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Abstract

This thesis is dedicated to chemistry and hydrogen storage properties of
novel complex hydrides. The main efforts were focused on synthesis and
characterization of new Al-based borohydrides and amidoboranes. Somewhat
different investigation on the hydrolysis of KBH4 in the atmosphere of CO2 was
also performed. The series of mixed-cation M[Al(BH4)4] (M = Li+, Na+, K+, NH4+,
Rb+, Cs+) were successfully obtained by a reaction of the corresponding MBH4
with Al(BH4)3. This method provides a high theoretical hydrogen capacity and
enables to store highly reactive and unstable Al(BH4)3 in a solid-state form. A
good quality of the obtained samples allowed to solve their crystal structures using
variable temperature synchrotron X-ray powder diffraction (XRPD). The thermal
decomposition of M[Al(BH4)4] shows various pathways: Al(BH4)3 is released
below 100 °C for M = Li+ and Na+, while heavier derivatives evolve hydrogen and
diborane at about 150 °C. Li[Al(BH4)4] firstly decomposes into Li4Al3...
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Abstract 

This thesis is dedicated to chemistry and hydrogen storage 

properties of novel complex hydrides. The main efforts were focused 

on synthesis and characterization of new Al-based borohydrides and 

amidoboranes. Somewhat different investigation on the hydrolysis of 

KBH4 in the atmosphere of CO2 was also performed. 

The series of mixed-cation M[Al(BH4)4] (M = Li+, Na+, K+, 

NH4
+, Rb+, Cs+) were successfully obtained by a reaction of the 

corresponding MBH4 with Al(BH4)3. This method provides a high 

theoretical hydrogen capacity and enables to store highly reactive and 

unstable Al(BH4)3 in a solid-state form. A good quality of the obtained 

samples allowed to solve their crystal structures using variable 

temperature synchrotron X-ray powder diffraction (XRPD). 

The thermal decomposition of M[Al(BH4)4] shows various 

pathways: Al(BH4)3 is released below 100 °C for M = Li+ and Na+, 

while heavier derivatives evolve hydrogen and diborane at about 

150 °C. Li[Al(BH4)4] firstly decomposes into Li4Al3(BH4)13 at ~60 °C, 

desorbing Al(BH4)3, and the latter decomposes at ~90 °C releasing the 

rest of the starting borohydrides. NH4[Al(BH4)4] occupies a special 

position, as it contains protic and hydridic hydrogens, recombining into 

hydrogen already at 35 °C. In general, the experimental decomposition 

temperatures of metal borohydrides linearly correlate with the square 

root of the ionic potential of metal atoms calculated from dynamical 

charges on cations. 

Al(BH4)3 reacts with ammonia borane, NH3BH3, producing 

mononuclear Al(BH4)3·NH3BH3 complex. It releases at ~70 °C 
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two equivalents of hydrogen, showing considerably lower 

decomposition temperature, compared to pure NH3BH3. The striking 

property of this system is an endothermic dehydrogenation on the first 

decomposition step, compared to the exothermic one for ammonia 

borane and its other known complexes. This opens a possibility for its 

direct rehydrogenation. The main drawback of this system is the low 

stability of the dehydrogenation intermediate, Al(BH4)3·NHBH, 

decomposition above 100 °C. In order to suppress its decomposition, 

we investigated N-substituted derivatives of ammonia borane, 

obtaining a more promising complex, Al(BH4)3·CH3NH2BH3. 

Al(BH4)3 serves as a template in the potentially reversible 

ammonia borane dehydrogenation, with Al atom coordinating both the 

starting and the final products. Aiming to substitute highly reactive 

Al(BH4)3 by a halide salt, and using N-substituted NH3BH3, we 

obtained an ionic form of AlCl3·CH3NH2BH3, namely 

[Al(CH3NH2BH3)2Cl2][AlCl4]. The further analysis of these 

compounds will help to define a system for the reversible storage of 

hydrogen in ammonia borane. 

A different way to obtain hydrogen using new Al-based reactive 

hydride composite (RHC) was also explored in this work. In particular, 

NaAlH4–4NH3BH3 system showed fascinating properties of releasing 

high purity H2 and low hydrogen release temperature of 70 °C and 

formation of Na[Al(NH2BH3)4]. The properties of the first Al-based 

amidoborane look promising. This compound decomposes in two steps 

with the formation of NaBH4, 8 equivalents of pure hydrogen and an 

amorphous product AlN4B3H(0÷1.8). The latter reversibly reabsorb about 

27% of released hydrogen. The example of Na[Al(NH2BH3)4] 
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decomposition to AlN4B3H(0÷1.8) requires further in-depth studies, viz. 

its chemical structure and an optimization of the rehydrogenation 

process. 

The interest in Al-based complex hydrides has been growing 

during the last years. Any knowledge about new Al-containing complex 

hydrides is very important for the future solid-state hydrogen storage. 

Data obtained in this work might be important in the further predictions 

of potential RHC systems, applying the computational methods. On the 

practical side, the combination of any of the described compounds with 

other hydrides may open avenues to new RHCs with enhanced 

hydrogen storage properties.





Abbreviations 

 13 

Abbreviations 

AB   Ammonia Borane, NH3BH3 
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RHC   Reactive Hydride Composite 



 14 

RT   Room Temperature 

SG   Space Group 

SNBL   Swiss-Norwegian Beam Lines 

SOFC   Solid Oxide Fuel Cells 

SRXRPD  Synchrotron Radiation X-ray Powder Diffraction 
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Chapter I – State of the Art 

1. Why Do We Need Hydrogen Economy? 

It is estimated that energy consumption will double over the 

next half-century,[1] due to the increasing population and the reasonable 

assumption that inhabitants of less developed countries would wish to 

increase their living standards which goes hand in hand with an increase 

of their energy demand. So the question is not if but when the world 

will run out of non renewable fossil fuels. In addition, the latter have an 

adverse effect on the environment by increasing the CO2 content in the 

Earth’s atmosphere, aggravating the greenhouse effect and its global 

negative consequences. These reasons clarify that for sustainable 

development of a new energy transition is needed. Among possible 

alternatives to substitute hydrocarbon fuels, mechanical energy storage 

is able to support only short-timed demands of electricity supply. 

Moreover, an energy storage in batteries also looks quite complicated 

for the whole economy scale, due to high demands of energy storage 

densities. Thus, possible storage in the form of energy rich compounds 

is currently the most desired method. Ideally, such compounds have to 

be abundant, environmentally benign, renewable, safe, and cost-

effective. In this case hydrogen is considered being an alternative 

energy carrier and hydrogen-based energy infrastructure must be built 

to address our global concerns of fossil fuel depletion and global 

climate changes in a meaningful way.[2-6] 

Although stationary applications could also be envisaged, the 

main drive to use hydrogen as an energy carrier comes from its potential 
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to replace petrol derived fuels in cars and other vehicles. The chemical 

energy per mass of hydrogen (142 MJ kg–1) is at least three times larger 

than that of other chemical fuels (for example, the equivalent value for 

liquid hydrocarbons is 47 MJ kg–1).[7] Once produced, hydrogen is a 

clean synthetic fuel: when burnt with oxygen, the only exhaust gas is 

water vapor, but when burnt with air, lean (with an excess of air) 

mixtures have to be used to avoid the formation of nitrogen oxides. 

Whether hydrogen can be considered as a clean form of energy on a 

global scale depends on the primary energy that is used to split water. 

This work is devoted to the synthesis and characterization of 

new compounds and composites based on hydrogen-rich chemical and 

complex hydrides. The highest attention will be given to the new 

aluminum-based hydrides, herein characterized as potential materials 

for hydrogen storage. 

2. The Advantages and Types of Proton Fuel Cells 

There are essentially two ways to run a road vehicle on 

hydrogen. In the first, hydrogen in an internal combustion engine is 

burnt rapidly with oxygen from air. The efficiency of the transformation 

from chemical to mechanical through thermal energy is limited by the 

Carnot efficiency and is slightly higher for hydrogen–air mixtures 

(around 25%) than for petrol–air mixtures. When a lean mixture is used, 

the exhaust gas contains nothing but water vapor; richer mixtures also 

produce NOx.
[2] 
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In the second method, hydrogen is “burnt” electrochemically 

with oxygen from air in a fuel cell, which produces electricity (and heat) 

and drives an electric engine, according to half-reactions:[8] 

2H2(g) → 4H+ + 4 e– (anode)   (1.1) 

O2(g) + 4H+ → 2H2O – 4e– (cathode)  (1.2) 

 

Figure 1.1 – The scheme of proton exchange membrane fuel cell (PEMFC).[9] 

The ions of H+ and O2– are forming at separate electrode sites, 

where H+ or O2– diffuse through on ion-conducting membrane, see 

Figure 1.1. The physical separation is a major point which allows the 

thermodynamic tendency for both half-reactions to express itself as a 
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half-cell voltage. Usually the surfaces where hydrogen dissociation and 

the reaction with oxygen occur are made from catalysts to accelerate 

the kinetics of half-reactions. These surfaces are separated by ion-

exchanging (H+, O2–, OH- or CO3
2–) membranes allowing a voltage and 

external current to be developed. 

The efficiency of the direct process of electron transfer from 

oxygen to hydrogen is not limited by the Carnot efficiency; it can reach 

50–60%, twice as much as the thermal process.[2,7] This advantage 

makes fuel cells good alternative for the currently used internal 

combustion engines. 

According to the temperature, the fuel cell types can be 

described as low-temperature fuel cells within 50-220 °C (PEMFC) and 

high-temperature fuel cells that operate around 650 °C (molten 

carbonate (MCFC) and solid oxide fuel cells (SOFC)), see 

characteristics in Table 1.1. 

Table 1.1 – Types of Fuel Cells. [2] 

Fuel Cell type Mobile ion Operating temperature (°C) 

Proton-exchange membrane fuel cell (PEMFC) H+ 50-100 

Alkaline fuel cell (AFC) OH- 50-200 

Phosphoric acid fuel cell (PAFC) H+ ~220 

Molten carbonate fuel cell (MCFC) CO3
2- ~650 

Solid oxide fuel cell (SOFC) O2- 500–1000 

The low-temperature proton-exchange membrane fuel cells, 

which are based on H+ mobility, have several advantages for practical 

applications compared to the other types of fuel cells. PEMFCs do not 

require highly corrosive solutions (KOH) like AFCs, and their 

operational temperatures are considerably lower than for SOFCs. The 

MCFCs and PAFCs limit their applicability due to the common use of 

fossil-fuel-derived natural gas as the hydrogen feedstock and release of 
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CO2. However, the most important requirement for PEMFCs is the high 

purity of hydrogen needed, as some impurities (e. g. NH3 on B2H6) are 

poisoning sensitive catalysts (typically Pt) and dramatically reduces 

their life-time and efficiency. 

3. Requirements for Hydrogen Storage 

For on-board energy storage, vehicles need a compact, light, 

safe and affordable containment. The systems used so far are based on 

compressed or liquefied hydrogen. The mentioned systems have limited 

application due to the technical difficulties. 

Gas cylinders able to support gaseous hydrogen, compressed at 

an initial pressure of 350–700 bar (350 bar cylinders are used in 

HyFLEET buses) are too heavy to be used in private cars.[4,6]  

The liquefied hydrogen has to be stored in a cryogenic tank at 

20.3 K, so the liquefaction consumes about 20 % of the recoverable 

energy and daily evaporation (to keep the hydrogen tank cool) takes 

away an additional 2 %, that is why most of the large car manufactures 

concentrate their efforts in the field on conventional hydrogen storage, 

in particular on 700 bar pressure containers.[4] 

The previously (2007) published[10] and recently (2009) 

revised[11] targets of the US Department of Energy (DOE) for on-board 

H2 storage systems (for 2010) are shown in Table 1.2. They required 

higher gravimetric and volumetric capacities than can be achieved by 

compression or liqufication of hydrogen. Better capacity of hydrogen 

can be achieved by a solid-state hydrogen-storage where the host 

material is used as hydrogen carrier (Figure 1.2). 
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Table 1.2 – A subset of original and revised DOE targets for on-board 

hydrogen storage systems for light-duty vehicles. The most current DOE targets are 

contained in the “revised 2010”, 2017 and ultimate categories.[10,11] 

Storage system parameter 
Original 2010 

target (accepted in 

2007) 

Revised 2010 
target (accepted in 

2009) 

2017 target 
Ultimate 

target 

Gravimetric capacity,  
kgH2/kg system 

6 % 4.5 % 5.5 % 7.5 % 

Volumetric capacity,  

g H2/L system 
45 28 40 70 

Operational cycle life 1000 1000 1500 1500 

Fill time (min, for 5 kg) 3 4.2 3.3 2.5 

Minimum full flow rate 

(gH2/s/kW) 
0.02 0.02 0.02 0.02 

Min. delivery pressure at  
85 ° C PEMFC (atm.) 

8 5 4 3 

Fuel purity 99.99 % 99.97 % 99.97 % 99.97 % 

 

Figure 1.2 – A compilation of volumetric and gravimetric hydrogen densities of 

elemental H2, complex and metal hydrides along with hexane (The targets shown 

correspond to those accepted in 2007 for 2010). The picture is simplified from Refs. 

[7] and [12]. 
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4. Materials for Solid-State Hydrogen Storage 

In general terms, solid materials most actively investigated for 

hydrogen storage can be separated into two distinct groups – the 

adsorbents of molecular hydrogen (physical adsorbents) and those 

which form hydrogen-containing compounds by chemisorption, metal 

hydrides. The latter can be additionally divided into a few groups: metal 

(interstitial), complex and chemical hydrides. 

The physical sorbents of hydrogen are represented by highly 

porous solids, comprising mainly active carbons (including carbon 

nanostructures) and solids formed by open metal-organic frameworks 

(MOFs), as well as zeolites and (organic) polymers having intrinsic 

microporosity (PIMs). There is also a research on potential hydrogen 

storage materials such as hydrogen clathrates and nanostructures not 

based on carbon. The compilation of investigations from many different 

groups suggested that carbon materials will not reach technically 

relevant adsorption capacities for hydrogen storage.[13,4] For zeolitic 

material, such as ITQ-33 [14] with predicted silica structure and high 

micropore volume of 0.37 cm3g–1, the hydrogen capacity would be 

about 2.5 wt%.[4] Thus, it can be expected that zeolite-based storage 

materials will not be suitable for hydrogen storage in technical 

applications. Some MOFs show encouraging hydrogen uptake values at 

77 K (e. g. MOF-177),[15] however their maximal uptake at ambient 

temperature is not yet good enough and other problems are low 

volumetric storage capacities, only slightly higher than 30 kg/m3 

(40 kg/m3 are required by DOE in 2017).[2] PIMs were also investigated 

as potential hydrogen storage materials.[16] They can achieve hydrogen 
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uptake near 3 wt% at 77 K and 15 bar,[17] which is slightly far from the 

desired values. All the mentioned materials appeared quite recently and 

are being intensively developed. 

Hydrogen directly reacts with many metallic elements and 

alloys providing various possibilities for hydrogen storage.[18,19] Several 

classical intermetallic (interstitial) metal hydrides belong to AB2, A2B, 

AB and AB5 types have been used for hydrogen storage.[12] The most 

commonly used are AB5 hydrides, where “A” is usually a lanthanide 

element, Ca or mischmetal (rare earth metal mixture), and “B” is Ni, 

substituted by Co, Al, Mn, Fe, Sn, Cu, Ti etc. The hydrogen is stored 

interstitially in the lattice of heavy atoms. Despite the fact that these 

hydrides are reversible and have an excellent kinetics, for on-board 

applications they suffer from the disadvantage of having a low 

gravimetric density of 1-2 wt% of H2 (depicted by the white area in the 

left upper corner of Figure. 1.2), resulting in a large weight penalty. The 

second problem is a low abundance of rare earth metals that makes 

these materials more expensive and less available for large scale 

applications. 

5. Complex Hydrides 

In contrast to classical metal hydrides, in which interstitial sites 

are occupied with hydrogen atoms, in light metal hydrides, such as 

complex hydrides, hydrogen is covalently bound to a complex-forming 

element, metal or nonmetal.[20,21] In general, to these compounds belong 

alanates, borohydrides and amides with [AlH4]
–, [BH4]

– and [NH2]
– 

complex anions, respectively. They have the highest hydrogen content 

compared to all the above mentioned ways of storage. The properties of 
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some alanates and imides are shown on Table 1.3, the information about 

borohydrides and their derivatives will be discussed in details in the 

next section. 

Table 1.3 – Material properties of complex hydrides.[21] 

Complex 

hydride 

Density 

(g/mol) 

Density 

(g/cm-3) 

Hydrogen 

(wt. %) 

Hydrogen 

(kg/m3) 
Tm (°C) 

∆Hf° 

(kJ/mol) 

LiAlH4 37.95 0.917 10.54  190 −119 

NaAlH4 54.10 1.28 7.41  178 −113 

KAlH4 70.11  5.71 53.2   

Ca(AlH4)2 86.33  9.27 72.3   

Mg(AlH4)2 102.10  7.84 70.4 >230  

LiNH2 22.96 1.18 8.78 103.6 372-400 −179.6 

NaNH2 39.01 1.39 5.15 71.9 210 −123.8 

KNH2 55.12 1.62 3.66 59.3 338 −128.9 

Mg(NH2)2 56.37 1.39 7.15 99.4 360  

Ca(NH2)2 72.13 1.74 5.59 97.3  −383.4 

The crystal structures of alkali, alkali-earth and binary metal 

alanates, except Ca(AlH4)2, were determined recently both by X-ray 

and neutron diffraction, the details are shown in Table 1.4. For single 

cation M(AlH4)n alanates (M = Na+, Li+, K+; n = 1 and M = Mg2+; 

n = 2), the crystal structures consist of isolated [AlH4]
– tetrahedra with 

A∙∙∙H interatomic distances in the range of 1.55−1.67 Å.[22–25] The 

crystal structure of Ca(AlH4)2 was predicted from DFT calculations.[26] 

The variations in the crystal structures of MAlH4 compounds (M = Na+, 

Li+, K+) arise from the difference in size of corresponding alkali cations, 

hence the coordination numbers of 5, 8 and 10 respectively. For Mg2+ 

cations in Mg(AlH4)2 octahedral coordination takes place, which was 

also predicted for Ca(AlH4)2. 

NaAlH4 is the most intensively studied complex hydride due to 

its reversibility and high hydrogen content (5.6 wt%). The hydrogen 

content of the first decomposition step (3.7 wt%) exceeds by a factor of 

two the classical low-temperature metal hydrides. It was shown that 

NaAlH4 can be used as a solid reversible hydrogen storage material by 
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doping it with titanium compounds, in particular by Ti(OBut)4.
[27] The 

following studies demonstrate the reversible hydrogen cycling over 100 

cycles with a measured capacity of about 4 wt% at 160 °C.[28] 

Table 1.4 – Crystal structure data (at RT) and decomposition pathways for 

alkali and alkali-earth alanates. 

Alanate 
Space 
group 

Cell parameters, Å Refs. Dehydrogenation reaction Refs. 

LiAlH4 P21/c 

a = 4.8254(1) 

b = 7.8040(1) 
c = 7.8968(1) 

β = 112.268(1)° 

[23] 

For M = Li, T = 187-218 °C; 
M = Na, T = 210-220 °C; 

M = K, T =300 °C 

3MAlH4 → M3AlH6 + 2Al + 3H2 
͠For M = Li, T =228-282 °C; 

M = Na, T = 250 °C; 

M = K, T = 340 °C 
2M3AlH6 → 6MH + 2Al + 3H2 

[29] 

Li3AlH6 R-3 
a = 8.07117(10) 

c = 9.5130(2) 
[30] 

NaAlH4 I41/a 
a = 5.0119(1) 

c = 11.3147(4) 
[22] 

[31] 

Na3AlH6 P21/n 

a = 5.390(2) 

b = 5.514(2) 
c = 7.725(3) 

β = 89.86(3)° 

[32] 

KAlH4 Pnma 
a = 5.8515(14) 
b = 5.8119(8) 

c = 7.3457(11) 

[24] [33] 

Ca(AlH4)2    

T = 180 °C 
Ca(AlH4)2 → CaAlH5 + Al + H2 

T = 230 °C 

CaAlH5 → CaH2 + Al + H2 

[34] 

Mg(AlH4)2 P-3m 
a = 5.1949(2) 
c = 5.8537(2) 

[25] Mg(AlH4)2 → MgH2 + 2Al +3H2 
[35] 

6. Borohydrides 

Borohydrides (tetrahydroboranes) are complex hydrides which 

contain the [BH4]
– anion. They and their nitrogen-containing 

derivatives were intensively investigated over the last decade as 

potential hydrogen storage materials.[36,37] The physical properties of 

light borohydrides are shown in Table. 1.5. All the mentioned 

compounds are solid at ambient conditions except Al(BH4)3 which is 

liquid (m.p. −65 °C). Most of them are sensitive to air and moisture, 

and in particular Al(BH4)3 along with Be(BH4)2 reacts vigorously with 
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air moisture. That is why the manipulation with Al(BH4)3 should be 

performed under inert atmosphere. 

