50 research outputs found

    A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation

    Full text link
    [EN] Isophthalic acid (IPA) has been considered to build metal-organic frameworks (MOFs), owing to its facile availability, unique connection angle-mode, and a wide range of functional groups attached. Constructing titanium-IPA frameworks that possess photoresponse properties is an alluring characteristic with respect to the challenge of synthesizing new titanium-based MOFs (Ti-MOFs) Here, we report the first Ti-IPA MOF (MIP-208) that efficiently combines the use of preformed Ti-8 oxoclusters and in situ acetylation of the 5-NH2-IPA linker. The mixed solid-solution linkers strategy was successfully applied, resulting in a series of multivariate MIP-208 structures with tunable chemical environments and sizable porosity. MIP-208 shows the best result among the pure MOF catalysts for the photocatalytic methanation of carbon dioxide. To improve the photocatalytic performance, ruthenium oxide nanoparticles were photo-deposited on MIP-208, forming a highly active and selective composite catalyst, MIP-208@RuOx, which features a notable visible-light response coupled with excellent stability and recycling ability.S.W. acknowledges the support from the National Natural Science Foundation of China (22071234) and the Fundamental Research Funds for the Central Universities (WK2480000007). S.N. thanks the Ministerio de Ciencia, Innovacion y Universidades (RTI2018-099482-A-I00 project, the Fundacion Ramon Areces (XVIII Concurso Nacional para la Adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia, 2016), and Generalitat Valenciana grupos de investigacion consolidables (AICO/2019/214 project) and Agencia Valenciana de la Innovacion (INNEST/2020/111 project) for financial support. C.-C.C. acknowledges the support from the Program of China Scholarship Council (201700260093) and PHC Cai YuanPei Project (38893VJ). C.M.-C. is grateful for financial support from the Institut Universitaire de France (IUF) and the Paris Ile-de-France Region -DIM "Respore.'' H.G. thanks the Spanish Ministry of Science and Innovation (Severo Ochoa and RTI2018-098237-CO2-1) and Generalitat Valenciana (Prometeo2017/083) for financial support. The authors thank the staff at Synchrotron SOLEIL and the associated scientists for beamtime and assistance during SCXRD data collections on PROXIMA 2A, as well as Dr. Peng Guo and Dr. Nana Yan from Dalian Institute of Chemical Physics (Chinese Academy of Sciences) for the collection of high-resolution PXRD data for Rietveld refinement.Wang, S.; Cabrero-Antonino, M.; Navalón Oltra, S.; Cao, C.; Tissot, A.; Dovgaliuk, I.; Marrot, J.... (2020). A Robust Titanium Isophthalate Metal-Organic Framework for Visible-Light Photocatalytic CO2 Methanation. Chem. 6(12):3409-3427. https://doi.org/10.1016/j.chempr.2020.10.017S34093427612Dhakshinamoorthy, A., Li, Z., & Garcia, H. (2018). Catalysis and photocatalysis by metal organic frameworks. Chemical Society Reviews, 47(22), 8134-8172. doi:10.1039/c8cs00256hChen, L., & Xu, Q. (2019). Metal-Organic Framework Composites for Catalysis. Matter, 1(1), 57-89. doi:10.1016/j.matt.2019.05.018Yeung, H. H.-M., Li, W., Saines, P. J., Köster, T. K. J., Grey, C. P., & Cheetham, A. K. (2013). Ligand-Directed Control over Crystal Structures of Inorganic-Organic Frameworks and Formation of Solid Solutions. Angewandte Chemie International Edition, 52(21), 5544-5547. doi:10.1002/anie.201300440Lu, W., Wei, Z., Gu, Z.-Y., Liu, T.-F., Park, J., Park, J., … Zhou, H.