistry analysis with higher efficacy.Peer reviewe

    Avocado-Soybean Unsaponifiables: A Panoply of Potentialities to Be Exploited

    Get PDF
    Avocado and soybean unsaponifiables (ASU) constitute vegetable extracts made from fruits and seeds of avocado and soybean oil. Characterized by its potent anti-inflammatory effects, this ASU mixture is recommended to act as an adjuvant treatment for osteoarthritic pain and slow-acting symptomatic treatment of hip and knee osteoarthritis; autoimmune diseases; diffuse scleroderma and scleroderma-like states (e.g., morphea, sclerodactyly, scleroderma in bands). Besides, it was reported that it can improve the mood and quality of life of postmenopausal women in reducing menopause-related symptoms. This article aims to summarize the studies on biological effects of the avocado-soybean unsaponifiable, its chemical composition, pharmacotherapy as well as applications in auto-immune, osteoarticular and menopausal disorders. Finally, we will also discuss on its safety, toxicological and regulatory practices

    In Silico Identification of Potentially Effective Herbal Inhibitors of SARS-Cov-2 Main Protease by Virtual Screening Method: Potential Anti-COVID-19 Molecules

    No full text
    Background: The COVID-19 pandemic is a global health emergency caused by SARS-CoV-2. Unfortunately, no effective drugs have been found to date. There is also a major need for new therapies to treat this disease. The main protease is an attractive drug target among coronaviruses due to its important role in the processing of viral RNA-translated polyproteins. Objective of This study was conducted to screen databases of herbal compounds for potential main protease inhibitors.Material and Methods: Natural products from 3 database banks were first tested and filtered by ADME / toxicity, then their molecular energy was minimized, and finally, they were docked into the SARS-CoV-2 main protease and compared with indinavir.Results: The binding energies of 6570 molecules from different herbal compounds comprising databases were tested and five of the molecules with the highest binding energies for SARS-CoV-2 main protease docking were selected and key interactions were studied.Conclusion: In conclusion, five herbal compounds including Sodwanone B, Cyclomulberrin, and a glycosylated derivative of kaempferol had lower docking energy compared to indinavir and were suggested for further research
    corecore