Table 1.5 – Physical properties of selected metal tetrahydroboranes.[38,39] 

Complex 

hydride 

Density 

(g/mol) 

Density 

(g/cm-3) 

Hydrogen 

(wt. %) 

Hydrogen 

(kg/m3) 
Tm (°C) 

∆Hf° 

(kJ/mol) 

LiBH4 21.78 0.66 18.36 122.5 268 −194 

NaBH4 37.83 1.07 10.57 113.1 505 −191 

KBH4 53.94 1.17 7.42 87.1 585 −229 

RbBH4 100.28 192 3.99 77.2   

CsBH4 147.72 2.405 2.71 65.66   

Be(BH4)2 38.69 0.702 20.67 145.1 123d  

Ca(BH4)2 69.76 1.072 11.47 124.07 260d  

Mg(BH4)2 53.99 0.989 14.82 146.5 320d  

Al(BH4)3 71.51 0.7866 16.78 132 44.5d  
d – Decomposition before melting. 

The crystal structures of the main borohydrides were recently 

investigated by conventional, synchrotron and neutron powder 

diffraction methods and briefly described in Ref. [40]. The 

investigations of the crystal structures of alkali-metal and alkali-earth 

metal borohydrides concluded that the borohydride [BH4]
– anion has a 

nearly ideal tetrahedral geometry, with the B–H bond length of 

~1.22 Å. These compounds have mixed bonding nature – ionic with 

metal and covalent regarding the [BH4]
– group. Higher decomposition 

temperatures for borohydrides compared with alanates can be explained 

by the stronger covalent interaction of the B–H bond compared with the 

Al–H. Alkali-metal borohydrides show more ionic character and 

consist of M+ cations and [BH4]
– anions which are usually coordinated 

via edges to the central atoms. The crystal structures of alkali-earth 

metal borohydrides are more complex, thus Be(BH4)2 forms helical 

polymeric chains with two bridging and one terminal [BH4]
– group, 

Ca(BH4)2 and Mg(BH4)2 form complex frameworks, herein 

borohydride groups can be described as inorganic linkers. Al(BH4)3 is 

a covalent borohydride and has a molecular structure. 
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A lot of investigations are being devoted to the determination of 

decomposition pathways and products of thermolysis, as well as their 

influence on reversibility of borohydrides, see Table 1.6. In contrast to 

the alanate systems which usually decompose into crystalline products, 

which can be determined with in-situ X-ray diffraction, the systems 

with borohydrides often yield amorphous phases which are more 

difficult to interpret. Some attempts to describe possible decomposition 

products were made by theoretical calculations.[e.g. 41] The experimental 

investigations of decomposition products often require the use of non-

conventional methods such as solid-state MAS-NMR, in particular the 

evidence for Li2B12H12, CaB12H12 and MgB12H12 intermediates was 

presented by this method.[42] 

Further research was made in order to observe the relationships 

between intermediates of M(B12H12)n and the reversibility of hydrogen 

desorption of borohydrides. It was suggested that rehydrogenation of 

Mg(BH4)2 undergoes with formation of intermediate of MgB12H12 from 

decomposition products.[57] The end product of the dehydrogenation 

from Mg(BH4)2, MgB2, was subjected to hydrogenation at high 

pressures (1200 bar) and high temperatures (500 °C) using a high 

pressure hydrogenation cell. The results showed that Mg(BH4)2 can be 

regenerated by hydrogen exposure, with following pyrolysis releasing 

~12 wt% of hydrogen, the highest reversible value published so 

far.[11,43] 
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Table 1.6 – Crystal structure data (at RT) and decomposition pathways via 

thermolysis of light borohydrides. 

Compound 
Space 
group 

Cell parameters, Å Refs. Dehydrogenation reaction Refs. 

LiBH4 

Pnma 
(20 °C) 

a = 7.17858(4) 

b = 4.43686(2) 

c = 6.80321(4) [44] 
For Li, Td1 = 200 °C 

12LiBH4 → Li2B12H12 + 10LiH + 12H2 

Td2 ≈ 454 °C 

Li2B12H12 → 2LiH + 12B + 10H2 
 

For Na and K, Td = 565 and 585 °C 

2MBH4 → 2MH + 2B + 3H2 

 

The second decomposition pathway is also 
possible: 

MBH4 → M + B + 2H2 

[45,46,47] 

P63mc 

(135 °C) 

a = 4.27631(5) 

c = 6.94844(8) 

NaBH4 

Fm-3m 

(20 °C) 
a = 6.148(1) [48] 

[49,50] Fm-3m 

(200 K) 
a = 6.13080(10) [51] 

P-421c 

(10 K) 

a = 4.332(1) 

b = 5.869(1) 
[48] 

KBH4 

Fm-3m a = 6.728(1) [52] 

[53] 

P-42/nmc 
a = 4.7004(2) 
b = 5979(3) 

[54] 

Be(BH4)2 
I-421cd 

(20 °C) 

a = 13.62(1) 

b = 9.10(1) 
[55] Unknown  

Mg(BH4)2 

P61 

(20 °C) 
a = 10.3182(1) 
b = 36.9983(5) 

[56] 

Td1,2 = 290-350 °C 

6Mg(BH4)2 → MgB12H12 + 5MgH2 +  

+ 13H2→ 6MgB2 + 4H2 

[46,57] 

P6122 

(20 °C) 

a = 10.33555(4) 

b = 37.0891(2) 
[58] 

Fddd  

(20 °C) 

a = 37.072(1) 
b = 18.6476(6) 

c = 10.9123(3) 

[59] 

Id-3a 

(20 °C) 
a = 15.758(2) [60] 

Ca(BH4)2 

Fddd 1 

(20 °C) 

a = 8.791(1) 

b = 13.137(1) 
c = 7.500(1) 

[61] 

Td1,2 = 330-370 °C 

Ca(BH4)2 → CaB2Hx + (4-x/2)H2 → 

→ 2/3CaH2 + 1/3CaB6 + 1/10H2 
Or 

6Ca(BH4)2 → CaB12H12 + 5CaH2 + 

+ 13H2 

[62,63] 

F2dd 1 

(91 K) 

a = 8.7759(3) 

b = 13.0234(4) 

c = 7.4132(2) 

[64] 

P42/m 2 

(107 °C) 

a = 6.9468(1) 

b = 4.3661(1) 
[65] 

P-4 2 

(132 °C) 

a = 6.9189(1), 

b = 4.3471(1), 
[64] 

I-42d 

(222 °C) 

a = 5.8446(3) 

b = 13.228(1) 
[64] 

Al(BH4)3 

Pna21 

(195 K) 

a = 18.021(3) 

b = 6.138(2) 
c = 6.199(1) 

[66] 

Decomposes and reacts with products of 

decomposition at 25 °C 
2Al(BH4)3 ↔ [AlH(BH4)2]2 + B2H6 

2Al(BH4)3 + B2H6 → 2AlB4H11 + 4H2 

[67,68] 

C2/c 
(150 K) 

a = 21.917(4) 

b = 5.986(1) 
c = 21.787(4) 

β = 111.90(3)° 
1,2 Two different models were purposed for the same phases. 

  



 28 

For Ca(BH4)2 the reformation from CaB12H12 and CaH2 under 

10 MPa of H2 was reported with possible reactions:[63,69] 

CaB12H12 + CaH2 → 2CaB6 + 7H2   (step 1) (1.3) 

CaB6 + 2CaH2 + 10H2 → 3Ca(BH4)2  (step 2) (1.4) 

As one can notice, the decomposition reactions of borohydrides 

take place at temperatures >200 °C, which are at the high end or 

significantly higher than the requirements of 50−220 °C, suitable for 

low-temperature PEMFC applications. Several approaches were 

proposed to destabilize borohydrides for the improvement of hydrogen 

storage properties. Among them, the most widespread are the addition 

of other metals into the structure, forming mixed-metal borohydrides 

(thermodynamic tuning), as well as combinations with other hydrides 

(formation of reactive hydride composites, RHC). 

7. Thermodynamic Tuning of Metal and Complex Hydrides 

One of the simplest approaches to change the properties of 

complex hydrides is based on cation/anion substitution in the structure. 

The first trials to improve the thermodynamic properties of complex 

hydrides were performed in hexahydroaluminates, where numerous 

mixed-metal complexes are possible. The formation of numerous 

A3-xBxAlH6 where A and B are Li+, Na+ or K+, was previously predicted 

from DFT calculations in 2004.[70] The experimental data showed that 

the decomposition temperature and enthalpy depend upon the size of 

alkali metals of A and B. Usually they increase with the size of the alkali 

metal. The stability of the complexes was found to decrease within the 

row: K3AlH6 > K2NaAlH6 > K2LiAlH6.
[71] 
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Mixed-metal borohydrides with compositions Ax[By(BH4)n] 

(A = alkali metal, B = Na+, K+, Rb+, Ca2+, Mn2+, Zn2+, Cd2+, Al3+, Sc3+, 

Y3+, Zr4+, ext.) can be obtained by metathesis reactions between 

different borohydrides and/or halide salts of s-, p- and some d-metals: 

xA(BH4)n1 + yB(BH4)n2 → Ax[By(BH4)n]   (1.5) 

aA(BH4)n1 + bBCln2 → cAx[By(BH4)n]+ dAClx  (1.6) 

In particular, LiK(BH4)2 is the first reported mixed-metal 

borohydride.[72] The decomposition temperature for the bialkali metal 

borohydride LiK(BH4)2 was found to be approximately the average of 

the decomposition temperature for the simple alkali borohydrides, 

LiBH4 and KBH4. This observation boosted the investigation into other 

combinations of mixed-metal borohydrides, in order to improve the 

decomposition temperatures of light borohydrides, see Table 1.7. 

Table 1.7 – The table of mixed-metal borohydrides from alkali-metals and 

other s-, p- and d- elements. 

Metal Li+ Na+ Mg2+ Al3+ K+ Ca2+ Sc3+ V2+ Mn2+ Zn2+ Sr2+ Y3+ Zr4+ Cd2+ Pb2+ 

Li+  – – +* + +– + +– – + – – +– – – 

Na+ –  – +* + – + +– – + – +* ? – – 

K+ + + + +  + + +– + ++* – + ? + – 

Rb+ ? ? – ? ? + ? ? + ? + + ? ? – 

Cs+ ? ? + ? ? + ? ? + ? + + ? ? + 

Refs. [73,72] [73,74] [73,75] [76–78] [72,74] [73,75] [79–81] [82,83] [73,84,75] [85,86] [75] [87–89] [90] [91] [75] 

+ Compounds with determined crystal structure 

+* Chloride –substituted compounds with determined crystal structure. 

– Compounds were not observed 

+– Unknown crystal structures, which can belong to mixed-cation borohydrides or 

other byproducts. 

? No literature data 

As one can notice, only d-block metal borohydrides based on 

metals with d0, d5 and d10 electron configurations have been 

successfully obtained so far. Thus not only the electronegativity but also 

the electron configurations of the metal may play a significant role in 

the stability of the borohydrides.[92] 
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A nearly linear relationship exists between the experimentally 

observed decomposition temperature and the electronegativity of the 

metal, which coordinates most strongly to the [BH4]
– groups (complex 

forming metal), Figure 1.3.[92] In particular, in the structure of 

Na[Y(BH4)2Cl2], the decomposition is observed 75 °C higher than that 

of Y(BH4)3.
[87] This “stabilizing” effect is due to the presence of the 

alkali metal and also the smaller chloride ion in the structure. Hence, 

the decomposition temperature Tdec comes closer to the average 

between those of NaBH4 and Y(BH4)3, like in LiK(BH4)2. 

 

Figure 1.3 – The plot of decomposition temperatures vs Pauling electronegativity of 

complex-forming metal M', taken from Ref. [92] 

In contrast, borohydride structures containing complex anions, 

such as [Sc(BH4)4]
– or [Zn2(BH4)5]

– in M[Sc(BH4)4] and M[Zn2(BH4)5] 

(M = Li+, Na+, K+), show only minor variations in the decomposition 

temperature with various alkali metals.[92] The strong correlation 

between the decomposition temperature and the electronegativity of the 

complex-forming metal indicates the key role of the complex anions in 

the structural stability of bimetallic borohydrides. 
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The formation of several ternary mixed-metal borohydrides was 

also published recently by Černý and coworkers, with the first 

representative of Li3MZn5(BH4)15 (M = Mg2+ and Mn2+).[93] The latter 

compounds are rather interesting from the structural point of view due 

to the formation of frameworks, and as potential lithium conductors. 

The hydrogen storage properties are limited in trimetallic compounds, 

as they usually decompose to the starting metal borohydrides. 

Thus, the crystal structure determination of mono-, bi- and 

trimetallic borohydrides is highly desirable in the understanding of the 

potential hydrogen storage and other properties of novel complex 

hydrides. 

8. Destabilization of Complex Hydrides and Reactive Hydride 

Composites (RHC) 

The other way of tailoring hydrogen storage materials is based 

on the chemical reaction between two or more hydrides, altering the 

decomposition reaction pathway and the reaction enthalpies. 

Remarkably, the gravimetric hydrogen storage capacity remains as high 

as the weighted hydrogen storage capacity of the individual hydrides. 

This concept is illustrated in Figure 1.4. 

 

Figure 1.4 – The simplified scheme of the RHC system. 
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Several systems were found to release reversibly hydrogen 

under mild conditions in this way. In particular, the systems with [NH2]
– 

and [BH4]
– complex anions which react with protic H+ from metal 

hydrides are among the most promising. An example of sequential 

dehydrogenation and rehydrogenation reaction of LiNH2 and LiH is 

shown below:[94,95] 

LiNH2 + LiH ⇌ Li2NH + H2 (1 step)    (1.7) 

Li2NH + LiH ⇌ Li3N + H2 (2 step)     (1.8) 

This reaction requires high temperatures (>400 °C) for complete 

desorption and are therefore not practical for many applications. An 

alternative approach, recently proposed by Luo et al.,[96] employs 

lithium hydride and magnesium amide (Mg(NH2)2): 

Mg(NH2)2 + 2LiH ⇌ Li2Mg(NH)2 + 2H2   (1.9) 

This reaction theoretically evolves 5.6 wt% of hydrogen at much 

lower temperatures than lithium amide reaction. However, the 

decomposition temperature remains too high (about 190–220 °C) for 

low temperature fuel cell application. The second disadvantage of the 

amides systems is the production of ammonia as decomposition 

byproduct. The loss of nitrogen degrades the material capacity and the 

reversibility, moreover ammonia poisons the fuel cell catalysts. The 

nitrogen-based systems are being intensively investigated today with 

the aim to avoid ammonia evolution and to improve 

desorption/absorption kinetics. 

Metal borohydrides and metal amides can also form RHCs, such 

as LiBH4–2LiNH2:
[97,98] 

LiBH4 + 3LiNH2 → Li4BN3H10 → Li3BN2 + 4H2  (1.10) 
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Li4BN3H10 is an intermediate compound which forms upon 

mechanochemical treatment prior to the formation of stable Li3BN2. 

The onset temperature for hydrogen release decreases from ~380 to 

250 °C for LiBH4 in the composite LiBH4–3LiNH2 and thermal 

decomposition releases more than 10 wt% H2 in the temperature range 

of 250–350 °C. Unfortunately, this system is irreversible. 

There are a lot of other possible combinations of complex 

hydrides, which showed good hydrogen storage properties. One of the 

most successful examples of reversible hydrogen storage in form of 

complex hydrides is based on addition of MgH2 to lithium borohydride. 

In this system formation of the MgB2 as a product provides 

destabilization of LiBH4. The result is a reduction of the decomposition 

enthalpy for the system of about 25 kJ/mol of H2 relative to pure 

LiBH4:
[99] 

2LiBH4 + MgH2 ⇌ 2LiBH4 + Mg + H2 ⇌ 2LiH + MgB2 + 4H2 

        (1.11) 

Remarkably, the theoretical hydrogen storage capacity of this 

system is 11.4 wt%. Hydrogen absorption from the MgB2–LiH 

composite is facilitated from the composite by 50 bar of hydrogen at 

T < 300 °C. The full reversibility of 2LiBH4–MgH2 is only obtained 

when decomposition was performed under hydrogen back pressure of 

p(H2) ≈ 1–5 bar, possibly due to suppression of self-decomposition of 

LiBH4 to non-reversible products.[100] 
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9. Complexes of Borohydrides with Ammonia, Ammonia 

Borane and Ammonium Borohydride 

The other groups of materials with competitive hydrogen 

storage properties are borohydride complexes with ammonia NH3 and 

ammonia borane NH3BH3. The presence of N–Hδ+…Hδ––B dihydrogen 

bonds in these compounds facilitates hydrogen splitting and 

considerably decreases the dehydrogenation temperatures to the range 

of 60–250 °C, as compared to alkali and alkali-earth metal 

borohydrides. The recent overview of M–B–N–H systems is given by 

Ref. [101]. 

Ammonia, which is catalytically split to H2 and N2, is a 

candidate for potential on-board hydrogen storage due to its high 

hydrogen content of 17.3 wt%. However, there are substantial safety 

issues that hamper wide utilization of this toxic compound. The latter 

reacts with metal borohydrides by coordination to the metals and by 

formation of dihydrogen bonds to [BH4]
– groups. The ammine metal 

borohydrides M(BH4)n·mNH3 (AMBs) were discovered in the 1950s 

and have recently attracted significant attention as potential hydrogen 

storage materials. 

Several AMBs should be mentioned as potential hydrogen 

storage materials: LiBH4·NH3,
[102,103] M(BH4)2·2NH3 (M = Mg2+, Ca2+, 

Zn2+),[104,105,106] Ti(BH4)3·3NH3,
[107] Al(BH4)3·nNH3,

[108,109] 

LiMg(BH4)3·2NH3,
[110,111] Li2Ti(BH4)5·5NH3 and 

Li2Al(BH4)5·6NH3.
[107,112] The hydrogen decomposition properties of 

these AMBs are affected both by the metal cation’s nature and by the 

number of ammonia per cation and [BH4]
– groups. The borohydrides of 
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metals with low electronegativity are destabilized via complexation 

with ammonia, see Figure 1.5. 

In contrast, the unstable borohydrides of highly electronegative 

metals, like Al(BH4)3 and Zn(BH4)2, become stabilized. The molecules 

of ammonia always coordinate directly to the metal atoms and prevent 

formation of neutral volatile molecular borohydrides, like Al(BH4)3, or 

avoids their reduction, like in Zn(BH4)2. 

 

Figure 1.5 – The influence of NH3 to stability of metal and mixed-metal borohydrides, 

taken from Ref. [113] 

The influence of the cation on the dehydrogenation properties 

can be illustrated by the different M(BH4)2·2NH3 (M = Mg2+, Ca2+, 

Zn2+) complexes, which contains equal [BH4]
–/(NH3) (8/6 of H–/H+) 

ratio. Upon thermal decomposition Ca(BH4)2·2NH3 releases a 

significant amount of ammonia, Mg(BH4)2·2NH3 release only traces 

and Zn(BH4)2·2NH3 evolving highly pure hydrogen within this 

row.[104−106] The detailed electronic structure of M(BH4)2·2NH3 (M = 

Mg2+, Ca2+, Zn2+) reveals a highly ionic character of Ca2+ in 

Ca(BH4)2·2NH3 and partial covalence of Mg−NH3 and Zn−NH3 which 
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prevents the release of NH3 from the latter complexes.[114] Other 

representatives of AMBs, such as Al(BH4)3·6NH3 produce only traces 

of ammonia, while Ti(BH4)3·3NH3 as well as Al(BH4)3·4NH3–LiBH4 

composite, mixed-metal LiMg(BH4)3·2NH3, Li2Ti(BH4)5·5NH3 and 

Li2Al(BH4)5·6NH3 release high purity hydrogen. 