-C. (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chem. Soc. Rev., 43(16), 5561-5593. doi:10.1039/c4cs00003jDesai, A. V., Sharma, S., Let, S., & Ghosh, S. K. (2019). N-donor linker based metal-organic frameworks (MOFs): Advancement and prospects as functional materials. Coordination Chemistry Reviews, 395, 146-192. doi:10.1016/j.ccr.2019.05.020Zhang, H., Zou, R., & Zhao, Y. (2015). Macrocycle-based metal-organic frameworks. Coordination Chemistry Reviews, 292, 74-90. doi:10.1016/j.ccr.2015.02.012He, Y., Li, B., O’Keeffe, M., & Chen, B. (2014). Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chem. Soc. Rev., 43(16), 5618-5656. doi:10.1039/c4cs00041bWang, H., Zhu, Q.-L., Zou, R., & Xu, Q. (2017). Metal-Organic Frameworks for Energy Applications. Chem, 2(1), 52-80. doi:10.1016/j.chempr.2016.12.002Kuppler, R. J., Timmons, D. J., Fang, Q.-R., Li, J.-R., Makal, T. A., Young, M. D., … Zhou, H.-C. (2009). Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 253(23-24), 3042-3066. doi:10.1016/j.ccr.2009.05.019Czaja, A. U., Trukhan, N., & Müller, U. (2009). Industrial applications of metal–organic frameworks. Chemical Society Reviews, 38(5), 1284. doi:10.1039/b804680hSilva, P., Vilela, S. M. F., Tomé, J. P. C., & Almeida Paz, F. A. (2015). Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 44(19), 6774-6803. doi:10.1039/c5cs00307eRen, J., Dyosiba, X., Musyoka, N. M., Langmi, H. W., Mathe, M., & Liao, S. (2017). Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 352, 187-219. doi:10.1016/j.ccr.2017.09.005Ohtani, M., Takase, K., Wang, P., Higashi, K., Ueno, K., Yasuda, N., … Kobiro, K. (2016). Water-triggered macroscopic structural transformation of a metal–organic framework. CrystEngComm, 18(11), 1866-1870. doi:10.1039/c6ce00031bReinsch, H., De Vos, D., & Stock, N. (2013). Structure and Properties of [Al4(OH)8(o-C6H4(CO2)2)2]·H2O, a Layered Aluminum Phthalate. Zeitschrift für anorganische und allgemeine Chemie, 639(15), 2785-2789. doi:10.1002/zaac.201300357Li, H., Davis, C. E., Groy, T. L., Kelley, D. G., & Yaghi, O. M. (1998). Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3·6CH3OH (BDC = 1,4-Benzenedicarboxylate). Journal of the American Chemical Society, 120(9), 2186-2187. doi:10.1021/ja974172gBanerjee, D., & Parise, J. B. (2011). Recent Advances in s-Block Metal Carboxylate Networks. Crystal Growth & Design, 11(10), 4704-4720. doi:10.1021/cg2008304Pagis, C., Ferbinteanu, M., Rothenberg, G., & Tanase, S. (2016). Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications. ACS Catalysis, 6(9), 6063-6072. doi:10.1021/acscatal.6b01935Aguirre-Díaz, L. M., Reinares-Fisac, D., Iglesias, M., Gutiérrez-Puebla, E., Gándara, F., Snejko, N., & Monge, M. Á. (2017). Group 13th metal-organic frameworks and their role in heterogeneous catalysis. Coordination Chemistry Reviews, 335, 1-27. doi:10.1016/j.ccr.2016.12.003Kang, M., Luo, D., Deng, Y., Li, R., & Lin, Z. (2014). Solvothermal synthesis and characterization of new calcium carboxylates based on cluster- and rod-like building blocks. Inorganic Chemistry Communications, 47, 52-55. doi:10.1016/j.inoche.2014.07.015Bourne, S. A., Lu, J., Mondal, A., Moulton, B., & Zaworotko, M. J. (2001). Self-Assembly of Nanometer-Scale Secondary Building Units into an Undulating Two-Dimensional Network with Two Types of Hydrophobic Cavity. Angewandte Chemie International Edition, 40(11), 2111-2113. doi:10.1002/1521-3773(20010601)40:113.0.co;2-fVodak, D. T., Braun, M. E., Kim, J., Eddaoudi, M., & Yaghi, O. M. (2001). Chemical Communications, (24), 2534-2535. doi:10.1039/b108684gBarthelet, K., Riou, D., & Férey, G. (2002). [VIII(H2O)]3O(O2CC6H4CO2)3·(Cl, 9H2O) (MIL-59): a rare example of vanadocarboxylate with a magnetically frustrated three-dimensional hybrid framework. Chemical Communications, (14), 1492-1493. doi:10.1039/b202749fQazvini, O. T., Babarao, R., Shi, Z.