The H–/H+ ratio of hydridic and protic hydrogens in MABs and 

the presence of catalysts also have an influence onto the decomposition 

properties of the complexes. It was reported that LiBH4·NH3 mainly 

releases ammonia rather than hydrogen under the dynamic inert gas 

flow,[115] however Co-catalyzed LiBH4(NH3)4/3 evolves 17.8 wt% of 

practically pure H2.
[116] 

The other representatives of nitrogen-containing borohydrides 

are complexes with ammonia borane (AB), NH3BH3. Despite the high 

hydrogen content in AB (about 19.6 wt%) and acceptable stability upon 

transportation and storage, NH3BH3 undergoes a stepwise thermal 

decomposition produsing a number of non-reversible products: 

nNH3BH3 → (NH2BH2)x + nH2 → (NHBH)x + nH2→ BN + nH2 

        (1.12) 

Upon thermolysis of NH3BH3, 6.5 wt% hydrogen is released 

below 112 °C (first decomposition step) and 14.5 wt% near 200 °C 

(second step) giving polymeric products (NH2BH2)x and (NHBH)x, as 

well as undesirable borazine (NHBH)3 and aminoborane 

NH2BH2.
[117,118] The final (third) decomposition step occurs at 

relatively high temperature > 500 °C and leads to the formation of 

stable BN and a third equivalent of hydrogen.[119] 

A considerable suppression of toxic decomposition products of 

borazine and aminoborane was achieved by forming metal salts of 
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ammonia borane. This improves the decomposition temperature to 

~90 °C for (Li, Na)NH2BH3,
[120] giving way to a large family of 

materials. Ammonia borane metal-containing derivatives (MABs) 

M(NH2BH3)n (n = 1, M = Li+, Na+; n = 2, M = Ca2+, Mg2+),[120-123] 

including bimetallic NaLi(NH2BH3)2, Na2Mg(NH2BH3)4 and mixed-

anion Li2(NH2BH3)(BH4)/LiNH2BH3, were obtained in recent 

years.[124,125,126] However, all the listed MABs release hydrogen as well 

as toxic ammonia and NH2BH2 traces. For the mixed MAB−AB 

complex LiNH2BH3·NH3BH3, the hydrogen release was reported up to 

14.0 wt% in stepwise manner at 80 and 140 °C and neither borazine nor 

aminoborane were detected.[127] 

The other derivatives of ammonia borane complexes are metal 

borohydride ammonia boranes M(BH4)n(NH3BH3)m (n = 1, m = 1, 2 for 

M = Li+; n = m = 2 for M = Ca2+, Mg2+).[128–131] They showed easier 

hydrogen desorption with less ammonia evolution compared to pure 

ammonia borane and MABs. Further improvements in the properties of 

these complexes were achieved by combining some AMBs with 

ammonia borane, such as Li2Al(BH4)5(NH3BH3)3·6NH3 and 

Mg(BH4)2·2NH3–NH3BH3, where high purity hydrogen was 

detected.[132,130] 

Great efforts have been made during the last years in the 

investigations of regeneration of ammonia borane and its 

derivatives.[133] Remarkably, partially decomposed ammonia borane 

(NHBH)x might be completely regenerated from the spent fuel by 

chemical treatment with hydrazine in liquid ammonia within a single 

step.[134] This discovery is among the most important breakthroughs for 



 38 

possible utilization of ammonia borane and its derivatives for hydrogen 

storage. 

Another derivative of NH3BH3 is ammonium borohydride, 

NH4BH4, which is the richest (24.5 wt% of hydrogen) solid state 

hydrogen-containing compound reported so far. It decomposes in three 

exothermic steps according to the following reactions:[135] 

nNH4BH4 → n/2[(NH3)2BH2][BH4] + nH2   (1.13) 

n/2[(NH3)2BH2][BH4] ↔ nNH3BH3 → (NH2BH2)n + nH2 (1.14) 

(NH2BH2)n → (NHBH)n + nH2    (1.15) 

The reaction steps are taking place at about 50, 85 and 130 °C, 

respectively. The fact that NH4BH4 releases 12 wt% of hydrogen below 

100 °C makes it an extremely attractive hydrogen storage material. 

However, short half-life (~6 h) at room temperature due to the 

decomposition to diammoniate of diborane (DADB), 

[(NH3)2BH2][BH4], makes it less suitable for practical applications. For 

long-term storage, NH4BH4 should be kept at T < −40 °C, therefore 

stabilization of NH4BH4 still remains a challenge. The first example of 

chemical stabilization of NH4BH4 was achieved in 2015 via formation 

of the perovskite-like structure of NH4[Ca(BH4)3].
[75,136] 

10. Hydrolysis of Borohydrides 

The second method of obtaining hydrogen from borohydrides 

derives from their hydrolysis. The general reaction of borohydrides 

with water can be described as following:[137] 

MBH4 + (2+n)H2O → MBO2·nH2O + 4H2   (1.16) 
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Depending on hydrolysis conditions, such as temperature, 

LiBH4 gives different products:[138,139] LiBO2, LiBO2·H2O, 

LiBO2·2H2O, the latter also known as Li[B(OH)4].
[140] NaBH4 attracted 

the biggest attention due to its higher stability and ease to handle as 

compared with LiBH4 (the latter reacts vigorously with water at room 

temperature), and high hydrogen content of 10.6 wt%, contrary to 

7.4 wt% in KBH4.
[141] Aqueous solutions of NaBH4 are usually 

chemically stabilized by rendering solutions basic and do not generate 

significant amounts of H2 under ambient conditions.[142] However, the 

NaBH4 hydrolysis rate can be dramatically accelerated upon the 

addition of certain heterogeneous catalysts.[143,144] Among the 

conventional catalysts studied for the reaction, ruthenium-based 

catalysts were proposed to be most effective for promoting H2 

generation.[145,146] The hydrolysis of KBH4 was also reported,[147] 

showing the lowest hydrolysis rate without the use of catalysts. 

The recovery and regeneration technology is an important issue 

for MBH4. It is attractive to find a procedure for reversing the spent 

MBH4 in the form of MBO2 (e. g. NaBH4 and NaBO2) back to MBH4. 

For promotion of this research, a target of 60 % of regeneration 

efficiency has been set up.[148] In particular, many different methods 

have been developed to convert dried NaBO2 to NaBH4.
[149] Further 

investigations are in process to improve the efficiency and cost of the 

recycling process. In this work, we tried to determine the influence of 

CO2 in the water solution of KBH4 to accelerate the hydrolysis, despite 

the main topic of the thesis is devoted to the hydrogen-rich compounds 

of aluminum. 
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11. Other Potential Applications for Complex Hydrides 

The systems of complex hydrides listed above can be also 

interesting for several other applications such as a stationary hydrogen 

storage. These systems do not require as high hydrogen capasities as 

on-board hydrogen storage, but the reversibility plays a major role. 

Such application is interesting due to potential convertion of electricity 

to hydrogen in order to store energy, which can not be used imidiately 

by the customers. In this cycle hydrogen can be reconverted back to 

electricity in fuel cells, when it will be demanded. There is a significant 

recent interest in solar-driven photoelectrochemical water splitting, 

which produce hydrogen.[150] Stationary hydrogen storage systems will 

be complementary for these renewable energy technologies. 

Borohydrides are also well known as reducing agents in organic 

synthesis. They can be used as powerful fuels in combination with 

oxidizing agents (like H2O2). Recent research on [Al(BH4)4]
–-based 

ionic bipropellants suggests them as alternative green rocket fuels.[151] 

The most recent application of complex hydrides arises from 

thir capability to conduct cations in solid state. The developmet of novel 

solid electrolites is very important for battaries applications. In 

particular, recently found mixed-anion Na3(BH4)(B12H12) provides 

superionic conduction of Na+, corresponding to highly disordered 

cations and continuous migration paths in the structure.[152] The 

alternative to substitute less abondant Li+ in the battaries by Na+ opens 

a possibility to make desent amount of cheap energy accumulators in 

the future. 
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12. Al-Based Hydrides: Hydrogen-Rich and Unstable 

Remarkably, Al(BH4)3 is among the least studied borohydrides 

to date, the compound with a high potential, contains 16.9 wt% of 

hydrogen. This is a highly pyrophoric liquid at ambient conditions, 

explosive in contact with air. This feature is used in jet engines as an 

ignition source and has also been examined for possible use as a rocket 

fuel.[153,154] Thus, the stabilization of Al(BH4)3 in form of more stable 

complexes is a challenge for hydrogen and energy storage. 

It should be mentioned, that one of the first trials to stabilize 

Al(BH4)3-based complexes with another alkali-metal borohydride was 

performed in 1972.[155] The authors obtained K[Al(BH4)4] which 

showed higher thermal stability than the starting Al(BH4)3. This 

compound attracted again a great attention and was recently 

reinvestigated for hydrogen storage properties by our group (see 

Chapter III) and by other researchers.[78] Other authors also claimed the 

formation of [Ca(BH4)][Al(BH4)4] complex.[156] However, no further 

structural evidence of formation of any alkali-earth aluminum 

borohydrides was reported in the literature. Instead, further efforts were 

focused on other possible alkali-metal aluminum borohydrides, with 

high hydrogen content. In particular, the compounds with the lowest 

decomposition temperatures of 70 and 90 °C in Li4Al3(BH4)13 and 

Na[Al(BH4)4-xClx] were reported recently.[76,77] At the beginning of this 

project, the decomposition behavior of the Li-Al and Na-Al 

borohydrides was unclear, and the method of their synthesis revealed 

Cl-stabilization of Li4Al3(BH4)13 as well as the presence of LiCl and 

NaCl as “dead mass” products after the mechanochemical synthesis. 
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Numerous complexes of Al(BH4)3·nNH3 (1 ≤ n ≤ 6) and their 

composites with LiBH4, Mg(BH4)2 and NH3BH3 were established 

recently, during the period of this work (2011–2013), showing excellent 

hydrogen storage properties, see Table 1.8. Despite the low 

dehydrogenation temperatures (starting from 108 °C) and high 

hydrogen purity (> 99 wt%), these compounds/composites are capable 

of partial chemical rehydrogenation. Both Al(BH4)3·6NH3–4AB and 

Li2Al(BH4)5(NH3BH3)3·6NH3 were partially recycled (~4 wt%) by 

direct reaction with hydrazine in liquid ammonia at 40 °C for 3 days.[132] 

Furthermore, the improvement of Al(BH4)3·6NH3 decomposition 

kinetics and purity (>99 mol%) can be achieved by its immobilization 

in nanoporous polymer stabilizers, like poly(styrene-co-

divinylbenzene), PSDB.[157] The partial chemical regeneration of 

Al(BH4)3·6NH3 with PSDB was also achieved.[157] 

Despite the recent explosive interest in the development of 

numerous MABs, there is a lack of the information about Al-based 

complexes. The attention to these systems was also recently drawn by 

other researches, which published several works in 2013 and 2014, in 

parallel to our investigations.[158–160] 

Table 1.8 – Some hydrogen storage properties of Al(BH4)3-based 

ammoniates and its composites with AB. 

Compound/Composite 
H2 capacity 

(wt%) 

H2 purity 

(%) 
Peak T/°C 

Main 

impurity 
Refs. 

Al(BH4)3·6NH3 11.8 67.4 168 NH3 
[108,109] 

Al(BH4)3·5NH3 16.8 90.6 159 NH3 
[109] 

Al(BH4)3·4NH3 15.5 >99 128 — [109] 

Al(BH4)3·3NH3 13.7 >99 113 — [109] 

Al(BH4)3·2NH3 13.7 66.7 108 B2H6 
[109] 

Al(BH4)3·6NH3–2LiBH4 15.5 79.0 138 NH3 
[109,112] 

Al(BH4)3·5NH3–LiBH4 15.4 81.0 145 NH3 
[109] 
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Compound/Composite 
H2 capacity 

(wt%) 

H2 purity 

(%) 
Peak T/°C 

Main 

impurity 
Refs. 

Al(BH4)3·5NH3–2LiBH4 15.8 92.4 142 NH3 
[109] 

Al(BH4)3·4NH3–LiBH4 16.1 >99 109,128 — [109] 

Al(BH4)3·4NH3–2LiBH4 14.2 96.6 121 B2H6 
[109] 

Al(BH4)3·6NH3–0.5Mg(BH4)2 11.2 1001 1302 — [161] 

Al(BH4)3·6NH3–0.5Ca(BH4)2 10.9 99.21 1302 NH3 
[161] 

Li2Al(BH4)5·6NH3–0.5Mg(BH4)2 12.4 99.01 1302 NH3 
[161] 

Al(BH4)3·6NH3–NH3BH3 13.8 96.4 ? ? [132] 

Al(BH4)3·6NH3–2NH3BH3 14.2 97.3 ? ? [132] 

Al(BH4)3·6NH3–3NH3BH3 14.4 98.1 ? ? [132] 

Al(BH4)3·6NH3–4NH3BH3 14.5 98.3 119, 154 NH3 
[132] 

Al(BH4)3·6NH3–5NH3BH3 14.7 98 ? ? [132] 

Al(BH4)3·6NH3–6NH3BH3 14.8 97.8 ? ? [132] 

Li2Al(BH4)5·6NH3 15.1 94.3 125, 190–300 NH3 
[132] 

Li2Al(BH4)5·6NH3–NH3BH3 16.5 97.6 ? ? [132] 

Li2Al(BH4)5·6NH3–2NH3BH3 16.6 98 ? ? [132] 

Li2Al(BH4)5(NH3BH3)3·6NH3 16.9 98.6 105, 125 NH3 
[132] 

Li2Al(BH4)5·6NH3–4NH3BH3 16.8 97.1 ? ? [132] 

Li2Al(BH4)5·6NH3–5NH3BH3 16.6 96.9 ? ? [132] 

Li2Al(BH4)5·6NH3–6NH3BH3 16.4 95 ? ? [132] 

1Isothermal treatment of the samples. 
2The capacity and purity of the H2 emission gas were determined using 

gravimetric and volumetric results, with the assumption that the impurity was only 

NH3, to facilitate the calculation. 
?Not mentioned in the publications. 

13. The Main Objectives and the Working Strategy 

The main objectives of this work are synthesis, crystal structure 

determination and characterization of hydrogen storage properties of 

novel Al-based complex hydrides (borohydrides and amidoboranes). 

According to the processed literature data, several strategies to obtain 

and characterize new hydrogen-storage materials could be performed. 

The first strategy turned our attention to the synthesis of the 

series of mixed-cation M[Al(BH4)4] (M = alkali metal or NH4
+). They 
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can be directly obtained from the starting borohydrides, solving the 

“dead mass” problem. These systems have also not been characterized 

before in terms of crystal structures and hydrogen 

storage/decomposition properties. 

The second possibility to stabilize Al(BH4)3 is the complexation 

with chemical hydrides, in particular with AB and its derivatives. It is 

based on the analogy of the alkali and alkali-earth metal complexes with 

AB. On the other hand, the stabilization of the H-richest solid of 

NH4BH4 is also a challenging problem nowadays. Combination of 

Al(BH4)3 and other metal borohydrides with this compound is very 

interesting for the hydrogen storage community. Moreover, the 

synthesis of NH4-containing borohydrides without “dead mass” was not 

known so far. 

In the final stage, we tried an RHC approach to obtain hydrogen 

from the composite MAlH4–4NH3BH3. This is the first proof of Al 

amidoborane formation from a RHC based on alanates and ammonia 

borane. These complexes are interesting both from the point of view of 

their hydrogen storage properties and crystal structures/compositions. 

Previous investigations in this direction gave vague description of the 

obtained results and our work sheds a light on this perspective class of 

compounds. 

The implementation of the objectives required several steps for 

characterization of the crystal structures and hydrogen storage 

properties of new compounds. Firstly, the crystal structures and 

compositions of the samples were determined from the X-ray single 

crystal and the in situ synchrotron X-ray powder diffraction, vibrational 

spectroscopy measurements and DFT calculations. Further 
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characterization of hydrogen storage properties were performed using 

the TGA (thermal gravimetric analysis), DSC (differential scanning 

calorimetry) and MS (mass spectrometry) together with volumetric 

studies. NMR spectroscopy was used in order to investigate the 

decomposition products of Al(BH4)3 complexed with AB. The 

mentioned results are given in each chapter in accordance with the 

mentioned strategy of the characterization.
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1. Single Crystal X-ray Diffraction 

Diffraction is the coherent scattering of a wave by the atoms in 

a crystal. The origin of this scattering comes from the fact, that the 

electromagnetic X-ray wave is elastically scattered by the electrons 

which behave as an oscillating electric field. 

Atoms consist of multiple electrons distributed around a 

nucleus, thus the scattering power of atoms is proportional to the total 

number of electrons, Z. Every element also has an intrinsic angular 

dependence of the X-ray amplitude on scattering angle θ, which is 

called the atomic scattering function (or form factor), ƒ(θ). Thus, the 

diffraction pattern of stationary, periodically arranged atoms is the 

result of a superposition of interference and the corresponding squared 

scattering function.[162] 

The periodic lattice produces diffraction maxima at specific 

angles, which are defined by both the lattice repeat distances (a, b, c) 

and the X-ray wavelength (λ). One of the ways to describe this relation 

is based on Braggs’ law: 

2dhklsinθhkl = nλ      (2.1) 

where dhkl is the distance between crystallographic planes, θhkl is the 

angle of the diffracted beam, n is integer (order of reflection, which is 

taken as 1 for calculations) and λ is the X-ray wavelength. 

The structure factor (amplitude), F, accounts all for the 

scattering (form) factors in the unit cell, together with other relevant 

atomic parameters. As a result, a diffraction pattern produced by a 

crystal is also a function of the triplet of Miller indices (hkl). Hence, in 

general the intensities of discrete points (hkl) in the reciprocal space are 

given as: 
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𝐼(ℎ𝑘𝑙) ∝ |𝐹ℎ𝑘𝑙|2     (2.2) 

The structure factor, Fhkl, contains the main information about 

the atomic positions. In the non-centrosymmetric systems, this factor is 

a complex number: 

𝐹ℎ𝑘𝑙 =  |𝐹ℎ𝑘𝑙|exp (𝑖𝛼ℎ𝑘𝑙)     (2.3) 

From the known coordinates for the j atom of xj, yj and zj, the 

structure factor can be presented as: 

𝐹ℎ𝑘𝑙 =  ∑ 𝑓𝑗𝑗 exp (2𝜋𝑖(ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗))   (2.4) 

The main problem in crystallography is the “phase problem” of 

the unknown 𝛼ℎ𝑘𝑙. There is no mathematical solution for it, but a lot of 

methods can be applied for its solution. The most widely used for 

structure determination of small molecules is “direct methods”.[163] We 

applied direct methods in our work using SHELXS2014.[164] This 

method is based on the probability approach between the phases of 

different reflections, from which it is possible to gather phase 

information from the experimentally obtained structure amplitudes. 

Initial model of the structure is then obtained after a Fourier 

transformation with the calculated phase information: 

𝜌(𝑥, 𝑦, 𝑧) =  
1

𝑉
∑ ∑ ∑ 𝐹ℎ𝑘𝑙𝑙𝑘ℎ [𝑒𝑥𝑝[−2𝜋𝑖(ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧)]] (2.5) 

The maximum on this electron density map shows the positions 

of the atoms, from which the crystal structure might be solved. 

Once the model of the structure was correctly found, the final 

refinement of the crystal structure can be performed. It is based on the 

updating of the initial model during subsequent refinement cycles. This 

is an iterative process, where the corrected model provides better phase 

information, which in turn (after Fourier transformation) will generate 

an improved structural model. The model is improved by changing 
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atomic parameters (coordinates and thermal displacement parameters) 

and is finalized by minimizing the difference between the square of 

observed (obs) and calculated (cal) weighted F2: 

𝜔𝑅2 = √ 
∑ 𝜔(|𝐹𝑜|2−|𝐹𝑐|2)2

∑ 𝜔|𝐹𝑜|2
     (2.6) 

2. Crystal Structure Solution from X-ray Powder Diffraction 

In general, X-ray powder diffraction (XRPD) is used less often 

for crystal structure solution than a single crystal method, due to the 

fact that structure determination from XRPD is much more difficult.[165] 

This is associated almost entirely with the collapse of the three 

dimensions of the crystallographic information onto the single 

dimension of a powder diffraction pattern. 

However, during the last two decades new diffractometers and 

solution methods made it possible to solve quite complicated structures 

from XRPD. In particular, the variable temperature synchrotron X-ray 

powder diffraction setups available at the European Synchrotron 

Radiation Facility (ESRF in Grenoble, France) and Paul Scherrer 

Institute (PSI in Villigen, Switzerland) were used in this work. Together 

with a modern microstrip solid-state detector, Mythen II, and a large 

area detector PILATUS 2M with fast reading time and high spatial 

resolution, they provide the possibility for in situ observation of 

decomposition reactions and structure determination of 

decomposing/forming light hydrides. For these compounds, XRPD is 

quite helpful due to the presence of small crystallites of several different 

phases, which cannot be separated from the synthesis or which they are 

forming during the temperature-induced processes. 
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Moreover, additional setups for the measurements of the 

powders can be installed. In particular, powder diffraction under high 

gas and dynamic pressure (using glass capillaries or sapphire cells, 

connected with the gas source, as well as determination of phase 

transitions under high dynamic pressure in diamond anvil cells, 

respectively), which will be discussed separately in this chapter. 