-L., Zhang, Y.-B., & Telfer, S. G. (2019). A Robust Ethane-Trapping Metal–Organic Framework with a High Capacity for Ethylene Purification. Journal of the American Chemical Society, 141(12), 5014-5020. doi:10.1021/jacs.9b00913Kim, J.-Y., Norquist, A. J., & O’Hare, D. (2003). Incorporation of uranium(vi) into metal–organic framework solids, [UO2(C4H4O4)]·H2O, [UO2F(C5H6O4)]·2H2O, and [(UO2)1.5(C8H4O4)2]2[(CH3)2NCOH2]·H2O. Dalton Trans., (14), 2813-2814. doi:10.1039/b306733pWang, G., Song, T., Fan, Y., Xu, J., Wang, M., Zhang, H., … Wang, L. (2010). [Y2(H2O)(BDC)3(DMF)]·(DMF)3: A rare 2-D (42.6)(45.6)2(48.62)(49.65.8) net with multi-helical-array and opened windows. Inorganic Chemistry Communications, 13(4), 502-505. doi:10.1016/j.inoche.2010.01.021Mihalcea, I., Henry, N., Clavier, N., Dacheux, N., & Loiseau, T. (2011). Occurence of an Octanuclear Motif of Uranyl Isophthalate with Cation–Cation Interactions through Edge-Sharing Connection Mode. Inorganic Chemistry, 50(13), 6243-6249. doi:10.1021/ic2005584Vougo-Zanda, M., Wang, X., & Jacobson, A. J. (2007). Influence of Ligand Geometry on the Formation of In−O Chains in Metal-Oxide Organic Frameworks (MOOFs). Inorganic Chemistry, 46(21), 8819-8824. doi:10.1021/ic701126tBu, F., & Xiao, S.-J. (2010). A 4-connected anionic metal–organic nanotube constructed from indium isophthalate. CrystEngComm, 12(11), 3385. doi:10.1039/c001284jPanda, T., Kundu, T., & Banerjee, R. (2013). Structural isomerism leading to variable proton conductivity in indium(iii) isophthalic acid based frameworks. Chemical Communications, 49(55), 6197. doi:10.1039/c3cc41939hChen, P.-K., Che, Y.-X., Zheng, J.-M., & Batten, S. R. (2007). Heteropolynuclear Metamagnet Showing Spin Canting and Single-Crystal to Single-Crystal Phase Transformation. Chemistry of Materials, 19(9), 2162-2167. doi:10.1021/cm062801sZhang, L., Qin, Y.-Y., Li, Z.-J., Lin, Q.-P., Cheng, J.-K., Zhang, J., & Yao, Y.-G. (2008). Topology Analysis and Nonlinear-Optical-Active Properties of Luminescent Metal−Organic Framework Materials Based on Zinc/Lead Isophthalates. Inorganic Chemistry, 47(18), 8286-8293. doi:10.1021/ic800871rZhang, J.-P., Ghosh, S. K., Lin, J.-B., & Kitagawa, S. (2009). New Heterometallic Carboxylate Frameworks: Synthesis, Structure, Robustness, Flexibility, and Porosity. Inorganic Chemistry, 48(16), 7970-7976. doi:10.1021/ic900919wMcCormick, L. J., Morris, S. A., Slawin, A. M. Z., Teat, S. J., & Morris, R. E. (2016). Coordination Polymers of 5-Alkoxy Isophthalic Acids. Crystal Growth & Design, 16(10), 5771-5780. doi:10.1021/acs.cgd.6b00853Chen, J., Li, C.-P., & Du, M. (2011). Substituent effect of R-isophthalates (R = –H, –CH3, –OCH3, –tBu, –OH, and –NO2) on the construction of CdIIcoordination polymers incorporating a dipyridyl tecton 2,5-bis(3-pyridyl)-1,3,4-oxadiazole. CrystEngComm, 13(6), 1885-1893. doi:10.1039/c0ce00555jDu, M., Zhang, Z.-H., You, Y.-P., & Zhao, X.-J. (2008). R-Isophthalate (R = –H, –NO2, and –COOH) as modular building blocks for mixed-ligand coordination polymers incorporated with a versatile connector 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole. CrystEngComm, 10(3), 306-321. doi:10.1039/b711447hChen, L., Ye, J.-W., Wang, H.-P., Pan, M., Yin, S.-Y., Wei, Z.-W., … Su, C.-Y. (2017). Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence. Nature Communications, 8(1). doi:10.1038/ncomms15985Yuan, S., Qin, J.-S., Lollar, C. T., & Zhou, H.-C. (2018). Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science, 4(4), 440-450. doi:10.1021/acscentsci.8b00073Rieth, A. J., Wright, A. M., & Dincă, M. (2019). Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nature Reviews Materials, 4(11), 708-725. doi:10.1038/s41578-019-0140-1Dhakshinamoorthy, A., Asiri, A. M., & García, H. (2016). Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie International Edition, 55(18), 5414-5445. doi:10.1002/anie.201505581Alvaro, M., Carbonell, E., Ferrer, B., Llabrés i Xamena, F. X., & Garcia, H. (2007). Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 13(18), 5106-5112. doi:10.1002/chem.200601003Nasalevich, M. A., Goesten, M. G., Savenije, T. J., Kapteijn, F., & Gascon, J. (2013). Enhancing optical absorption of metal–organic frameworks for improved visible light photocatalysis. Chem. Commun., 49(90), 10575-10577. doi:10.1039/c3cc46398bZhu, J., Li, P.-Z., Guo, W., Zhao, Y., & Zou, R. (2018). Titanium-based metal–organic frameworks for photocatalytic applications. Coordination Chemistry Reviews, 359, 80-101. doi:10.1016/j.ccr.2017.12.013Benoit, V., Pillai, R. S., Orsi, A., Normand, P., Jobic, H., Nouar, F., … Llewellyn, P. L. (2016). MIL-91(Ti), a small pore metal–organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport. Journal of Materials Chemistry A, 4(4), 1383-1389. doi:10.1039/c5ta09349jSun, Y., Liu, Y., Caro, J., Guo, X., Song, C., & Liu, Y. (2018). In‐Plane Epitaxial Growth of Highly c ‐Oriented NH 2 ‐MIL‐125(Ti) Membranes with Superior H 2 /CO 2 Selectivity. Angewandte Chemie International Edition, 57(49), 16088-16093. doi:10.1002/anie.201810088Wahiduzzaman, M., Wang, S., Schnee, J., Vimont, A., Ortiz, V., Yot, P. G., … Devautour-Vinot, S. (2019). A High Proton Conductive Hydrogen-Sulfate Decorated Titanium Carboxylate Metal−Organic Framework. ACS Sustainable Chemistry & Engineering, 7(6), 5776-5783. doi:10.1021/acssuschemeng.8b05306Pinto, R. V., Wang, S., Tavares, S. R., Pires, J., Antunes, F., Vimont, A., … Pinto, M. L. (2020). Tuning Cellular Biological Functions Through the Controlled Release of NO from a Porous Ti‐MOF. Angewandte Chemie International Edition, 59(13), 5135-5143. doi:10.1002/anie.201913135Assi, H., Mouchaham, G., Steunou, N., Devic, T., & Serre, C. (2017). Titanium coordination compounds: from discrete metal complexes to metal–organic frameworks. Chemical Society Reviews, 46(11), 3431-3452. doi:10.1039/c7cs00001dTachikawa, T., Tojo, S., Fujitsuka, M., Sekino, T., & Majima, T. (2006). Photoinduced Charge Separation in Titania Nanotubes. The Journal of Physical Chemistry B, 110(29), 14055-14059. doi:10.1021/jp063800qWang, S., Kitao, T., Guillou, N., Wahiduzzaman, M., Martineau-Corcos, C., Nouar, F., … Serre, C. (2018). A phase transformable ultrastable titanium-carboxylate framework for photoconduction. Nature Communications, 9(1). doi:10.1038/s41467-018-04034-wSerre, C., Groves, J. A., Lightfoot, P., Slawin, A. M. Z., Wright, P. A., Stock, N., … Férey, G. (2006). Synthesis, Structure and Properties of Related Microporous N,N‘-Piperazinebismethylenephosphonates of Aluminum and Titanium. Chemistry of Materials, 18(6), 1451-1457. doi:10.1021/cm052149lLi, C., Xu, H., Gao, J., Du, W., Shangguan, L., Zhang, X., … Chen, B. (2019). Tunable titanium metal–organic frameworks with infinite 1D Ti–O rods for efficient visible-light-driven photocatalytic H2 evolution. Journal of Materials Chemistry A, 7(19), 11928-11933. doi:10.1039/c9ta01942aKeum, Y., Park, S., Chen, Y.-P., & Park, J. (2018). Titanium-Carboxylate Metal-Organic Framework Based on an Unprecedented Ti-Oxo Chain Cluster. Angewandte Chemie International Edition, 57(45), 14852-14856. doi:10.1002/anie.201809762Yuan, S., Liu, T.