Regarding the crystal structure solution form XRPD, there are 

several steps, which can be pointed out: phase analysis, peak indexing, 

choice of space group, profile fitting, crystal structure determination 

and refinement. 

Phase analysis was performed using the structure models from 

the starting and other possible reaction products taken from the 

structural databases or literature data. The remaining peaks were 

indexed, using DICVOL and FOX.[166,167] The obtained unit cells were 

also analyzed by CHEKCELL[168] in order to check for possible derived 

lattices accounting for superstructure peaks or for space group 

symmetry. 

Once the possible unit cell was found, profile fitting was 

performed to the known compounds in the powder pattern. This is done 

by the Le Bail modeling for the intensities and peak profiles of the 

indexed phases. These preliminary fittings were firstly performed for 

primitive lattices. After their refinement the generated .hkl files were 

analyzed by CHEKCELL, in order to determine the possible systematic 

absences and space groups. Profile fits were repeated for different 

suggested space groups, until the best fit (and not many predicted but 

unobserved peaks) was obtained. All these procedures were applied 

within the Fullprof Suite software package.[169] 
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The obtained parameters of the refinement with Le Bail 

modeling were transferred to FOX for crystal structure solution.[167] The 

crystal structure determination was based on global optimization 

methods or so-called direct space methods. The latter deals with the task 

of finding the absolutely best set of parameters to optimize a user-

defined function, called the cost function. This is accomplished by 

scanning the crystal structure parameter space in the search of the global 

minimum, as shown schematically in Figure 2.1. Direct space methods 

rely on a maximum of user input. This means that prior knowledge of 

the structure is extremely useful, since it can be actively used in direct 

space modelling, but not in the reciprocal space. For condensed solids 

such as borohydrides, this refers to information on expected 

coordination polyhedra and inter-atomic distances. The structural 

model is then parametrized in real space to minimize the degrees of 

freedom in the system during the global optimization. The criteria to 

evaluate trial structures are defining the cost function. 

In order to simplify and ease the optimization process, we used 

a rigid-body model for BH4
– groups, based on the tetrahedral symmetry 

of the anion with the interatomic B∙∙∙H distance of 1.13 Å (as “visible” 

to X-rays). For the most complicated situations, the bulky anions, like 

[Al(BH4)4]
– anion, were also modeled as rigid bodies for structure 

determination. 
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Figure 2.1 – Global optimization in crystal structure parameter space as implemented 

in direct space methods. Trial structures are evaluated by means of cost functions, 

shown on the z -axis, taken from Ref. [170] 

3. Rietveld Refinement in X-ray Powder Diffraction 

The refinements of the obtained structures were performed in 

Fullprof Suite[6] using the Rietveld method.[171] This method works as 

least-squares refinement, which minimizes the difference between the 

observed and calculated profiles from the whole recorded pattern (every 

point), but not from the individual reflections. Besides the conventional 

parameters in the least-square procedure (i.e. scale factor, atomic 

coordinates and temperature factors), additional parameters for the 

powder pattern simulation are required: the lattice parameters, a zero-

point error for the detector, and four parameters which describe the half-
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width with scattering angle and the peak shape. In contrast to neutron 

powder diffraction data, where the peak shapes can be modelled as ideal 

Gaussian distributions shape, X-ray powder diffraction refinement 

usually implies combination of Gaussian/Lorentzian peak shape 

(profile) functions, in particular the pseudo-Voigt function was used in 

this work. 

Typically, many Bragg reflections contribute to the intensity, yi, 

observed at any arbitrary chosen point, i, in the pattern. The calculated 

intensities yci are determined form the corresponding to the structural 

model |𝐹ℎ𝑘𝑙|
2 by summing the calculated contributions from 

neighbouring Bragg reflections plus the background ybi (manually 

chosen in our work): 

𝑦𝑐𝑖 = 𝑠 ∑ 𝐿ℎ𝑘𝑙ℎ𝑘𝑙 |𝐹ℎ𝑘𝑙|2𝜙(2𝜃𝑖 − 2𝜃ℎ𝑘𝑙)𝑃ℎ𝑘𝑙𝐴 + 𝑦𝑏𝑖 (2.7) 

where s is the scale factor, Lhkl contains the Lorentz polarization and 

multiplicity factors, 𝜙 is the reflection profile function, Phkl is the 

preferred orientation function, A is an absorption factor. 

Similarly to single crystal method, the criteria of structure fit 

and convergence can be taken from integrated intensities (structure 

factors taken as square roots of the intensities), like in the equation 

(2.6), or from all the calculated and observed points, in the form of the 

“weighted profile R-factor”: 

𝑅𝜔𝑝 =
∑ 𝜔|𝑦𝑖(𝑜𝑏𝑠)−𝑦𝑖(𝑐𝑎𝑙𝑐)|

∑ 𝜔𝑦𝑖(𝑜𝑏𝑠)
     (2.8) 

4. Vibrational Spectroscopy 

Infrared and Raman spectra were collected in order to confirm 

the structural models of the complexes determined by XRPD. 
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The Raman spectra were recorded at room temperature with 

Bruker RFS 100/s FT-Raman spectrometer in the 100–4000 cm–1 range 

and (I = 200 mW) in the 100–4000 cm–1 using a diode-pumped, air-

cooled Nd:YAG laser for 1064 nm excitation and Raman Thermo 

Scientific with a 532 nm DXR laser between 200 and 3500 cm–1 (the 

experiment with KBH4 hydrolysis products). 

Variable-temperature Raman spectroscopy was also 

performed using a Bruker RFS 100/s Raman spectrometer equipped 

with temperature control chamber under an argon flow. The spectra 

were collected in stepwise manner from 30 °C to the required 

temperature (see the experimental details for every particular 

compound). 

The infrared (IR) spectra were measured with a FTIR-8400S 

SHIMADZU spectrophotometer at UCL and with a NICOLET 380 

FTIR (Fourier Transformed Infrared) spectrometer from Thermo 

Electron Corporation in collaboration with Aarhus University. Prior to 

the IR measurements, the samples were mixed with KBr matrix in inert 

atmosphere. Pure KBr was used for background subtraction. 

Time-resolved online ATR-FTIR spectra were recorded on a 

ReactIR 15 spectrometer (Mettler-Toledo) equipped with a diamond 

probe with a resolution of 4 cm−1. 

5. NMR Spectroscopy 

Multinuclei NMR spectra were acquired in toluene-d8 on a 

Bruker Avance DRX500 spectrometer operating at 500.1, for 1H 

(160.5 MHz for 11B and 130.3 MHz, for 27Al). Chemical shifts are 
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reported with reference to SiMe4 (TMS) for 1H, BF3OEt2 for 11B and 

1.1M of Al(NO3)3 in D2O for 27Al. The other necessary details for 

measurements of Al(BH4)3·NH3BH3 and NH4[Al(BH4)4] will be 

described in the corresponding chapters. 

6. Thermal Analysis 

Variable-temperature X-ray powder diffraction was 

performed in order to resolve the diffraction peaks from several 

crystalline phases upon thermal decomposition and to determine their 

thermal stability before further investigation by other methods (refer to 

the corresponding chapters for detailed experimental information). In 

general, the data sets were collected using either laboratory MAR345 

diffractometer with rotating anode Mo Kα radiation and XENOCS 

focusing mirror or with synchrotron radiation from the ESRF or PSI 

facilities. Temperature was increased linearly in time using laboratory 

heat blower (calibrated with thermocouple) and Oxford Cryostreams 

700/700+ at the corresponding temperature heating rates (see the details 

for every compound, respectively). 

Thermal gravimetric analysis (TGA) and differential 

scanning calorimetry (DSC) methods were performed on powder 

samples after preliminary X-ray powder diffraction analysis. The data 

were collected independently with TGA/SDTA 851 Mettler and 

DSC 821 Mettler instruments with heating rates of 1−5°C/min from 

room temperature (25 °C) to a set point given for each compound 

individually (see the next chapters). Some data collection was also 

performed in collaboration with Aarhus University, using a 
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PerkinElmer STA 6000 instrument. The samples for the TGA and DSC 

analysis were loaded in an argon glove box into crucibles with caps or 

sealed into aluminum pans, respectively. The experiments were 

performed under 10-100 ml/min nitrogen flow to prevent oxidizing 

reactions. The reaction entalpies were obtained by integration of the 

DSC peaks subtracting an interpolated background. 

TGA coupled with mass spectrometry (MS) of the residual 

gas was performed using several devices. Most of the measurements for 

M[Al(BH4)4] (M = alkali metal) samples were performed using a 

ThermoStarTM GSD 301T spectrometer coupled with simultaneous 

TGA/DTA 851 Mettler. The characterization of K[Al(BH4)4] was 

performed in collaboration with Institut Jean Lamour, where an 

Omnistar GSD 301C - Pfeiffer Vacuum spectrometer coupled with 

SETARAM Setsys Ev 1750 TGA was used. The Hiden Analytical 

HPR-20 QMS sampling system from Aarhus University was used for 

the highly sensitive sample of Al(BH4)3·NH3BH3. All measurements 

were done under 10−100 ml/min argon flow with a heating rates of 1−5 

°C/min, see the details for each experiment in the next chapters. 

Temperature programmed photographic analysis (TPPA) 

was performed in collaboration with Aarhus University. The method is 

applied to observe the mechanical behavior of the samples upon thermal 

decomposition. Approximately 10 mg of sample (see the details for 

NaAlH4–4NH3BH3 composite description) were sealed under argon in 

a glass tube placed in a home-built aluminium heating block as 

described in Ref. [172]. Photos of the samples were collected every fifth 

second. 
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7. Volumetric Analysis and Reversibility Tests 

Volumetric analysis was performed using a Hiden Isochema 

IMI-SHP analyzer. 40–50 mg of sample were heated from 30 °C to a 

preset temperature at 1−5 °C/min rate under back pressure of p(H2) = 5 

bar. Subsequently, re-hydrogenation of the decomposed samples was 

performed at p(H2) = 150 bar by first heating back to the same preset 

temperature and then cooling slowly (0.1 °C/min) to 30 °C. Gas release 

was calculated from the calibrated volumes of the system, excluding the 

volume of the sample and of the protecting glass wool (2.06 g/cm3). 

The final uptake was calculated as the difference between the average 

start uptake at 30 °C (equal to the temperature of the manifold) and the 

decomposition uptake after cooling to the same temperature, in order to 

decrease uncertainties of calibrations. It was found that the uptake 

calculated by the manifold’s IMI software at 250 °C is usually about 

3% lower (~0.2 mol) than at 30 °C. 

8. In situ X-ray Powder Diffraction Using Sapphire Cells 

The in situ monitoring of the potential hydrogen reabsorption is 

critical to the further development of materials and additives to improve 

thermodynamics, kinetics, gas separation and the hydrogen storage 

capacity. It is very important for understanding the hydrogen absorption 

processes of different materials. For that purpose, during the first year 

of the study, we designed and built the system for such experiments (see 

Figure 2.2). The idea of the system was partially taken from the Ref. 
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[173], and was discussed with the group of Prof. Hauback at the 

Institute of Energy Technology in Kjeller, Norway. 

 

 

Figure 2.2 – The scheme (left) and the view (right) of the high pressure (up 250 bar) 

gas system for in situ X-ray powder diffraction. The sapphire sample cell shown in 

the lower right corner can be mounted on a goniometer. The pressure is monitored 

with high precision via a pressure gauge connected to a PC, the gas is taken from a 

200 bar cylinder. 

In particular, the rehydrogenation of K[Al(BH4)4] was 

attempted using a sapphire-based cell in the in situ synchrotron X-ray 

powder diffraction experiment at the Materials Science Beamline at PSI 
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(Villigen, Switzerland), λ = 0.775045 Å. The starting powder was held 

in a single-crystal sapphire (Al2O3) capillary of 1.09 mm outer 

diameter. The decomposition of the K[Al(BH4)4] under 1 bar of H2 was 

performed by heating the capillary from room temperature to 210 °C at 

5 °C/min heating rate. The decomposed sample was cooled to 50 °C 

and 100 bar of H2 was applied and powder diffraction data were 

collected during 70 min. When no changes were observed, an additional 

heating step to 320 °C of the same decomposed sample at 100 bar of H2 

was made, followed by cooling at 10 °C/min rate. 

 

Figure 2.3 – Sapphire capillary filled with the sample and connected to the gas dosing 

system in the in situ synchrotron X-ray powder diffraction experiment (mounted at 

the Material Science beam line, PSI). 

9. Synchrotron Radiation X-ray Powder Diffraction in 

Diamond Anvil Cells (DACs) 

The experiments described below require special skills and were 

carried out by Dr. N. Tumanov. Hydrostatic pressure during the X-ray 

powder diffraction experiments was created in an ETH-type[174] 
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diamond anvil cells, DACs (flat culets with diameter of 0.5 mm, a 

stainless steel gasket, a starting thickness of 0.200 mm, pre-indented to 

0.060 mm, a hole diameter of 0.25 mm). The pressure was estimated 

from the shift in the R1-band of a ruby calibrant (±0.05 GPa).[175,176] 

Since Al(BH4)3–derived samples are sensitive to oxygen and moisture, 

the fine powders of M[Al(BH4)4] (M = K+, Rb+, NH4
+) were loaded into 

the DACs in a glovebox equipped with a microscope, under high-purity 

argon atmosphere. No pressure-transmitting medium was used, but 

quasi-hydrostatic conditions were achieved, as we found from the small 

broadening of ruby fluorescence lines[176,177] and the splitting of R1-R2 

lines.[178] 

XRPD experiments were carried out using the synchrotron 

radiation source at the BM1A station of the Swiss-Norwegian 

Beamlines at the ESRF. A PILATUS 2M hybrid pixel detector was used 

for the data collection. The beam was slit-collimated down to 100-150 

μm. Nominal sample-to-detector distances (200 and 193 mm, 

respectively), coordinates of beam center and detector tilts were 

calibrated using LaB6 (NIST standard 660b) loaded in a DAC of the 

same type without applying pressure. 

Raw powder diffraction data were processed (calibration, 

masking of the reflections from diamond and ruby, integration) using 

the Fit2D program.[179] 





Chapter III – Crystal Structures and Decomposition Properties of the Series of 

Mixed-Cation M[Al(BH4)4] 

 63 

Chapter III – Crystal Structures and Decomposition 

Properties of the Series of Mixed-Cation M[Al(BH4)4]1 

 

                                                 
1 This chapter is based on the following publications: 

a) Dovgaliuk, I.; Ban, V.; Sadikin, Y.; Černý, R.; Aranda, L.; Casati, N.; 

Devillers, M.; Filinchuk, Y. The first halide-free bimetallic aluminum 

borohydride: synthesis, structure, stability, and decomposition pathway, J. 

Phys. Chem. C 2014, 118, 145–153. 

b) Dovgaliuk, I.; Safin, D. A.; Tumanov, N. A.; Morelle, F.; Łodziana, Z.; 

Černý, R.; Devillers, M.; Filinchuk, Y. Stabilizing explosive aluminum 

borohydride in a M[Al(BH4)4] series with versatile properties beneficial for 

hydrogen storage, Adv. Func. Mater. 2015, submitted. 
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1. Introduction 

Metal borohydride complexes and their derivatives are of great 

interest as materials for potential hydrogen storage due to their high 

hydrogen content.[21] Most alkali and alkali-earth metal borohydrides 

are matching the recently revised by the U. S. Department of Energy, 

hydrogen ultimate gravimetric and volumetric system targets of 

7.5 wt% and 70 g/L, respectively.[11] However, metal borohydrides 

showed high stability towards hydrogen release by pyrolysis as they 

decompose at high temperatures (e.g. ~470 °C for LiBH4, and 

290-500 °C for Mg(BH4)2).
[180,181] The latter can be significantly 

lowered for the mixed-metal borohydride complexes, where the 

decomposition temperature decreases with increasing of Pauling 

electronegativity for the complex forming cations.[182,183] The B–H 

bond weakens with the increase of covalence of the M–H bond. This 

improves thermal decomposition properties of mixed-metal complexes 

and some of them are favorable for the fuel cells temperature range of 

60‒120 °C:[184] Li4Al3(BH4)12.74Cl0.26, containing some chloride anions 

on the borohydride sites,[76] Na[Al(BH4)4–xClx],
[77] NaZn2(BH4)5 and 

NaZn(BH4)3,
[85] KCd(BH4)3 and K2Cd(BH4)4.

[91] All the listed mixed-

metal borohydrides evolve diborane, B2H6, as a hydrogen desorption 

byproduct, which prevents full reversibility and is undesirable for fuel 

cell applications. Moreover, the Al-containing Li4Al3(BH4)12.74Cl0.26 

has recently been found to be the source of Al(BH4)3 upon the 

decomposition.[185] The latter compound suffers from being unstable on 

storage and explosive on the contact with air.[186] 
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Combination of borohydrides of different metals in a single 

molecule, leading to the formation of mixed-metal borohydrides, make 

it possible to stabilize Al(BH4)3. The use of pure borohydride precursors 

instead of the borohydride-chloride mixture studied previously allow to 

avoid the formation of metal halides as the so-called “dead mass” 

phases. Furthermore, halides can also efficiently substitute borohydride 

sites in the final product, that is commonly observed in 

mechanochemical reactions.[187,188] Chlorides can also change the 

reaction pathway of borohydrides, as was found for the 

mechanochemical reaction of AlCl3 with LiBH4. This reaction does not 

lead to Li[Al(BH4)4], previously suggested from the NMR data,[189] but 

results in Li4Al3(BH4)12.74Cl0.26.
[76] A new synthetic approach involving 

the use of bulky anions in wet synthesis was proposed to overcome the 

stability limitations imposed by mechano-chemical processes.[190] 

However, the synthesis of Al(BH4)3-based mixed-cation borohydrides 

still remained a great challenge. 

In this work, we report for the first time on the synthesis, 

crystal structures, thermal analysis, Raman spectroscopy studies along 

with a theoretical investigation of a series of Al(BH4)3-based mixed-

cation borohydrides, M[Al(BH4)4] (M = Li+, Na+, K+, NH4
+, Rb+, Cs+). 

It was found, that Li[Al(BH4)4] and Na[Al(BH4)4] each decompose with 

the formation of the starting borohydrides, MBH4 (M = Li+, Na+) and 

Al(BH4)3. Furthermore, Li4Al3(BH4)13 was found to be an intermediate 

in the decomposition pathway of Li[Al(BH4)4]. The decomposition of 

NH4[Al(BH4)4] starts at ~40 °C, which is the lowest reported 

temperature for the mixed-cation complex hydrides. Heavier mixed-

cation borohydrides, M[Al(BH4)4] (M = Rb+, Cs+), decompose with the 
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formation of starting the MBH4 as well as elimination of hydrogen and 

some B2H6. 

2. Synthesis of Mixed-Cation M[Al(BH4)4] (M = Li+, Na+, K+, 

NH4
+, Rb+, Cs+) and Their Stability 

The synthesis of M[Al(BH4)4] (M = Li+, Na+, K+, NH4
+ Rb+, 

Cs+) consists of two steps: synthesis of Al(BH4)3 and its reaction with 

the corresponding MBH4. Due to the fact that our first successful trial 

of M[Al(BH4)4] synthesis was made for K[Al(BH4)4], the detailed 

synthesis approach will be mostly given for this compound. The other 

M[Al(BH4)4] (M = Li+, Na+, Rb+, Cs+) were obtained by similar 

procedures with some small changes, which will also be mentioned. 

The synthesis of NH4[Al(BH4)4] will be described separately, as its also 

requires the preparation of highly unstable NH4BH4. 

Caution! Al(BH4)3 is highly pyrophoric and explosive in 

contact with moisture and air. In order to prevent explosive reaction 

of Al(BH4)3 with air, all manipulations were carried out in a nitrogen-

filled Plexiglas glove box (courtesy of Prof. O. Riant). All reactions 

were performed using commercially available reagents: AlCl3, LiBH4, 

NaBH4 (all from Sigma Aldrich with >95 % purity), KBH4 (Sigma 

Aldrich, 99 %) and LiBH4 (Boss chemical industry Co., China with 96 

% purity), RbBH4, CsBH4 (both from Katchem), NH4F (from Sigma 

Aldrich, 98.8 % purity) and anhydrous NH3 (from Praxair). 