-F., Feng, D., Tian, J., Wang, K., Qin, J., … Zhou, H.-C. (2015). A single crystalline porphyrinic titanium metal–organic framework. Chemical Science, 6(7), 3926-3930. doi:10.1039/c5sc00916bPadial, N. M., Castells-Gil, J., Almora-Barrios, N., Romero-Angel, M., da Silva, I., Barawi, M., … Martí-Gastaldo, C. (2019). Hydroxamate Titanium–Organic Frameworks and the Effect of Siderophore-Type Linkers over Their Photocatalytic Activity. Journal of the American Chemical Society, 141(33), 13124-13133. doi:10.1021/jacs.9b04915Wang, S., Reinsch, H., Heymans, N., Wahiduzzaman, M., Martineau-Corcos, C., De Weireld, G., … Serre, C. (2020). Toward a Rational Design of Titanium Metal-Organic Frameworks. Matter, 2(2), 440-450. doi:10.1016/j.matt.2019.11.002Hendon, C. H., Tiana, D., Fontecave, M., Sanchez, C., D’arras, L., Sassoye, C., … Walsh, A. (2013). Engineering the Optical Response of the Titanium-MIL-125 Metal–Organic Framework through Ligand Functionalization. Journal of the American Chemical Society, 135(30), 10942-10945. doi:10.1021/ja405350uFu, Y., Sun, D., Chen, Y., Huang, R., Ding, Z., Fu, X., & Li, Z. (2012). An Amine-Functionalized Titanium Metal-Organic Framework Photocatalyst with Visible-Light-Induced Activity for CO2 Reduction. Angewandte Chemie International Edition, 51(14), 3364-3367. doi:10.1002/anie.201108357Duran, D., Couster, S. L., Desjardins, K., Delmotte, A., Fox, G., Meijers, R., … Shepard, W. (2013). PROXIMA 2A – A New Fully Tunable Micro-focus Beamline for Macromolecular Crystallography. Journal of Physics: Conference Series, 425(1), 012005. doi:10.1088/1742-6596/425/1/012005Reinsch, H., van der Veen, M. A., Gil, B., Marszalek, B., Verbiest, T., de Vos, D., & Stock, N. (2012). Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chemistry of Materials, 25(1), 17-26. doi:10.1021/cm3025445Férey, G., & Serre, C. (2009). Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chemical Society Reviews, 38(5), 1380. doi:10.1039/b804302gFérey, G. (2016). Giant flexibility of crystallized organic–inorganic porous solids: facts, reasons, effects and applications. New Journal of Chemistry, 40(5), 3950-3967. doi:10.1039/c5nj02747kLeshuk, T., Parviz, R., Everett, P., Krishnakumar, H., Varin, R. A., & Gu, F. (2013). Photocatalytic Activity of Hydrogenated TiO2. ACS Applied Materials & Interfaces, 5(6), 1892-1895. doi:10.1021/am302903nChen, X., Liu, L., & Huang, F. (2015). Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 44(7), 1861-1885. doi:10.1039/c4cs00330fLiu, L., & Chen, X. (2014). Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chemical Reviews, 114(19), 9890-9918. doi:10.1021/cr400624rReinsch, H., Waitschat, S., & Stock, N. (2013). Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. Dalton Transactions, 42(14), 4840. doi:10.1039/c3dt32355bDeng, H., Doonan, C. J., Furukawa, H., Ferreira, R. B., Towne, J., Knobler, C. B., … Yaghi, O. M. (2010). Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science, 327(5967), 846-850. doi:10.1126/science.1181761Foo, M. L., Matsuda, R., & Kitagawa, S. (2013). Functional Hybrid Porous Coordination Polymers. Chemistry of Materials, 26(1), 310-322. doi:10.1021/cm402136zHelal, A., Yamani, Z. H., Cordova, K. E., & Yaghi, O. M. (2017). Multivariate metal-organic frameworks. National Science Review, 4(3), 296-298. doi:10.1093/nsr/nwx013Ding, M., Flaig, R. W., Jiang, H.-L., & Yaghi, O. M. (2019). Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 48(10), 2783-2828. doi:10.1039/c8cs00829aLi, R., Hu, J., Deng, M., Wang, H., Wang, X., Hu, Y., … Xiong, Y. (2014). Integration of an Inorganic Semiconductor with a Metal-Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions. Advanced Materials, 26(28), 4783-4788. doi:10.1002/adma.201400428Cabrero-Antonino, M., Remiro-Buenamañana, S., Souto, M., García-Valdivia, A. A., Choquesillo-Lazarte, D., Navalón, S., … García, H. (2019). Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu2O nanoparticles for CO2methanation. Chemical Communications, 55(73), 10932-10935. doi:10.1039/c9cc04446aUlmer, U., Dingle, T., Duchesne, P. N., Morris, R. H., Tavasoli, A., Wood, T., & Ozin, G. A. (2019). Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 10(1). doi:10.1038/s41467-019-10996-2Younas, M., Loong Kong, L., Bashir, M. J. K., Nadeem, H., Shehzad, A., & Sethupathi, S. (2016). Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO2. Energy & Fuels, 30(11), 8815-8831. doi:10.1021/acs.energyfuels.6b01723Mateo, D., Albero, J., & García, H. (2019). Titanium-Perovskite-Supported RuO2 Nanoparticles for Photocatalytic CO2 Methanation. Joule, 3(8), 1949-1962. doi:10.1016/j.joule.2019.06.001Wenderich, K., & Mul, G. (2016). Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chemical Reviews, 116(23), 14587-14619. doi:10.1021/acs.chemrev.6b00327Giang, T. P. L., Tran, T. N. M., & Le, X. T. (2012). Preparation and characterization of titanium dioxide nanotube array supported hydrated ruthenium oxide catalysts. Advances in Natural Sciences: Nanoscience and Nanotechnology, 3(1), 015008. doi:10.1088/2043-6262/3/1/015008Morgan, D. J. (2015). Resolving ruthenium: XPS studies of common ruthenium materials. Surface and Interface Analysis, 47(11), 1072-1079. doi:10.1002/sia.5852Albero, J., Peng, Y., & García, H. (2020). Photocatalytic CO2 Reduction to C2+ Products. ACS Catalysis, 10(10), 5734-5749. doi:10.1021/acscatal.0c00478Mateo, D., Santiago‐Portillo, A., Albero, J., Navalón, S., Alvaro, M., & García, H. (2019). Long‐Term Photostability in Terephthalate Metal–Organic Frameworks. Angewandte Chemie International Edition, 58(49), 17843-17848. doi:10.1002/anie.201911600Mateo, D., Albero, J., & García, H. (2018). Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Applied Catalysis B: Environmental, 224, 563-571. doi:10.1016/j.apcatb.2017.10.071Mateo, D., Albero, J., & García, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science, 10(11), 2392-2400. doi:10.1039/c7ee02287eMateo, D., Asiri, A. M., Albero, J., & García, H. (2018). The mechanism of photocatalytic CO2 reduction by graphene-support

    Synthesis, structure and properties of Al-based borohydrides for hydrogen storage

    Get PDF
    This thesis is dedicated to chemistry and hydrogen storage properties of novel complex hydrides. The main efforts were focused on synthesis and characterization of new Al-based borohydrides and amidoboranes. Somewhat different investigation on the hydrolysis of KBH4 in the atmosphere of CO2 was also performed. The series of mixed-cation M[Al(BH4)4] (M = Li+, Na+, K+, NH4+, Rb+, Cs+) were successfully obtained by a reaction of the corresponding MBH4 with Al(BH4)3. This method provides a high theoretical hydrogen capacity and enables to store highly reactive and unstable Al(BH4)3 in a solid-state form. A good quality of the obtained samples allowed to solve their crystal structures using variable temperature synchrotron X-ray powder diffraction (XRPD). The thermal decomposition of M[Al(BH4)4] shows various pathways: Al(BH4)3 is released below 100 °C for M = Li+ and Na+, while heavier derivatives evolve hydrogen and diborane at about 150 °C. Li[Al(BH4)4] firstly decomposes into Li4Al3(BH4)13 at ~60 °C, desorbing Al(BH4)3, and the latter decomposes at ~90 °C releasing the rest of the starting borohydrides. NH4[Al(BH4)4] occupies a special