The first stage of the synthesis is the preparation of Al(BH4)3 

from AlCl3 and LiBH4 according to the reaction: 

AlCl3 + 3LiBH4 → Al(BH4)3 + 3LiCl   (3.4) 
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We have modified the procedure described in Refs. [186,191]. 

The grinded mixture with 5% excess of LiBH4 (Boss chemical industry 

Co.) relative to the stoichiometry of the reaction was steadily heated in 

the glass flask, connected to a tandem of two liquid nitrogen traps. 

Al(BH4)3 starts to evolve as the mixture melts at about 100 °C. At this 

moment the system was pumped down to 10-2 mbar and the product 

with some AlCl3 impurity was condensed in the traps. The pumping 

was ended when the mixture stopped boiling. The content of the first 

trap was unfrozen and purified by distillation at ambient pressure, all in 

the nitrogen-filled glove box, see Figure 3.1. 

 

Figure 3.1 – The photo of the nitrogen-filled Plexiglas glove box, specially equipped 

for Al(BH4)3 synthesis. 

It should be noted, that Al(BH4)3 is extremely reactive, 

reacting even with polydimethylsiloxane vacuum grease.[192] That is 

why the distillation was carried out with Teflon-coated greaseless 

ground glass joints using water-cooled condenser. Only the fraction 

boiling at 44.5°C or slightly below was collected, in order to separate 

Al(BH4)3 from undesired chloride-containing derivatives. It is also 

worth noting, that the used glassware should be washed by isopropanol 
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before exposing to air, as the traces of Al(BH4)3 may explode during 

washing outside the inert box. 

In the second stage of synthesis, 1-2 ml of the fresh Al(BH4)3 

was transferred via a syringe to a bottle with 200 mg of grinded KBH4 

powder, with continuous stirring. The reaction (3.5) took place over 

four to six days, similar to the reaction made by Semenenko et al.:[155] 

Al(BH4)3 + KBH4 → K[Al(BH4)4]    (3.5) 

The excess of volatile Al(BH4)3 was removed by pumping with 

an oil pump for a few minutes. The final products of the reaction were 

identified by XRPD. After the first soaking of KBH4 in Al(BH4)3 the 

resulting K[Al(BH4)4] : KBH4 weight ratio was found to be about 1:1. 

It increases successively after the following soakings, i.e. grinding and 

stirring with Al(BH4)3 liquid, see Figure 3.2, as observed by Semenenko 

et al.[155] We reached yields up to 95% in a few cycles, especially for 

heavier borohydrides. Ball milling of the mixture containing liquid 

aluminium borohydride would likely yield pure products in one step, 

but we did not attempt this procedure because of the safety issues. 

Similar to the reaction of KBH4 with Al(BH4)3, the other 

MBH4 (M = Na+, Rb+, Cs+) form mixtures containing about 1:1 weight 

ratio of M[Al(BH4)4] to MBH4 after the first synthetic cycle: 

Al(BH4)3 + MBH4 → M[Al(BH4)4] (M = Li+, Na+, NH4
+, Rb+, Cs+)

        (3.6) 
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Figure 3.2 – Evolution of K[Al(BH4)4] formation yield in the reaction between KBH4 

and Al(BH4)3, with the progress of the soaking-grinding cycles. The duration of 

soakings is indicated in days. Data were collected with MAR345 diffractometer using 

MoKα radiation. 

The yield of the desired product was significantly increased, 

up to ~90 wt%, after the reaction of the well-grinded mixture of 

M[Al(BH4)4] and MBH4 with Al(BH4)3. The formation of Li[Al(BH4)4] 

is accompanied by the chloride-free Li4Al3(BH4)13 and required four 

cycles to reach ~85 wt% yield. The fact that several synthetic cycles are 

required can be explained by the formation of M[Al(BH4)4] on the 

surface of MBH4. 

It is worth noting that the yield of M[Al(BH4)4] considerably 

depends on the purity of Al(BH4)3: the monoclinic KAlCl4
[193] forms as 

a side product if Al(BH4)3 is not purified by distillation, see Figure 3.3. 

This problem was also observed for the synthesis of M[Al(BH4)4] (M = 

Li+, Rb+), resulting in LiCl and RbAlCl4 as byproducts. Moreover, the 

crystal structure of the latter was not determine so far, but in this work 
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it was found to be isostructural to the CsAlCl4 analogue, see 

Figure 3.4.[194] 

 

Figure 3.3 – Formation of KAlCl4
[193] from non-distilled Al(BH4)3 and KBH4. The 

powder pattern (Rwp = 26.3 %) measured with synchrotron radiation (λ = 0.826887 Å) 

at SLS reveals KAlCl4, RF = 11.4 % (Space group (SG.) P21/n, a = 7.1866, 

b = 10.4822, c = 9.2713 Å, β = 93.07 °) and KBH4 RF = 2.15 % (SG. Fm-3m, 

a = 6.7241 Å). 

 

Figure 3.4 – The powder pattern of RbAlCl4 from non-distilled Al(BH4)3 and KBH4. 

The powder pattern (Rwp = 36.6 %) measured with synchrotron radiation 

(λ = 0.826887 Å) at SLS contains RbAlCl4, RF = 12.8 % (SG. Pnma, a = 11.1530(4), 

b = 7.0940(3), c = 9.2737(4) Å) and RbBH4 RF = 13.4 % (SG. Fm-3m, 

a = 7.0286(1) Å). 
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Figure 3.5 – Formation of LiK(BH4)2
[72] and K[Al(BH4)4] from 2LiBH4 + KBH4 + 

Al(BH4)3 mixture. The pattern shows four phases (Rwp = 9.20 %): LiK(BH4)2, 

K[Al(BH4)4], LiBH4 and KBH4. Data were collected at SNBL, λ = 0.827270 Å. 
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Figure 3.6 - Formation of LiK(BH4)2 [72] and K[Al(BH4)4] from 9LiBH4 + 3KBH4 + 

2AlCl3 ball-milled mixture. The pattern shows three phases (Rwp = 10.1 %): 

K[Al(BH4)4], LiCl and LiK(BH4)2 (from top to bottom). Data were collected at PSI, λ 

= 0.82712 Å. The refined cell parameters of K[Al(BH4)4] indicate negligible chlorine 

substitution: unit cell volume at room temperature is 1783.1(1) Å3 against 

1782.36(9) Å3 for chlorine-free sample. 

The attempts to obtain trimetallic Al-based borohydrides was 

also performed in this work, which was made by soaking 2LiBH4:KBH4 

mixture in Al(BH4)3 and removing its excess in vacuum, yielding 

LiK(BH4)2 and K[Al(BH4)4], see Figure 3.5. No trimetallic borohydride 

has crystallized. 

Ball-milling of 9LiBH4 + 3KBH4 + 2AlCl3 mixture also leads 

to a formation of K[Al(BH4)4], in a mixture with LiCl and LiK(BH4)2, 

suggested from the Rietveld refinement, see Figure 3.6: 

9LiBH4 + 3KBH4 + 2AlCl3 → 2K[Al(BH4)4] + 6LiCl + LiK(BH4)2

        (3.7) 
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This presence of LiCl “dead mass” as well as the absence of 

new ternary borohydrides suggested to stop further trials on that 

synthetic direction. Thus, neither the further mechanochemical 

reactions with other MBH4 and AlCl3 nor characterization of the 

hydrogen storage properties of K[Al(BH4)4], LiCl and LiK(BH4)2 

mixture were performed. 

Synthesis of ammonium borohydride (NH4BH4) and 

NH4[Al(BH4)4]. Ammonium borohydride was synthesized with the 

help of Fabrice Morelle by a slightly modified procedure[195] via a 

metathesis reaction between ammonium fluoride and sodium 

borohydride in liquid ammonia: 

NaBH4 + NH4F → NH4BH4 + NaF    (3.8) 

Stoichiometric amounts of ammonium fluoride and sodium 

borohydride were weighted in an argon-filled glove box and loaded 

together with a magnetic stirrer into a round bottom flask №1 equipped 

with a glass filter. The latter was connected to a Schlenk line and kept 

under slight argon overpressure to avoid moisture contamination. 

Ammonia gas was first condensed at –78 °C, using a cold finger 

condenser filled with dry ice and acetone, in a Schlenk flask №2, 

containing a small amount of sodium metal, to ensure complete dryness. 

When the desired amount of liquefied ammonia (100 mL) was obtained, 

the ammonia bottle was disconnected and the condenser was replaced 

on flask №1, thus dry ammonia evaporated from the flask №2 and was 

recondensed into the flask №1. Once the ammonia transfer was 

complete, the reaction was left stirring at reflux for 1 h. Then the 

solution was filtered to remove precipitated sodium fluoride and the 

solvent was removed in vacuum. The resulting product was transferred 
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to an argon-filled glove box and kept in the freezer at –35 °C. Due to 

high instability of ammonium borohydride one of the main challenges 

of this synthetic procedure is to keep the product at low temperature 

during synthesis and transfer from the Schlenk line to a storage freezer. 

The low stability of NH4BH4 also requires low temperature for the 

reaction with Al(BH4)3. That is why NH4[Al(BH4)4] can be obtained 

from 4ml of fresh Al(BH4)3, which was added to the cooled powder of 

NH4BH4 and kept at –35 °C in the glove box freezer for 7 days. 

Relative stability of M[Al(BH4)4] (M = Li+, Na+, K+, NH4
+, 

Rb+, Cs+). M[Al(BH4)4] (M = Li+, Na+, NH4
+) are unstable at room 

temperature and should be stored in the fridge (at –35 °C). In particular, 

storing of Na[Al(BH4)4] at room temperature shows the formation of 

NaBH4 upon decomposition of Na[Al(BH4)4]. It is also worth noting, 

that the formed NaBH4 has smaller particle size, compared with the 

starting unreacted powder with Al(BH4)3. The latter can be seen from 

the larger peak width for NaBH4 in powder diffraction patterns, 

compared with the starting sample (Figure 3.7a) and the one 

decomposed after 2 month of storing (Figure 3.7b). In this particular 

case, the modeling of NaBH4 powder pattern from the decomposed 

sample requires the separate fitting for the “starting” (narrow peaks) 

and the “forming” (wide peaks) NaBH4. This change can be seen from 

two rows of green bars in the bottom of the Figure 3.7b, indicating peak 

positions for the two different NaBH4 phases, where the “forming” 

phase has larger peak width than the “starting” one, see Figure 3.7c. 



Chapter III – Crystal Structures and Decomposition Properties of the Series of 

Mixed-Cation M[Al(BH4)4] 

 75 

 

 

 

Figure 3.7 – a) Powder pattern (Rwp = 8.65 %) obtained with the synchrotron radiation 

(λ = 0.682525 Å, SNBL) on the “starting” Na[Al(BH4)4]/NaBH4 mixture, b) powder 

pattern (Rwp = 15.1 %) after 2 months of storage at room temperature (λ = 0.823065 

Å, SNBL) and c) the comparison of profiles from “starting” (present from synthesis) 

and “forming” NaBH4 (forms after decomposition of Na[Al(BH4)4]). 
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3. Experimental Details 

Raman spectroscopy. Spectra were recorded at room 

temperature with a Bruker RFS 100/s FT-Raman spectrometer 

(I = 200 mW) in the 100–4000 cm–1 range, using a diode-pumped, air-

cooled Nd:YAG laser with 1064 nm excitation. 

NMR spectroscopy. NMR spectra in toluene-d8 were 

collected on a Bruker Avance DRX500 spectrometer operating at 500.1 

for 1H, 160.5 MHz for 11B and 130.3 MHz for 27Al nuclei, respectively. 

Chemical shifts are reported with reference to SiMe4 (TMS) for 1H, 

BF3∙OEt2 for 11B and 1.1 M of Al(NO3)3 in D2O for 27Al. 

Thermal analysis. Thermal gravimetric analysis (TGA) and 

differential scanning calorimetry (DSC) were performed on powder 

samples. TGA of M[Al(BH4)4] (M = Li+, Na+, Rb+, Cs+) were 

performed using a PerkinElmer STA 6000 apparatus. The samples 

(~2 mg) were loaded into an Al2O3 crucible and heated from room 

temperature to 400 °C (5 °C/min heating rate) in a dynamic argon flow 

of 20 mL/min. NH4[Al(BH4)4] and K[Al(BH4)4] were measured on a 

TGA/DTA 851 Mettler instrument (1 and 5 °C/min heating rate, 

respectively) from 25 to 150 °C and from 25 to 500 °C with a dynamic 

nitrogen flow of 100 and 10 mL/min, respectively. K[Al(BH4)4] was 

measured on a DSC 821 Mettler instrument with a heating rate 

of 5°C/min from 25 to 500 °C. All the samples for thermal analysis 

were loaded in an argon inert glove box. 

Volumetric analysis and reversibility tests. Volumetric 

analysis was performed using a Hiden Isochema IMI-SHP analyzer. 

NH4[Al(BH4)4] (~40 mg) was heated from 30 to 40 °C (1 °C/min, 
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p(He)  = 1 bar) and kept at this temperature for ~2 weeks. M[Al(BH4)4] 

(M = Rb+, Cs+) were heated from 30 to 160 °C (5 °C/min, 

p(He) = 1  bar). Subsequently, the gas release for all experiments was 

calculated from the calibrated volumes of the system, excluding the 

volume of the glass wool (2.06 g/cm3) and samples skeletal volumes, 

taken from their crystal structures. The rehydrogenation of the 

remaining solid residues was performed, applying p(H2) = 100 bar at 40 

°C for NH4[Al(BH4)4] and 160 °C for M[Al(BH4)4] (M = Rb+, Cs+), 

respectively. 

Crystal structure determination. Powders of samples were 

filled into 0.5 and 0.7 mm thin-walled glass capillaries and filled under 

high purity argon atmosphere in the glove box. Laboratory diffraction 

data were obtained with a MAR345 diffractometer equipped with a 

rotating anode (MoKα radiation) and a XENOCS Fox3D focusing 

mirror. 

The crystal structure of Li[Al(BH4)4] was solved from the 

variable temperature in-situ XRPD on the Materials Science Beamline 

at PSI (Villigen, Switzerland), using a Mythen II detector and 

λ = 0.775045 Å. The temperature was increased linearly in time with a 

5 °C/min heating rate. The unit cell was indexed using FOX, [170] and 

the obtained space group P21/c was checked by CHEKCELL.[168] In 

order to simplify the structure solution for the structure with 4 

independent formula units in the asymmetric unit, the anion [Al(BH4)4]
– 

was modeled as a rigid body using the structure of K[Al(BH4)4]. The 

K+ atom was removed from the structure of K[Al(BH4)4], and the 

remaining positions of [Al(BH4)4]
– in the original Fddd space group 

were transformed to the reduced triclinic P1 subgroup using 
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POWDERCELL.[196] The obtained coordinates were transformed into 

the z-matrix format, using the program Open Babel.[197] Finally, the 

model of [Al(BH4)4]
– was transferred into FOX and optimized as four 

independent molecules with four Li+ cations. The resulting structure 

was refined in Fullprof (Figure 3.8), relaxing only the atomic 

temperature displacement parameters.[169] 

The crystal structure of Li4Al3(BH4)13 was refined according 

to the model of the isostructural Li4Al3(BH4)12.74Cl0.26, which contained 

some chloride atoms on the borohydride sites.[76] In our work we refined 

atomic positions of BH4
– without Cl– substitution (Figure 3.9). 

The crystal structure of Na[Al(BH4)4] was solved from in situ 

synchrotron XRPD data collected at the SNBL/ESRF (Grenoble, 

France) with a PILATUS 2M pixel detector and λ = 0.823065 Å. The 

temperature was increased linearly in time with a 5 °C/min heating rate. 

The unit cell was indexed and the preliminary space group Cc was 

established using FOX.[170] The final refinement was performed from 

the synchrotron XRPD data, collected on the Materials Science 

Beamline at PSI (Villigen, Switzerland), using a Mythen II detector and 

λ = 0.775045 Å. ADDSYM routine in the program PLATON[198] was 

applied in order to find higher symmetry. It suggested the C2/c space 

group. The resulting Rietveld refinement profile was obtained from the 

DFT (Density functional theory) optimized structure, where boron and 

hydrogen atomic positions as well as atomic displacement parameters 

were refined together in Fullprof (Figure 3.10).[169] 
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Figure 3.8 – Rietveld refinement profile from synchrotron XRPD (Materials Science 

Beamline at PSI in Villigen, Switzerland; Mythen II detector, λ = 0.775045 Å, 

Rwp = 15.7 %). Li[Al(BH4)4]: SG. P21/c, a = 19.6259(4), b = 13.5317(3), 

c = 13.5206(3) Å; β = 107.457(2)°; RF = 16.2 %. Li4Al3(BH4)13: SG. P–43n, 

a = 11.4371, RF = 5.8 %. LiBH4: SG. Pnma, a = 7.1781, b = 4.4363, c = 6.8025 Å, 

RF = 8.0 %. 

 

Figure 3.9 – Rietveld refinement profile from synchrotron XRPD (Materials Science 

Beamline at PSI in Villigen, Switzerland; Mythen II detector, λ = 0.775045 Å, 

Rwp = 12.9 %). Li4Al3(BH4)13: cubic SG. P–43n, a = 11.4622(1), RF = 6.9 %. LiBH4: 

orthorhombic SG. Pnma, a = 7.2063(2), b = 4.4334(1), c = 6.8650(2), RF = 7.6 %. 
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Figure 3.10 – Rietveld refinement profile from synchrotron XRPD (Materials Science 

Beamline at PSI in Villigen, Switzerland; Mythen II detector, λ = 0.775045 Å, 

Rwp = 18.1 %). Na[Al(BH4)4]: SG. C2/c, a = 9.3375(3), b = 11.2499(4), 

c = 8.4112(3) Å; β = 104.706(2)°, RF = 7.3 %. NaBH4: SG. Fm-3m, a = 6.16396(9), 

RF = 2.8 %. 

Figure 3.11 – Rietveld refinement profile for ESRF synchrotron data, λ = 0.682525 Å, 

Rwp = 7.55 %. K[Al(BH4)4]: SG. Fddd, a = 9.7405(3), b = 12.4500(4), 

c = 14.6975(4) Å, RF = 3.8 %; KBH4: SG. Fm-3m, a = 6.72556(1) Å, RF = 3.2 %. 

The orthorhombic crystal lattice of K[Al(BH4)4] was indexed 

and the structure was solved in the Fddd space group with the program 
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FOX[170] and refined with the Rietveld method using Fullprof.[169] The 

symmetry was confirmed with the ADDSYM routine in the program 

PLATON.[198] The structure was solved and refined with BH4
− groups 

as semi-rigid ideal tetrahedra with one common refined B−H distance 

of 1.13 Å. No other restraints were used. Rietveld refinement, see 

Figure 3.11, suggested a negligibly small chloride substitution of 

0.03(1) on the borohydride site, confirming the Cl-free composition. 

The crystal structures of NH4[Al(BH4)4] and Rb[Al(BH4)4] 

were both solved from in situ synchrotron XRPD data, collected at the 

SNBL/ESRF (Grenoble, France) on a PILATUS 2M pixel detector and 

λ = 0.68884 and 0.682525 Å, respectively. Temperature was increased 

linearly in time using Oxford Cryostream 700+ at a 5 °C/min heating 

rate. The 2D images were azimuthally integrated using Fit2D program 

and data on the LaB6 standard.[179] The unit cells were indexed in the 

Fddd space group by DICVOL[166] and the structures were refined with 

the Rietveld method using Fullprof (Figures 3.12 and 3.13).[169] The 

structures were found to be identical to K[Al(BH4)4] and refined with 

the NH4
+ and BH4

– groups as semi-rigid ideal tetrahedra with common 

refined B–H and N–H distances of 1.20 and 1.04 Å, respectively. No 

other restraints were used. 

The crystal structure of Cs[Al(BH4)4] was solved from 

variable temperature in situ XRPD data collected at the Materials 

Science Beamline at PSI (Villigen, Switzerland), on a Mythen II 

detector and λ = 0.775045 Å. The temperature was increased linearly in 

time with a 5 °C/min heating rate. The unit cell was indexed in the 

I41/amd space group by DICVOL[166] and the structure was solved in 
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FOX,[170] finally refined with the Rietveld method using Fullprof 

(Figure 3.14).[169] 

 
Figure 3.12 – Rietveld refinement profile from synchrotron XRPD (SNBL/ESRF in 

Grenoble, France; PILATUS 2M pixel detector, λ = 0.68884 Å, Rwp = 17.6 %). 

NH4[Al(BH4)4]: SG. Fddd, a = 9.8873(4), b = 12.6005(5), c = 14.9656(5) Å; 

RF = 5.27 %. NH4BH4: SG. Fm-3m, a = 6.9609(5), RF = 5.11 %. 

 
Figure 3.13 – Rietveld refinement profile from synchrotron XRPD (SNBL/ESRF in 

Grenoble, France; PILATUS 2M pixel detector, λ = 0.81712 Å, Rwp = 14.9 %). 

Rb[Al(BH4)4]: SG. Fddd, a = 9.8889(4), b = 13.3009(7), c = 14.3252(8) Å; 

RF = 5.77 %. 
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Figure 3.14. – Rietveld refinement profile from synchrotron XRPD (Materials 

Science Beamline at PSI in Villigen, Switzerland; Mythen II detector, 

λ  = 0.775045 Å, Rwp = 17.8 %). Cs[Al(BH4)4]: SG. I41/amd, a = 7.8594(3), 

c = 16.3173(8); RF = 10.3 %. CsBH4: SG. Fm-3m, a = 7.4714(8), RF = 12.9  %. 

DFT calculations. The theoretical calculations were performed 

in collaboration with Prof. Zbigniew Łodziana (INP Polish Academy of 

Sciences). The structure analysis was performed for all compounds in 

order to check and confirm the thermodynamic stability and to reliably 

determine positions of the hydrogen atoms. The calculations were 

performed within periodic plane wave expansion of the electronic wave 

functions and DFT formalism as implemented in Vasp package.[199] The 

electronic configuration of elements was represented by projected 

augmented wave[200] potentials with the following valence states: 1s1 

for H, 1s22s1 for Li, 2s22p1 for B, 2s22p3 for N, 2p63s1 for Na, 3p64s1 for 

K, 4s24p65s1 for Rb and 5s25p66s1 for Cs. The gradient corrected (GGA) 

exchange correlation functional was used.[201] 

Static structural optimization was performed with a conjugate 

gradient method; for each structure the internal atomic positions as well 
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as the lattice parameters were optimized until forces excerpted on atoms 

were smaller than 0.01 eV/Å. The experimentally determined 

configurations were used as starting ones, and the crystalline symmetry 

was constrained during initial structure optimization. Afterwards a 

simulated annealing search for the possible more stable configuration 

was performed. This was done by heating the structure to 350 K at the 

rate of 100 K/ps and cooling it down to 0 K at the rate of 50 K/ps. No 

constraints were imposed on the internal atomic positions and the unit 

cell parameters were kept fixed during the annealing process. Nosé-

Hoover thermostat[202] was applied for this procedure, and the time step 

for integration of equations of motion was 0.6 fs. The symmetry of each 

system was analyzed.[203] after the simulated annealing procedure. Any 

new symmetry was re-optimized with methods used for the static 

calculations. For all structures the normal modes were analyzed. The 

normal mode frequencies were calculated at the Г point by displacing 

the symmetry non-equivalent atoms in each crystallographic direction 

by ±0.01 Å. 

In order to compare the thermodynamic stability at the ground 

state of the mixed-cation compounds with respect to the decomposition 

into Al(BH4)3 and corresponding MBH4 (M = Li+, Na+, K+, NH4
+, Rb+, 

Cs+), the structural optimization and normal mode analysis was 

performed for all relevant phases. The energy cutoff was increased to 

600 eV for the calculations of the ground state energy. The enthalpies 

of reactions (3.5 and 3.6) were calculated as ΔH = E(M[Al(BH4)4]) – 

E(Al(BH4)3) – E(MBH4) + E0(M[Al(BH4)4]) – E0(Al(BH4)3) – 

E0(MBH4), where E is the ground state energy and E0 is the contribution 

from zero point vibrations (E0 = ∑hωi/2). 
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The Born effective charges Z* Ref. [204] were calculated for 

M[Al(BH4)4] (M = Li+, Na+, K+, Rb+, Cs+). The isotropic component of 

Z* is equal to one-third of the trace. The ionic radii for cations are based 

on the recently established criteria.[205] 

High pressure experiments in Diamond Anvil Cells (DACs) 

were performed on the samples of M[Al(BH4)4] (M = K+, NH4
+, Rb+). 

High-resolution X-ray powder diffraction for K[Al(BH4)4]  was carried 

out using a synchrotron radiation source (λ = 0.682525 Å, 

PILATUS 2M pixel detector) at the BM1A station at the SNBL (ESRF, 

Grenoble). The samples of M[Al(BH4)4] (M = NH4
+, Rb+) were also 

measured at the same facility using λ = 0.714420 Å. LaB6 powder was 

used for the calibration of the sample-to-detector distance. The frames 

of K[Al(BH4)4]  were measured at 29 pressure points during the 

compression up to 15.24 GPa and at 3 points during the decompression 

back to the ambient pressure with an exposure time of 15 minutes. The 

frames for Rb[Al(BH4)4] were recorded at 13 pressure points during the 

compression up to 10.01 GPa. The powder patterns of NH4[Al(BH4)4] 

were recorded at 8 pressure points during the compression up to 7.74 

GPa and 6 points during the decompression to the ambient pressure. 

4. Results and Discussion 

4.1. Variable Temperature in situ XRPD of MBH4:Al(BH4)3 

(M = Li+, Na+, K+, NH4
+, Rb+, Cs+) Systems 

LiBH4:Al(BH4)3 System. The variable temperature in situ plot 

of powder patterns, collected from the sample, obtained after the 

reaction of Al(BH4)3 with LiBH4, exhibits the presence of three 
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different compounds, namely Li[Al(BH4)4], Li4Al3(BH4)13 and LiBH4 

(Figure 3.15). The yield of the former one can be significantly increased 

by applying several synthetic cycles. The peaks for Li[Al(BH4)4] 

gradually decrease with temperature and vanish at about 60 °C, while 

the amount of Li4Al3(BH4)13 abruptly increases at the same 

temperature. Thus, Li[Al(BH4)4] transforms into Li4Al3(BH4)13 upon 

heating according to the following reaction (note, that the boiling point 

of Al(BH4)3 is 44 °C and, thus, it cannot be observed in XRPD patterns): 

4Li[Al(BH4)4] → Li4Al3(BH4)13 + Al(BH4)3   (3.9) 

The complex Li4Al3(BH4)13 is the major phase at 60‒80 °C and 

completely disappears at about 90 °C releasing Al(BH4)3 and LiBH4 

according to the known reaction:[185] 

Li4Al3(BH4)13 → 4LiBH4 + 3Al(BH4)3   (3.10) 

It should be noted that the crystal structure of Li[Al(BH4)4] was 

unknown so far and Li4Al3(BH4)12.74Cl0.26 was published recently.[76] 

NaBH4:Al(BH4)3 System. The variable temperature in situ plot 

of powder patterns, after the reaction of Al(BH4)3 with NaBH4, exhibits 

two compounds, namely Na[Al(BH4)4] and NaBH4 (Figure 3.16). 

Remarkably, the monoclinic crystal structure of Na[Al(BH4)4] 

is different to the previously described orthorhombic 

Na[Al(BH4)4-xClx].
[77] We found that Na[Al(BH4)4] decomposes at 

about 90 °C releasing the starting reagents, according to the reaction: 

Na[Al(BH4)4] → NaBH4 + Al(BH4)3    (3.11) 

LiBH4:KBH4:Al(BH4)3 and KBH4:Al(BH4)3 systems. The 

X-ray powder diffraction analysis was performed for ternary Li–K–Al 

and binary K–Al borohydride systems, the details are given in the 

synthesis section, see Figure 3.5. The trimetallic Li–K–Al–BH4 system 
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contains LiBH4 as LT and HT polymorphs (within their stability 

ranges),[46] KBH4,
[40] LiK(BH4)2

[72] and a new bimetallic phase, 

K[Al(BH4)4]. The formation of K[Al(BH4)4] is more favorable than 

those of Li4Al3(BH4)13 or Li[Al(BH4)4] because the Li cation is more 

polarizing than the K cation. In other words, K+ stabilizes the 

[Al(BH4)4]
− anion better. 

 

 
Figure 3.15 – The variable temperature in situ plot of XRPD patterns for the product, 

obtained after the reaction of Al(BH4)3 with LiBH4 (Materials Science Beamline at 

the PSI synchrotron in Villigen, Switzerland; Mythen II detector, λ = 0.775045 Å) 

(top), and fractional content of compounds extracted from the Rietveld refinement of 

the powder patterns (bottom). 
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Figure 3.16 – The variable temperature in situ plot of XRPD patterns for the product, 

obtained after the reaction of Al(BH4)3 with NaBH4 (Materials Science Beamline at 

the PSI synchrotron in Villigen, Switzerland; Mythen II detector, λ = 0.775045 Å). 

In the condition of our experiment the known bimetallic 

LiK(BH4)2 forms readily at room temperature, while an annealing at 

120 °C was required for the LiBH4:KBH4 sample.[72] Formation of 

LiK(BH4)2 in mild conditions is thus mediated by Al(BH4)3. It can be 

explained by the partial solubility of solid LiBH4 and KBH4 

borohydrides in liquid Al(BH4)3, facilitating the addition reaction. 

Notably, LiK(BH4)2 in our sample decomposes into a LiBH4+KBH4 

mixture at much lower temperatures than reported previously, namely 

at 95 °C against 240 °C attributed to melting and 380 °C for the 

decomposition of this phase.[72] The disappearance of diffraction peaks 

from LiK(BH4)2 correlates nicely with the increasing intensities from 

LiBH4 and KBH4. This observation confirms the hypothesis, made on 

the basis of theoretical calculations, that LiK(BH4)2 is unstable with 

respect to the decomposition into LiBH4 and KBH4.
[206] The 
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decomposition temperatures, however, do not fully reflect the 

equilibrium state but also the kinetic barriers intrinsic to a particular 

multi-component system. The lower stability of LiK(BH4)2 than 

originally declared has been also stated in another work published in 

2014.[207] Interestingly, the LiBH4:KBH4 system showed the lowest 

eutectic temperature of 95 °C among all borohydride systems 

characterized so far. It may be used for crystal growth from borohydride 

melts. 

 

Figure 3.17a – Temperature evolution of powder diffraction patterns for 

K[Al(BH4)4]/KBH4 mixture from 30 to 210 °C (Materials Science Beamline at the 

PSI synchrotron in Villigen, Switzerland; Mythen II detector, λ = 0.81560 Å). Red 

line highlights the pattern collected right after the decomposition of K[Al(BH4)4] at 

180 °C, showing Bragg peaks of KBH4 alone. The blue line shows the highest 

intensity of KBH4 at 160 °C. 

We focused our attention on the new K-Al bimetallic 

compound, which we firstly observed by diffraction in this ternary 

system. Our further attempts were to obtain and characterize this 

complex from the binary KBH4 + Al(BH4)3 mixture. Two cycles of 

soaking in excess of Al(BH4)3 and its removal in vacuum resulted in 



 90 

samples containing ~70 weight % of K[Al(BH4)4] with 30 % of the 

remaining KBH4. The yield was increased to 90% by three soaking - 

vacuum pumping cycles. As mentioned before, the important 

intermediate step in the synthesis is grinding the sample before adding 

a new portion of Al(BH4)3. 

 

Figure 3.17b – The evolution of the integrated intensities (bottom) of the strongest 

peaks of KBH4 with temperature. The average intensity’s ratio between the peak and 

starting KBH4 content is about 1.7. 

In situ synchrotron XRD in the 30–210 °C temperature range 

reveals decomposition of K[Al(BH4)4] at ~180 °C, with an onset at 

110–120 °C, into amorphous products and KBH4. Remarkably, the 

diffraction intensities of the crystalline KBH4 are increasing during the 

decomposition of K[Al(BH4)4] (Figure 3.17a and b), showing a 

maximum of the integrated intensity at 170 °C. This observation 

complements nicely the thermal analysis and mass spectrometric data, 

helping to suggest a decomposition reaction pathway (see in the next 

chapters). 

NH4BH4:Al(BH4)3 system. The variable temperature in situ 

plot of powder patterns, collected from the sample, obtained after the 
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reaction of Al(BH4)3 with NH4BH4 revealed almost exclusively a single 

phase assigned to NH4[Al(BH4)4] (Figure 3.18). This compound was 

found to be the least stable within the series of the herein studied mixed-

cation borohydrides, and it decomposes at 35 °C. Lack of the peaks of 

NH4BH4 upon decomposition of NH4[Al(BH4)4] makes this system 

different from the previously described M[Al(BH4)4] (M = Li+, Na+, 

K+) and required additional methods to describe its decomposition 

pathway (see the description below). Unique thermal decomposition of 

NH4[Al(BH4)4] may be explained by the presence and the 

recombination of the protic H+ and hydridic H– hydrogens within the 

same compound. 

RbBH4:Al(BH4)3 system. The variable temperature in situ plot 

of powder patterns, collected on the sample obtained after the reaction 

of Al(BH4)3 with RbBH4, exhibits peaks for Rb[Al(BH4)4] and traces 

of RbBH4 (Figure 3.19). Rb[Al(BH4)4] decomposes at about 160 °C 

followed by a remarkable intensity increase for the peaks from RbBH4, 

similar to the behavior of K[Al(BH4)4]. 

CsBH4:Al(BH4)3 system. Upon heating two polymorphs of 

Cs[Al(BH4)4] can be recognized (Figure 3.20). The first-order phase 

transition of Cs[Al(BH4)4] starts at about 85 °C, where the low 

temperature (LT) polymorph transforms into the high temperature (HT) 

phase. The decomposition of HT-Cs[Al(BH4)4] starts at ~150 °C. 

Intensities of the peaks of the starting CsBH4 changed insignificantly 

compared to the changes observed for M[Al(BH4)4] (M = Li+, Na+, K+). 

However, the increased background indicates the formation of 

amorphous product(s). Cubic CsBH4 appears from the amorphous 

product(s) above 165 °C. 



 92 

 

Figure 3.18 – The variable temperature in situ plot of XRPD patterns of 

NH4[Al(BH4)4] (SNBL/ESRF in Grenoble, France; PILATUS 2M pixel detector, λ = 

0.68884 Å). 

 

Figure 3.19 – The variable temperature in situ plot of XRPD patterns of Rb[Al(BH4)4] 

(SNBL/ESRF in Grenoble, France; PILATUS 2M pixel detector, λ = 0.81712 Å). The 

formation of RbBH4 is shown by red color. 
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Figure 3.20 – The variable temperature in situ plot of XRPD patterns of Cs[Al(BH4)4] 

(Materials Science Beamline at the PSI in Villigen, Switzerland; Mythen II detector, 

λ = 0.775045 Å). 

4.2. Crystal Structures of M[Al(BH4)4] (M = Li+, Na+, K+, NH4
+, 

Rb+, Cs+) 

The interatomic distances and angles were obtained from the 

XRPD Rietveld refinement for all M[Al(BH4)4] except for 

Li[Al(BH4)4], which will be discussed using the DFT-optimizated 

values. 

Crystal structure of Li[Al(BH4)4]. Li[Al(BH4)4] crystallizes in 

the monoclinic P21/c space group, in which each Al3+ and Li+ cations 

are surrounded by four BH4
– anions, coordinated via edges 

(Figure 3.21). As a result of these interactions, a 3D framework 

constructed from distorted tetrahedra is formed, resembling the 

structure of LiBH4.
[46] The underlying net, as analyzed by the program 
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TOPOS,[208] is a 4-connected net of a new type containing four nods 

(two Li+ and two Al3+) with the point symbol {4.62.83}{4.64.8}. The 

point symbol summarizes the rings which you can made around nods 

(in this case four nodes: 2 identical nodes around 2 Li+ and 2 ones 

around identical Al3+). In particular, the point symbol {4.62.83} for Li+ 

means that starting from Li+ it is possible to make one ring containing 

4 nods, 2 rings containing 6 nods and 3 rings containing 8 nods. The 

framework character of the compound is underlined by a similar 

separation of Li+ and Al3+ from the bridging BH4
– when normalized to 

the sum of ionic radii (cation + anion). The optimized by DFT 

calculations Al–H bonds are 1.83–1.92 Å, while the Al∙∙∙B separations 

are 2.22–2.26 Å. These values are in good agreement with those found 

experimentally for K[Al(BH4)4] (1.79–1.96 and 2.26 Å, respectively, 

shown in Table 3.1) and have not been refined due to the complexity of 

the data (large unit cell and weak Li and H scatterers). The Li∙∙∙B 

separations, obtained from the experimental (Rietveld) data and DFT 

calculations, are 2.35–2.92 and 2.38-2.72 Å, respectively, and are 

similar to those found in Li4Al3(BH4)12.74Cl0.26.
[76] The B∙∙∙Li∙∙∙B and 

B∙∙∙Al∙∙∙B bond angles, obtained from DFT calculation, are 87.2–139.4 

and 95.1–136.4°, respectively, and are similar to those found in 

K[Al(BH4)4] (see Table 3.1). 
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Figure 3.21 – Crystal packing of Li[Al(BH4)4] along the b axis. Color code: 

Al = green, B = olive, H = grey, Li = purple. 

 

Figure 3.22 – Icosahedron, formed by one [Li4(BH4)]3+ cation and twelve [Al(BH4)4]– 

anions, in the structure of Li4Al3(BH4)13. Color code: Al = green, B = olive, H = grey, 

Li = purple. 

Some remarks on the Li4Al3(BH4)13 crystal structure. 

Li4Al3(BH4)13 crystallizes in the cubic P–43n space group, identical to 

the previously published complex Li4Al3(BH4)12.74Cl0.26.
[76] 

Corresponding bond lengths and angles, taken form the Rietveld 

refinements, are almost identical for both structures, each exhibiting a 
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total 12% porosity. The composition of the compound can be 

rationalized on the basis of a complex cation [Li4(BH4)]
3+ and a 

complex anion [Al(BH4)4]
–, packed similarly to the Cr3Si (Frank-

Kasper phase) type. The former ion is formed by linking four Li+ 

cations to each face of the tetrahedral BH4
– anion (Figure 3.22). The 

coordination sphere of each Li+ cation is further completed by three, 

coordinated via edges, BH4
– anions, arising from different [Al(BH4)4]

– 

anions. The topology analysis indicates that [(BH4)Li4][Al(BH4)4]3 is 

an antitype of Ag3PO4.
[209,210] 

 

 

Figure 3.23 – Crystal packing of Na[Al(BH4)4] along the b (top) and c axis. Color 

code: Al = green, B = olive, H = grey, Na = purple. 
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Crystal structure of Na[Al(BH4)4]. Na[Al(BH4)4] crystallizes 

in the monoclinic space group C2/c. The Na+ atoms are in a distorted 

octahedral coordination environment formed by six BH4
– groups, which 

are coordinated via edges (Figure 3.23). This coordination is similar to 

other Na-containing borohydrides, e.g. Na[Al(BH4)4–xClx]
[77] and 

NaBH4.
[40] It is a monoclinic deformation of Na[Sc(BH4)4],

[80] which 

itself is of the CrVO4-type. The [Al(BH4)4]
– anion is rotated by 90° in 

Na[Al(BH4)4–xClx] compared to Na[Al(BH4)4] and Na[Sc(BH4)4]. Each 

[Na(BH4)6]
5– octahedron in the structure of Na[Al(BH4)4] is linked via 

edges to neighboring octahedra, producing layers, which, in turn, are 

linked by vertices to the tetrahedral [Al(BH4)4]
– anions (Figure 3.23). 

The refined and optimized Al–H and Al∙∙∙B distances, being 1.77–1.95 

and 2.24–2.26 Ǻ, respectively, are in good agreement with the 

corresponding values in the [Al(BH4)4]
– anions, found for K[Al(BH4)4]. 

The Na∙∙∙B separations (2.91–3.33 Ǻ) are significantly elongated 

compared to those in Na[Al(BH4)4–xClx] (2.46–2.59 Å).[77] The 

calculated and refined B∙∙∙Al∙∙∙B angles are 95.9(3)–131.0(4)°, very 

similar to those found in the structure of K[Al(BH4)4]. 

The crystal structures of M[Al(BH4)4] (M = K+, NH4
+, Rb+). 

The crystal structure of K[Al(BH4)4] was found earlier, than other two 

members of the isostructural series. The normal mode analysis 

performed for the Fdd2 space group, suggested recently in an 

independent work,[78] showed that this structure is stable with respect to 

atomic displacements. However, the simulated annealing procedure 

resulted in the stable Fddd symmetry (Table 3.1). The ground state 

electronic energy and the zero point energy of the structure with Fddd 

symmetry equals within 1 meV/formula unit with those of the Fdd2 
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one. Thus, our structure in the higher Fddd symmetry has the advantage 

over the one in Fdd2. 