position, as it contains protic and hydridic hydrogens, recombining into hydrogen already at 35 °C. In general, the experimental decomposition temperatures of metal borohydrides linearly correlate with the square root of the ionic potential of metal atoms calculated from dynamical charges on cations. Al(BH4)3 reacts with ammonia borane, NH3BH3, producing mononuclear Al(BH4)3·NH3BH3 complex. It releases at ~70 °C two equivalents of hydrogen, showing considerably lower decomposition temperature, compared to pure NH3BH3. The striking property of this system is an endothermic dehydrogenation on the first decomposition step, compared to the exothermic one for ammonia borane and its other known complexes. This opens a possibility for its direct rehydrogenation. The main drawback of this system is the low stability of the dehydrogenation intermediate, Al(BH4)3·NHBH, decomposition above 100 °C. In order to suppress its decomposition, we investigated N-substituted derivatives of ammonia borane, obtaining a more promising complex, Al(BH4)3·CH3NH2BH3. Al(BH4)3 serves as a template in the potentially reversible ammonia borane dehydrogenation, with Al atom coordinating both the starting and the final products. Aiming to substitute highly reactive Al(BH4)3 by a halide salt, and using N-substituted NH3BH3, we obtained an ionic form of AlCl3·CH3NH2BH3, namely [Al(CH3NH2BH3)2Cl2][AlCl4]. The further analysis of these compounds will help to define a system for the reversible storage of hydrogen in ammonia borane. A different way to obtain hydrogen using new Al-based reactive hydride composite (RHC) was also explored in this work. In particular, NaAlH4–4NH3BH3 system showed fascinating properties of releasing high purity H2 and low hydrogen release temperature of 70 °C and formation of Na[Al(NH2BH3)4]. The properties of the first Al-based amidoborane look promising. This compound decomposes in two steps with the formation of NaBH4, 8 equivalents of pure hydrogen and an amorphous product AlN4B3H(0÷1.8). The latter reversibly reabsorb about 27% of released hydrogen. The example of Na[Al(NH2BH3)4] decomposition to AlN4B3H(0÷1.8) requires further in-depth studies, viz. its chemical structure and an optimization of the rehydrogenation process. The interest in Al-based complex hydrides has been growing during the last years. Any knowledge about new Al-containing complex hydrides is very important for the future solid-state hydrogen storage. Data obtained in this work might be important in the further predictions of potential RHC systems, applying the computational methods. On the practical side, the combination of any of the described compounds with other hydrides may open avenues to new RHCs with enhanced hydrogen storage properties.(SC - Sciences) -- UCL, 201

    Aluminium complexes of B- and N-based hydrides: synthesis, structures and hydrogen storage properties

    No full text
    The storage of hydrogen in a solid state is one of the main challenges for stationary and mobile applications. Light metal hydrides have attracted significant attention as potential candidates for energy storage. Remarkably, Al-containing hydrides, namely AlH3 and M(AlH4)n, are among the most fascinating classes of materials, able to cycle up to 5.5 wt% of hydrogen at moderate temperatures. This review covers the recent research on the families of Al-based complex hydrides involving other light elements such as B and N. They were classified according to the charge of the Al-based complexes, as anionic, molecular, cationic or “autoionized” where Al is centering both the cation and the anion. The factors influencing the stability and the hydrogen purity of the series of anionic aluminium amides M[Al(NH2)4]n, borohydrides M[Al(BH4)4] and amidoboranes M[Al(NH2BH3)4], as well as molecular [Al(L)(BH4)3] (L ¼ molecular ligands) and cation [Al(NH3)6]3þ-based complexes are discussed. In particular, the ability of the strong Lewis acid Al3þ to coordinate both the initial hydrogenated species as well as their dehydrogenation products makes it a good template for chemical transformations involving light chemical and complex hydrides

    Principal Component Analysis (PCA) for Powder Diffraction Data: Towards Unblinded Applications

    No full text
    We analyze the application of Principal Component Analysis (PCA) for untangling the main contributions to changing diffracted intensities upon variation of site occupancy and lattice dimensions induced by external stimuli. The information content of the PCA output consists of certain functions of Bragg angles (loadings) and their evolution characteristics that depend on external variables like pressure or temperature (scores). The physical meaning of the PCA output is to date not well understood. Therefore, in this paper, the intensity contributions are first derived analytically, then compared with the PCA components for model data; finally PCA is applied for the real data on isothermal gas uptake by nanoporous framework γ –Mg(BH 4 ) 2 . We show that, in close agreement with previous analysis of modulation diffraction, the variation of intensity of Bragg lines and the displacements of their positions results in a series of PCA components. Every PCA extracted component may be a mixture of terms carrying information on the average structure, active sub-structure, and their cross-term. The rotational ambiguities, that are an inherently part of PCA extraction, are at the origin of the mixing. For the experimental case considered in the paper, the extraction of the physically meaningful loadings and scores can only be achieved with a rotational correction. Finally, practical recommendations for non-blind applications, i.e., what boundary conditions to apply for the the rotational correction, of PCA for diffraction data are given

    CO2-promoted hydrolysis of KBH4 for efficient hydrogen co-generation

    No full text
    Hydrolysis of metal borohydrides in the presence of CO2 has not been studied so far, although carbon dioxide contained in air is known to accelerate hydrogen generation. KBH4 hydrolysis promoted by CO2 gas put through an aqueous solution was studied by timeresolved ATR-FTIR spectroscopy, showing a transformation of BH4 into B4O5(OH)4 2, and a drastically accelerated hydrogen production which can be completed within minutes. This process can be used to produce hydrogen on-board from exhaust gases (CO2 and H2O). We found a new intermediate, K9[B4O5(OH)4]3(CO3)(BH4)$7H2O, forming upon hydrolysis on air via a slow adsorption of the atmospheric CO2. The same intermediate can be crystallized from partly hydrolyzed solutions of KBH4 þ CO2, but not from the fully reacted sample saturated with CO2. This phase was studied by single-crystal and powder X-ray diffraction, DSC, TGA, Raman, IR and elemental analysis, all data are fully consistent with the presence of the three different anions and of the crystallized water molecules. Its crystal structure is hexagonal, space group P-62c, with lattice parameters a ¼ 11.2551(4), c ¼ 17.1508(8) A°. Formation of the intermediate produces 16 mol of H2 per mole of adsorbed CO2 and thus is very efficient both gravimetrically and volumetrically. It allows also for an elimination of carbon dioxide from exhaust gases
    corecore