Table 3.1 – Selected bond lengths (Å) and bond angles (°) in M[Al(BH4)4]. 

 K[Al(BH4)4] Rb[Al(BH4)4] NH4[Al(BH4)4] 

 Exp. DFT Exp. DFT Exp. DFT 

M∙∙∙B 3.285(4) 

3.809(4) 

3.249 

3.833 

3.443(7) 

3.902(6) 

3.471 

3.969 

3.390(3) 

3.908(3) 

3.363 

4.136 

M‒H 2.55(1) 

2.91(1) 
3.20(1) 

2.706 

2.874 
3.051 

2.52(2) 

2.90(1) 
3.53(4) 

2.915 

2.996 
3.259 

2.807(3) 

2.967(3) 
3.193(3) 

2.771 

3.127 
3.169 

Al∙∙∙B 2.262(4) 2.242 2.190(7) 2.252 2.231(3) 2.245 

Al‒H 1.79(1) 

1.96(1) 

1.854 

1.871 

1.767(7) 

1.93(2) 

1.877 

1.859 

1.883(3) 

1.890(3) 

1.861 

1.870 

H∙∙∙H ─ ─ ─ ─ 1.816(3) 1.758 

B∙∙∙Al∙∙∙B 97.6(1) 

98.9(1) 

135.4(1) 

95.81 

100.37 

135.95 

97.8(4) 

99.3(5) 

134.6(5) 

96.32 

100.72 

134.74 

95.9(1) 

100.2(1) 

136.0(1) 

97.28 

100.11 

134.24 

N‒H∙∙∙H ─ ─ ─ ─ 157.9(1) 164.10 

K[Al(BH4)4] is the first reported halide-free bimetallic 

borohydride containing [Al(BH4)4]
–. The other known bimetallic Al-

based complexes, such as Li4Al3(BH4)12.74Cl0.26
[76] and 

Na[Al(BH4)4-xClx],
[77] were stabilized by Cl-substitution on the 

borohydride sites, as determined by structural refinements. The only Cl-

free aluminum borohydride complex, [Ph3MeP][Al(BH4)4], contains a 

bulky organic cation,[189] making it inappropriate for hydrogen storage 

applications. Interestingly, a synthesis involving AlCl3 results in the 

K[Al(BH4)4] phase with cell parameters very similar to those of the 

chlorine-free compound, indicating low or no substitution of Cl on the 

BH4
– sites. 
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a)  

 

 
 

b) c) 

Figure 3.24 a – Complex anion [Al(BH4)4]‒ located in the bi-capped trigonal 

prismatic cage K8; b – coordination environment of K, Al atoms and the BH4 group 

in K[Al(BH4)4]; the dashed lines depict elongated K–H distances completing the 

coordination for K to 4H + 8H; c – two interpenetrated dia-type nets in K[Al(BH4)4], 

hydrogen atoms are omitted for clarity. 

K[Al(BH4)4] crystallizes in the orthorhombic space group Fddd, 

similar to the LT-TbAsO4 prototype[211], with BH4
– anions in place of 

the oxygen atoms, see Figures 3.24. The LT-phase of TbAsO4 (stable 

below 27.7 K) is an orthorhombic deformation of the tetragonal HT-

phase (I41/amd, ZrSiO4-type). The orthorhombic structure of 

K[Al(BH4)4], stable up to its decomposition, is far from the tetragonal 
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prototype. This is certainly due to a much stronger deformation of 

[Al(BH4)4]
‒ from an ideal tetrahedron (see below) as compared to 

[AsO4]
3‒. Metal cations have well distorted tetrahedral environments 

formed by the BH4
– groups. Aluminum atoms are coordinated to four 

anions via the BH2 edges: Al–H1 1.79(1) Å and Al–H3 1.96(1) Å, 

forming the distorted tetrahedral [Al(BH4)4]
– complexes with B∙∙∙Al∙∙∙B 

angles ranging from 97.6(1)° to 135.4(1)°, very close to 100.0(1)–

130.8(2)° in the chlorine-containing Li4Al3(BH4)12.74Cl0.26.
[76] K+ 

coordinates the anion asymmetrically via an edge: K–H2 2.55(1) Å, K–

H4 3.20(1) Å. The BH4
¯ group is coordinated through the vertex of 

another potassium cation (K-H4 2.92(9) Å), forming a T-shaped 

coordination for the anion and 4 + 4 coordination polyhedron for K+ 

with respect to the BH4
– groups, see Figure 3.24b. Disregarding the 

more distant potassium atom, the borohydride group acts like a nearly 

linear bridging ligand with an Al∙∙∙B∙∙∙K angle of 152.7(2)°, similar to the 

Mg∙∙∙B∙∙∙Mg angles in the Mg(BH4)2 framework structures.[58,60] 

The Al∙∙∙B distance of 2.262(4) Å is slightly longer than 

2.10−2.15 Å in α,β-Al(BH4)3 where Al coordinates three 

borohydrides[66,212] and falls in the 2.22–2.35 Å range for the 

tetracoordinated Al in Li4Al3(BH4)12.74Cl0.26, [Ph3MeP][Al(BH4)4] and 

Na[Al(BH4)4-xClx].
[76,77,189] Due to the smaller size of Al3+, the Al∙∙∙B 

distances are slightly shorter than 2.27–2.38 Å Sc∙∙∙B and Y∙∙∙B bond 

distances in K[Sc(BH4)4] and K[Y(BH4)4].
[81,88] Remarkably, Y3+ and 

Sc3+ coordinate the BH4
– groups via the tetrahedral faces, showing 

higher coordination numbers and longer metal-hydrogen distances. The 

short K∙∙∙B distance of 3.285(4) Å in K[Al(BH4)4] (CN = 4 + 4) is 

similar to 3.26(1) Å distance in K[Y(BH4)4] (CN = 6)[88] and slightly 
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shorter than 3.364 Å in the cubic KBH4 (CN = 6)[40] and shorter than 

the distance of 3.51(4) Å for CN = 8 in K[Sc(BH4)4].
[81] The longer 

K∙∙∙B distance of 3.809(4) Å is comparable to the longest K∙∙∙B distance 

of 3.95(2) Å[81] for CN = 8 in K[Sc(BH4)4]. On the other hand, K+ with 

CN = 7 in LiK(BH4)2 shows more regular K∙∙∙B distances, falling 

within 3.40–3.47 Å.[72] 

K[Al(BH4)4] is not isomorphic to KAlCl4 and NaAlCl4, where 

much more regular tetrahedral AlCl4
‒ anions are present, as well as 

different coordination polyhedra for alkali metal atoms are 

observed.[213] The title structure can be seen as an iono-covalent 

compound containing the complex anion [Al(BH4)4]
‒ located in the bi-

capped trigonal prismatic cage K8 (Figure 3.24a). In the related 

compound, Na[Al(BH4)4–xClx]
[77], the complex anion is also located in 

a deformed square prismatic Na8 cage. The ratio of the average K∙∙∙B to 

Al∙∙∙B distances of 1.57 is quite large (for comparison with other 

members see Table 3 in Ref. [214]) indicating an important degree of 

isolation of the complex anion [Al(BH4)4]
‒ in the K8 cage. 

Neglecting four longer K∙∙∙B distances, the structure of 

K[Al(BH4)4] can also be viewed as a framework formed by two 

diamond nets (or cubic ZnS nets, considering the K and Al ordering), 

shown in Figure 3.24c. The two interpenetrated dia-nets are touching 

each other via one of the two elongated H–K 3.20(1) Å (B∙∙∙K 3.809(4) 

Å), shown by the dashed line in Figure 3.24b. The same topology was 

found for another complex hydride, Li[Zn2(BH4)5].
[85] Double 

interpenetrated frameworks are more clearly distinguishable in the 

absence of complex anions, i.e. in the high-pressure δ-Mg(BH4)2
[58] and 

two closely related Cd(BH4)2 polymorphs.[91] The topologies typical for 
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coordination frameworks highlight the role of the borohydride anion 

acting as the bridging directional ligand.[92] 

It should be noted, that the structure of NH4[Al(BH4)4] is 

stabilized by the N–Hδ+∙∙∙Hδ––B (1.816(3) Å) dihydrogen bonds 

(Figure 3.25). This value is supported by the DFT calculations (Table 

3.1), and found to be significantly shorter than those in NH3BH3 

(1.91(5) Å)[215] and NH4BH4 (2.28 Å).[216] 

 

Figure 3.25 – Crystal packing of NH4[Al(BH4)4]. Color code: Al = green, B = olive, 

H = grey, N = blue. 

 

 
Figure 3.26 – The coordination environment around the Cs+ atom (left) and crystal 

packing of Cs[Al(BH4)4] along the a axis (right). Color code: Al = green, B = olive, 

H = grey, Cs = purple. 
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The crystal structure of the high-temperature polymorph of 

Cs[Al(BH4)4]. It crystallizes in the tetragonal space group I41/amd, the 

crystal structure is derived from the scheelite-type,[217] which is also the 

prototype of another mixed-cation borohydride Cs[Y(BH4)4].
[89] The 

powder pattern of the RT polymorph was indexed as a monoclinic unit 

cell which point towards a similar structural relation like scheelite-

monazite.[218] In spite of a significant effort made, no reliable structural 

model was obtained for the RT-phase. 

In the high temperature polymorph, the Cs+ atom coordinates (4 

+ 8) BH4
– groups with the Cs∙∙∙B separations of 3.66(7) and 4.53(3) Ǻ, 

respectively. The coordination polyhedron comprises two trigonal 

prisms, rotated by 90 °C (Figure 3.26). They are stacked to adjacent 

polyhedra via pseudo square faces (4.01 × 4.43 Å2), resulting to the 

formation of an infinite 3D framework. The refined (Rietveld) Al−H 

and Al∙∙∙B distances of 1.541(6) and 2.023(8)−2.174(6) Å, respectively, 

differ from the previously described [Al(BH4)4]
– anions. This can be 

explained by difficulties with the structure refinement due to the 

presence of heavy Cs atom. However, the calculated and refined 

B∙∙∙Al∙∙∙B angles of 102.6(4) and 124.3(4)°, respectively, are very 

similar to those found for other M[Al(BH4)4] complexes. 

Formation energies. The enthalpy of formation for 

M[Al(BH4)4] from Al(BH4)3 and MBH4 (M = Li+, Na+, K+, NH4
+, Rb+, 

Cs+) was calculated from the ground state energies, as described in the 

experimental section above. As reference, the Pna2 structure was used 

for Al(BH4)3,
[66] while for the alkali metal borohydrides the low 

temperature structures were used, as described in Ref. [219]. P42/nmc 

symmetry was used for Rb and Cs borohydrides; for the nonspherical 
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NH4
+ cation the lowest energy structure of ammonium borohydride has 

the P-421c symmetry. This structure is however unstable with respect 

to the orientation of NH4
+ (imaginary modes related to the NH4

+ 

rotation), as well as with respect to the decomposition into NH3BH3 and 

H2.
[220] Within these assumptions the formation enthalpy is presented in 

Figure 3.27 for all compounds. 

 

Figure 3.27 – Calculated enthalpy of M[Al(BH4)4]) formation from Al(BH4)3 and 

MBH4 (M = Li+, Na+, K+, NH4
+, Rb+, Cs+). Black circles are for the ground state 

electronic energy, black squares account for the zero point vibrations. Data are given 

per f.u. of M[Al(BH4)4]. 

For NH4[Al(BH4)4] the two sets of data corresponding to the 

decomposition into disordered/unstable NH4BH4, and AB with H2 are 

shown. The error bar accounts for four imaginary modes related to the 

NH4
+ librations. 

The calculated enthalpy indicates that each of the new 

compounds is stable with respect to the decomposition into binary 

borohydrides, and this stability increases with the mass of alkali metal 

cation. On the other hand, the energy gain is rather small compared to 

the stability of the binary borohydrides. For lithium aluminum 
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borohydride there is an additional decomposition path in line with the 

experimentally observed formation of Li4Al3(BH4)13: 

Li4Al3(BH4)13 + Al(BH4)3 → 4Li[Al(BH4)4]   (3.13) 

The calculated electronic contribution to the enthalpy of this 

reaction equals –0.29 eV/formula unit. The zero point vibrations lower 

this enthalpy to –0.15 eV/formula unit. Due to different stoichiometries, 

the enthalpy is given per formula unit of Al(BH4)3 that allows 

comparison with data in Figure 3.27. Indeed, the decomposition into 

Li4Al3(BH4)13 is the most facile among all the reactions. 

4.3. Vibrational Spectroscopy study of M[Al(BH4)4] (M = Li+, 

Na+, K+, NH4
+, Rb+, Cs+) 

Infrared and Raman spectroscopy study of K[Al(BH4)4]. 

The vibrational spectroscopy characterization of K[Al(BH4)4] was 

made before the other mixed-cation aluminum borohydrides, thus the 

analysis of M[Al(BH4)4] (M = Li+, Na+, NH4
+, Rb+, Cs+) is based on it. 

The strongest bands in the 2100–2600 cm–1 range (Figure 3.28) 

correspond to the B–H stretching and less intense peaks from 990 to 

1300 cm–1 can be attributed to the B–H bending modes. Only one 

known strongest peak of KBH4
[54] at 2308 cm–1 can be recognized in 

the stretching mode region in Raman spectrum, the remaining peaks 

overlap with B–H stretching modes from K[Al(BH4)4]: the difference 

of intensities in spectra for different KBH4/K[Al(BH4)4] ratios are 

shown in Figure 3.29. The other two peaks at 2436 and 2476 cm–1 from 

Raman and 2419 and 2472 cm-1 from IR are related to the outward B–

H stretching modes from [Al(BH4)4]
– with respect to the observed in 
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crystal structure bidentate coordination. The mentioned doublet in the 

2400–2600 cm–1 range with 50–80 cm–1 splitting is typical for 

bidentately coordinated borohydrides through one edge only.[221,222] 

Similar peaks were seen at 2440 and 2480 cm–1 for 

Li4Al3(BH4)12.74Cl0.26 in Raman and at 2420 with 2480 cm–1 in the 

infrared spectra, as well as at 2444 and 2503 cm-1 for Na[Al(BH4)4-xClx] 

in Raman spectra.[76,77] 

 

Figure 3.28 – Raman and infrared spectra of K[Al(BH4)4]/KBH4 mixture (90.1/9.9 

weight %) at room temperature. 

In the region of B–H bending modes, a band at 1249 cm–1 

corresponds to KBH4. The other peaks at 999, 1140, 1177 and 

1450 cm– 1 in Raman spectrum and 996, 1144, 1278, 1422 cm-1 in the 

IR can be assigned to the BH2 bending modes in [Al(BH4)4]
–, similar to 

Li4Al3(BH4)12.74Cl0.26 complex (near 1000, 1020, 1170 and 1450 cm–1 

in Raman spectrum).[76] The sharp bands at 455 and 477 cm–1 in both 

spectra likely correspond to the Al∙∙∙H–B stretching mode, also 

previously seen at 490 cm–1 for Li–Al and Na–Al complex 

borohydrides, as well as for the pure Al(BH4)3.
[76,77,223] 
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Figure 3.29 – Comparison of Raman spectra on two samples with different 

K[Al(BH4)4]/KBH4 ratios: 73.1/26.9 and 90.1/9.9 wt. %, as determined from XRPD. 

The Raman spectra of M[Al(BH4)4] (M = Li+, Na+, NH4
+, 

Rb+, Cs+). Every Raman spectrum of M[Al(BH4)4] (M = Li+, Na+, 

NH4
+, Rb+, Cs+) contains bands for the B–H bending and stretching 

modes of the BH4
– ligands in the [Al(BH4)4]

– anion at 1000–1500 and 

2100-2600 cm–1, respectively (Figure 3.30). The stretching mode bands 

are characteristic for the bidentately coordinated borohydride 

anions.[221,222] The same was observed in the Raman spectrum of 

K[Al(BH4)4]. The complex anion [Al(BH4)4]
– anion is also visible in 

the Raman spectra due to the presence of the characteristic band at 

about 460 cm–1, arising from the Al∙∙∙H–B stretching mode. Besides 

these, the Raman spectrum of Na[Al(BH4)4] also contains a 

characteristic band for NaBH4, centered at about 2330 cm–1 (Figure 

3.30). The spectrum of Li[Al(BH4)4] is further complicated by the 

presence of bands for LiBH4 and Li4Al3(BH4)13 (Figure 3.30). 
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Figure 3.30 – Raman spectra of the studied compounds. 

4.4. Thermal Analysis of M[Al(BH4)4] (M = Li+, Na+, K+, NH4
+, 

Rb+, Cs+) 

Thermal analysis of Li[Al(BH4)4] and Na[Al(BH4)4]. 

According to XRPD, the examined sample of the product after the 

reaction of Al(BH4)3 with LiBH4 contained ~40 wt% of Li[Al(BH4)4], 

~19 wt% of Li4Al3(BH4)13 and ~41 wt% of LiBH4. This ratio can vary 

due to the instability of the Al-containing borohydrides and 

uncertainties of the quantitative XRPD analysis. The TGA plot exhibits 

one decomposition step at 50–90 °C with a 25 wt% weight loss, which 

was found to be endothermic with the maximum situated at 89 °C 

(Figure 3.31). Two endothermic minima at 111 and 277 °C correspond, 

respectively, to the phase transition and melting point of LiBH4. The 

observed weight loss is significantly smaller compared to the calculated 

one according to equations (3.9) and (3.10). Discontinuities between 

the XRPD and TGA data can be explained by the partial degradation of 
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the sample during transportation/storing for the TGA analysis. In this 

case the sample contains less Li[Al(BH4)4] and Li4Al3(BH4)13. 

 

Figure 3.31 – TGA and DSC plots of the samples, obtained after the reaction of 

Al(BH4)3 with LiBH4 (top) and NaBH4 (bottom). 

According to XRPD, the product after reaction of Al(BH4)3 with 

NaBH4 contained ~90 wt% of Na[Al(BH4)4] ~10 wt% of NaBH4. This 

sample decomposed in one endothermic step at 70–110 °C with a total 

weight loss of 51% (Figure 3.31). This is in agreement with the 

calculated weight loss of 58 wt% according to equation (3.10). 

Thermal and mass spectrometry analysis of K[Al(BH4)4]. 

The TGA and DSC curves of the K[Al(BH4)4]/KBH4 (73.1/26.9 wt% 

from XRPD) mixture are shown in Figure 3.32. Only one sharp 

endothermic peak with the maximum at 160 °C was detected by DSC 

analysis in the 25−500 °C temperature range. According to the TGA 

and in situ XRPD, the decomposition of the K[Al(BH4)4] complex starts 

at 135 °C and finishes at 175 °C (near 180 °C from XRPD). This 

decomposition profile is significantly different from the previously 

reported decomposition of presumably pure K[Al(BH4)4] by 

Semenenko et al.,[155] where two endothermic peaks were detected at 
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132 and 240 °C. According to their data, the evolution of diborane and 

hydrogen was also accompanied by considerable amounts of Al(BH4)3 

desorbing at 130 °C. The total mass loses of 20.8 wt% on our sample is 

equivalent to 28.5 wt% with respect to the pure K[Al(BH4)4]. 

Desorption of Al(BH4)3 would lead to a much larger weight loss of 56.9 

wt% for the pure K[Al(BH4)4] or 41.8 wt% for our K[Al(BH4)4]/KBH4 

(73.1/26.9 wt%) sample. According to our diffraction data, the intensity 

of KBH4 peaks increases upon the decomposition of K[Al(BH4)4] 

(Figure 3.17), providing ~0.6 mole of KBH4 upon decomposition of one 

mole of K[Al(BH4)4]. Combining this with the TGA data, all the 

observations can be described by the following hypothetic 

decomposition reaction: 

2K[Al(BH4)4] → KBH4 + amorphous “KAl2B3”+ 2B2H6 + 8H2 

        (3.12) 

This reaction gives 28.5 wt% loss of mass, as observed by the 

TGA. The absence of diffraction peaks in the decomposed products 

rules out the formation of the anticipated crystalline phases, such as 

AlB2, K–B borides and KH. It is worth noting that in other independent 

investigations of K[Al(BH4)4], Knight et al.[78] suggested the formation 

of Al(BH4)3 and KBH4 from the sample with a somewhat lower content 

of K[Al(BH4)4] (56 wt%). The authors also observed the formation of 

diborane and hydrogen during the thermal decomposition of 

K[Al(BH4)4]. The evolution of diborane was explained by a possible 

thermal decomposition of Al(BH4)3, and the hydrogen release at around 

300 °C was attributed to (BH)n solid deposited on the TGA furnace 

surface during the experiment.[78] 
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Figure 3.32 – Thermal analysis of K[Al(BH4)4]/KBH4 mixture. 

 

Figure 3.33 – MS curve of evolving gases measured in 25–300 °C temperature range. 

The lines close to the zero level show the absence of Al(BH4)3 fragments. 

We additionally performed two independent mass spectrometry 

measurements on the evolving gas products, combined with the 

simultaneous TGA. Atomic mass units 26 and 27 corresponding to 

B2H6 and 42, 43, 56, 57 and 70–73 a.m.u. corresponding to Al(BH4)3, 

as observed in decomposition of Li4Al3(BH4)12.74Cl0.26,
[185] were chosen 

as characteristic fragments. From our data shown in Figure 3.33, 

diborane release is clearly observed at 160 °C, fully consistent with the 
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maximum of the endothermic peak seen in DSC, and weight losses in 

TGA and TGA-MS data in Figure 3.34. Due to the fact, that the 28 m/z 

signal in diborane reference data amounts only to ~0.5 %,[224,225] the 

likely origin of this peak at the decomposition is the release of the 

molecular nitrogen, which was trapped during the synthesis. The 

evolution of AlH+ with 28 m/z as byproduct is also not feasible, because 

this peak has much smaller abundance (~22 %) compared to 27 m/z for 

Al, as seen for aluminum hydride (alane) decomposition from 

hydrogen-covered aluminum single crystal surfaces.[226] At the same 

time, diborane was  also previously observed by IR data from 

decomposition of Li4Al3(BH4)12.74Cl0.26
[185] and LiZn2(BH4)5,

[227] the 

former also showed Al(BH4)3 desorption and no trace of alane 

formation. In the case of K[Al(BH4)4], we did not observe the fragments 

of Al(BH4)3 in the TGA-MS curve (Figure. 3.34), however the presence 

of 42 and 43, 56 and 57 a.m.u. likely belonging to Al(BH4)
+ and 

Al(BH4)2
+ can be recognized in the logarithmic plot of the second TGA-

MS experiment (Figure S1.1 in the supporting information). Therefore, 

the decomposition by the reaction 3.12 can be affirmed with the 

maximum intensity of H2
+ ion current at 160 °C. 
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Figure 3.34 – TGA-MS curves in 20–500 °C temperature range. The current for 

diborane is considerably lower than for hydrogen. The beam current is practically zero 

for aluminum borohydride. 

This decomposition pathway is different from the ones for Li–

Al and Na–Al borohydrides of Li[Al(BH4)4], Li4Al3(BH4)13 and 

Na[Al(BH4)4], desorbing Al(BH4)3 under vacuum,[185] and shows 

similarities with alkali metal-yttrium borohydrides, M[Y(BH4)4], 

decomposing to hydrogen and nonvolatile amorphous MYB4Hn (M = 

Li, Na, Rb, Cs and n = 4, 3, 3, 2 respectively) products.[89] Our 

manipulations with K[Al(BH4)4] on air show its relatively good 

stability and its non-explosive character, which is typical even for the 

smallest amounts of Al(BH4)3 vapors. No visible segregation of 

Al(BH4)3 from K[Al(BH4)4] upon heating does not exclude its 

equilibrium with the starting compounds at temperatures close to 

ambient, forming a small partial pressure of aluminum borohydride. 

However, for potential applications in hydrogen storage it is important 

that this plausible reaction is not observed at elevated temperatures. 

This prompts for further studies on reactive hydride composites capable 
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of suppressing diborane release, making K[Al(BH4)4] a good candidate 

for the conversion of aluminum borohydride into a more stable form, to 

be used for example in reactive hydride composites.[228] 

Thermal and mass spectrometry analysis of NH4[Al(BH4)4]. 

The sample, containing ~97 wt% of NH4[Al(BH4)4], decomposed in 

two clearly defined steps (Figure 3.35). The decomposition of the 

complex starts at about 35 °C with a weight loss of ~13.6%, while the 

second decomposition step is observed at 58 °C and reveals a ~20.5% 

weight loss. A similar two step weight loss was also observed upon the 

thermal decomposition of Al(BH4)3∙NH3BH3, which will be discussed 

in the next chapter (Chapter IV). 

 

Figure 3.35 – TGA and DSC plots of the sample, obtained after the reaction of 

Al(BH4)3 with NH4BH4. 

According to the TGA−MS data of NH4[Al(BH4)4] it was found, 

that both decomposition steps are accompanied by the release of 

hydrogen, diborane and ammonia (Figure 3.36). 
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Figure 3.36 – TGA-MS analysis of the sample, obtained after the reaction of Al(BH4)3 

with NH4BH4. 

Thermal analysis of Rb[Al(BH4)4] and Cs[Al(BH4)4]. The 

TGA plots of both Rb[Al(BH4)4] and Cs[Al(BH4)4] each contain two 

poorly defined decomposition steps with a total weight loss of 13.2 and 

4.5%, respectively (Figure 3.37). These values are significantly lower 

than 41.6 and 32.6 wt%, respectively, expected for the release of 

volatile Al(BH4)3. 

 

Figure 3.37 – TGA and DSC plots of the samples, obtained after the reaction of 

Al(BH4)3 with RbBH4 (top) and CsBH4 (bottom). 
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Furthermore, the weight loss for Rb[Al(BH4)4] is higher than the 

calculated hydrogen content of 9.4 wt%, indicating release of other 

gases. Indeed, according to the TGA−MS data it was found that the first 

decomposition step of Rb[Al(BH4)4] is accompanied by the release of 

hydrogen and diborane, while the former gas is exclusively observed 

during the second decomposition step (Figure 3.38). 

 

Figure 3.38 – TGA-MS analysis of the sample, obtained after the reaction of Al(BH4)3 

with RbBH4. 

The total weight loss for Cs[Al(BH4)4] (4.5%) is smaller than 

the calculated hydrogen content of ~7.4 wt%. This might be an evidence 

for the release of pure hydrogen upon thermal decomposition, which 

was also confirmed by the volumetric measurements (see below). 

However, the TGA-MS data testify to the simultaneous release of 

hydrogen and diborane during the first decomposition step 

(Figure 3.39), while only hydrogen was released during the second step 

similar to the Rb-containing analogue. 
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The release of side products from M[Al(BH4)4], like diborane 

and ammonia (NH4[Al(BH4)4]) diminishes the potential applications 

for hydrogen storage for the determined compounds. 

 

Figure 3.39 – TGA-MS analysis of the sample, obtained after the reaction of Al(BH4)3 

with CsBH4. 

The comparison of the decomposition temperatures from in-

situ XRPD and TGA/DSC methods. We could not collect the DSC 

data for Li[Al(BH4)4] (its decomposition peak was not defined) and 

NH4[Al(BH4)4] (very unstable), that is why for comparison of stability 

we will use the data form XRPD, where the experimental conditions 

(5°C/min heating rate) are similar for all the samples. The 

decomposition temperatures from the XRPD data are taken when the 

diffraction peaks of M[Al(BH4)4] (M = Li+, Na+, K+, NH4
+, Rb+, Cs+) 

and Li4Al3(BH4)13 vanish completely (offset temperature), see Table 

3.2. In general, the difference in temperatures between the two methods 

does not exceed 10 °C, which is reliable for the general conclusion on 

the stability of the series. 
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Table 3.2 – Decomposition temperatures of Al-based borohydrides. 

Compound Tdec (°C) 

XRPD TGA/DSC 

Li[Al(BH4)4] 60 N/A 

Li4Al3(BH4)13 95 89 

Na[Al(BH4)4] 90 102 

K[Al(BH4)4] 170 160 

Rb[Al(BH4)4] 160 170 

Cs[Al(BH4)4] 150 158 

NH4[Al(BH4)4] 35 35 

N/A – not available. 

4.5. Volumetric Studies of M[Al(BH4)4] (M = NH4
+, Rb+, Cs+) 

Volumetric studies of NH4[Al(BH4)4], performed at the fixed 

temperature of 40 °C, which corresponds to the first decomposition step 

of the compound (Figure 3.36), revealed the release of about 3 mol of 

gas (Figure 3.40). The same experiments on Rb[Al(BH4)4] and 

Cs[Al(BH4)4] exhibit the release of about 4 and 4.5 mole of gas at 

160 °C, respectively (Figure 3.40). Applying 150 bar of hydrogen to the 

most “pure” regarding hydrogen release, Cs[Al(BH4)4], we did not 

succeed in any hydrogen uptake. 

  

Figure 3.40 – Volumetric desorption curve for NH4[Al(BH4)4] (left), and 

Rb[Al(BH4)4] (black) and Cs[Al(BH4)4] (red) (right). 
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4.6. NMR Spectroscopy Studies of NH4[Al(BH4)4] 

To shed light on the decomposition process of NH4[Al(BH4)4], 

11B, 11B{1H}, 27Al, 27Al{1H} and 1H NMR spectroscopy experiments 

were performed in toluene-d8. The 11B spectrum of the freshly dissolved 

sample contained three peaks, shown as two overlapped quintuplets, 

centered at –36.2 and –34.4 ppm, and a triplet of triplets at 17.6 ppm 

(Figure 3.41). The low-field signal, with coupling constants 

2JB,H(bridging) = 135 Hz and 2JB,H(terminal) = 47 Hz, corresponds to diborane, 

while the high-filed signals, with characteristic coupling constants 

2JB,H = 89 Hz, correspond to the BH4
– anions of Al(BH4)3 and 

Al(BH4)3∙NHBH (will be discussed in Chapter IV, 4.6), respectively. 

The formation of the latter two complexes is also reflected in the 27Al 

NMR spectrum, which exhibits a broad singlet peak at 99.0 ppm for 

Al(BH4)3 and a characteristic doublet of septets, degenerated to a 

nonuplet, centered at 63.0 ppm (Figure 3.41). However, the 11B{1H} 

spectrum of the same sample allowed to observe an additional singlet 

peak at -35.0 ppm, accompanied with a peak at 77.8 ppm in the 

27Al{1H} NMR spectrum and a low intense peak, significantly 

overlapped with the peaks from diborane protons, at 3.97 ppm in the 1H 

NMR spectrum (Figure 3.42). The peak in the 27Al NMR spectrum was 

shown as a broad septuplet, testifying to coupling from hydrogens. 

The 11B and 27Al NMR spectra of the same sample recorded 2 

days later each reveal an increase of the corresponding signals for 

Al(BH4)3∙NHBH and diborane (Figure 3.41). Furthermore, the peak at 

3.97 ppm in the 1H NMR spectrum is significantly increased and is now 

shown as a broad quintuplet with the coupling constant assigned to 
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2JHAlH = 6.1 Hz (Figure 3.42). The latter quintuplet, together with the 

corresponding peaks at –35.0 and 77.8 ppm in the 11B and 27Al NMR 

spectra, respectively, were tentatively assigned to the formation of 

[HAl(BH4)2]. 

 

Figure 3.41 – 11B (top) and 27Al (bottom) NMR spectra of the freshly dissolved 

(black) and after 2 days (red) of NH4[Al(BH4)4] in toluene-d8 at room temperature. 

 

Figure 3.42 – 1H NMR spectra of the freshly dissolved (black) and after 2 days (red) 

of NH4[Al(BH4)4] in toluene-d8 at room temperature. 
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The 11B{1H} and 27Al{1H} NMR spectra of the same sample 

recorded after 10 days revealed complete disappearance of Al(BH4)3. 

However, new peaks at 69.9 and 75.2 ppm appeared in the 27Al NMR 

spectrum accompanied with two new peaks at –34.9 and –34.8 ppm in 

the corresponding 11B{1H} NMR spectrum. These peaks can be 

assigned to the oligo- and/or polymeric structures [HAl(BH4)2]n, 

formed due to the polymerization of [HAl(BH4)2] through the bridging 

μ-H atoms. The 11B{1H} NMR spectrum additionally contained peaks 

at –41.4 and –15.6 ppm, corresponding to the diammoniate of diborane, 

[H2B(NH3)2]BH4.
[229] Furthermore, the 11B{1H} NMR spectrum also 

exhibited peaks at –20.6 ppm, assigned to NH3BH3, and at –26.1 and 

−13.0 ppm, both corresponding to ammonia diborane, 

NH3BH2(μ-H)BH3.
[229] The BH3 group, with the bridging μ-H-proton, 

of the latter compound was found as a triplet of doublets 

(1JBH(terminal) = 130 Hz, 1JBH(bridging) = 33 Hz) in the 11B NMR spectrum. 

4.7. The Relative Stability of Mixed-Cation M[Al(BH4)4]  

(M = Li+, Na+, K+, NH4
+, Rb+, Cs+) from DFT Calculations and 

Crystal Structure Considerations 

The first attempt to explain the stability of the Al-based series 

of borohydrides was based on the first Pauling’s rule:[230] For typical 

ionic solids, the cations are smaller than the anions, and each cation is 

surrounded by coordinated anions which form a polyhedron. The sum 

of the ionic radii determines the cation-anion distance, while the cation-

anion radius ratio (rC/rA) determines the coordination number of the 

cation, as well as the shape of the coordinated polyhedron of anions. 
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The corresponding rC/rA
 ratios, coordination numbers and 

thermal stability of (M = Li+, Na+, K+, NH4
+, Rb+, Cs+) are shown in 

Figure 3.43. The comparison of the thermochemical radii (e.g. NH4
+ 

and BH4
–)[231] gives similar rC/rA

 ratios. The Li+ cation in Li[Al(BH4)4] 

adopts a tetrahedral coordination environment by the BH4
– groups, 

matching the stability window defined by the rC/rA ratio (Figure 3.43). 

Nevertheless, this compound exhibits relatively low thermal stability. 

The Na+ cation in Na[Al(BH4)4] has an octahedral environment by the 

BH4
– groups, as expected for the given rC/rA ratio (Figure 3.43), and is 

more stable than its Li-based analogue. The K+-, Rb+- and Cs+-

containing derivatives have similar and relatively high stability (Figure 

3.43). Their coordination numbers range from 4 + 4 to 4 + 8, being 

higher than the typical value of 6 in this rC/rA window. The [(BH4)Li4]
3+ 

is significantly larger than the other cations and falls into the stability 

region of the icosahedral coordination, considering the much larger 

[Al(BH4)4]
– anion. Indeed, this cation has the expected icosahedral 

coordination by the complex anions (Figure 3.22), but the stability of 

[(BH4)Li4][Al(BH4)4]3 is much lower than for M = K+, Rb+ and Cs+ 

(Figure 3.43). The radius of the [Al(BH4)4]
– anion was found, based on 

the crystal structure data of the described borohydrides, to be equal to 

~3 Å. NH4[Al(BH4)4] is in a special position, as it has the same structure 

and the rC/rA ratio as for M = K+, Rb+, but it is much less stable, likely 

due to the formation of the (N)Hδ+∙∙∙δ–H(B) dihydrogen bonds 

(Figure. 3.25), which easily recombine into H2. 

We can thus conclude that the observed coordination numbers 

do not fully match the stability regions deduced from the geometrical 

principles of the first Pauling’s rule. Moreover, the observed 
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mismatches do not explain the variation of the decomposition 

temperatures. The approximation of complex [BH4]
– and [NH4]

+ and 

[Al(BH4)4]
– as ideal spheres, which is used by Pauling’s rule, is rough 

for the shown series. Therefore, in the second attempt to address the 

structure-property relation, we had to take into account the electronic 

factors. 

 

Figure 3.43 – Thermal stability of M[Al(BH4)4] (M = Li+, Na+, K+, NH4
+, Rb+, Cs+) 

and of [(BH4)Li4][Al(BH4)4]3 as a function of the cation-anion ratio. The dashed lines 

define the stability regions of the coordination polyhedra according to the first 

Pauling’s rule. The observed coordination environments (colored circles: black – 

tetrahedral, red – octahedral, blue – 4+4, olive – 4+8, purple – icosahedral, the latter 

is based on the size ratio for the complex cation and the complex anion) do not fully 

match the stability regions. The observed mismatch does not explain the variation of 

the decomposition temperatures. 

The relation between the formation enthalpy of metal 

borohydrides (Figure 3.44) and the Pauling electronegativity, pointed 

out by Nakamori et al.,[183] has driven the idea of mixed cation 

borohydrides synthesis in order to tune the decomposition temperature. 

This semi-empirical rule holds well for alkali metals, however deviation 
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is observed for compounds containing transition metals or metals with 

a higher valency. Recently, it was shown that the ionic potential 

(φ = Z*/r, r is the ionic radius of cation) provides a simple measure of 

the stability of mixed-cation borohydrides[219] as long as the Born 

effective charges are taken as the charge of cations. The Born effective 

charges measure polarization induced by the displacement of ions thus 

they are sensitive to the nature of interatomic bonding within the crystal 

and the site symmetry of the ions. The decomposition temperatures of 

the new compounds reported in this work are depicted in red, and those 

for the common metal borohydrides are in black (Figure 3.44). The data 

follow the linear dependence of the decomposition temperature versus 

the square root of the ionic potential; moreover all Al(BH4)3-based 

mixed-cation borohydrides are located in the region of φ0.5 larger 

than 2. 

 

Figure 3.44 – The experimental decomposition temperatures of metal borohydrides 

as a function of ionic potential obtained using dynamical charges on cations. The 

results of the present work are shown as red circles, while the data shown in black 

circles were taken from Ref. [219] 
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A strong positive correletaion for the numerical values for φ0.5, 

presented by Cartledge[232], versus the corresponding Pauling 

electronegativities for the main-block elements is well known. The 

series of M[Al(BH4)4] (M = Li+, Na+, K+, Rb+, Cs+) are also in line with 

this tendency. The calculations for NH4[Al(BH4)4] did not succeed due 

to the calculated phonons with negative frequencies. However, it seems 

that the correlation is violated in this case due to the influence of the 

dihydrogen Hδ–∙∙∙Hδ+ interactions, not present in other borohydrides. 

The Al-based bimetallic compounds combining even stronger 

polarizing Mg2+ or Ca2+ cations, would lead to the decomposition at 

room temperature, and thus are most likely unstable under ambient 

conditions. Indeed, our attempts to isolate bimetallic borohydrides of 

the Mg(BH4)2‒Al(BH4)3 and Ca(BH4)2‒Al(BH4)3 systems were 

unsuccessful. Consequently, the title family of Al-based borohydrides 

is likely complete. With its diversity, and convenient and versatile 

decomposition properties, the aluminum borohydride chemistry will, 

hopefully, be put into the mainstream research in hydrogen storage, e.g. 

for the development of reactive hydride composites with an increased 

hydrogen content. 

5. High Pressure Experiments on Isostructural Mixed-Cation 

M[Al(BH4)4] (M = K+, NH4
+, Rb+) 

A necessary step towards understanding the stability and 

rational design of light hydrides is a study of their structural response 

not only to temperature changes but also to the influence of pressure. 

There are numerous experimental mappings of polymorphism for the 
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light hydrides which were determined by X-ray and Neutron 

diffraction.[e.g. 233] These investigations are not a trivial task due to the 

complexity with experiments and data treatment. Nevertheless, the high 

pressure determinations of most of the alkali-metal and alkali-earth 

metal borohydrides were performed to this date. Interestingly, the high 

pressure behavior of the molecular borohydride Al(BH4)3,
[66] was not 

determined so far. It was curious to know, if this molecular compound 

can be transformed to inorganic polymers under high pressure. Our 

attempts of Al(BH4)3 high pressure investigations did not show the 

formation of any crystalline phase up to an applied pressure of 20 GPa. 

This phenomena may occur due to the polymerization of the starting 

Al(BH4)3 liquid. 

We turned our attention to the samples of M[Al(BH4)4] (M = K+, 

NH4
+, Rb+) with high purity of the starting phases (≥90 wt%), which 

might be investigated at high pressure. Moreover, there is not a single 

example of the mixed-cation borohydride system investigated at high 

pressures to date. The isomorphism of M[Al(BH4)4] (M = K+, NH4
+, 

Rb+) can give better chances to understand the sequence of phase 

transitions under high pressure. Furthermore, the presence of N–

Hδ+∙∙∙Hδ––B dihydrogen bonds in NH4[Al(BH4)4] makes it of a great 

interest for high pressure determination. The dihydrogen bonds 

Hδ+∙∙∙Hδ– are known to have relatively high energy and the 

directionality. It would be interesting to compare these interactions in 

mixed-cation borohydride of NH4[Al(BH4)4] and other derived 

complex hydrides, like NH3BH3 and NH4BH4. 
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Figure 3.45 – The X-ray powder patterns of the mixture of Rb[Al(BH4)4] and RbBH4 

as a function of pressure. The phase analysis also demonstrated the known Fm-3m → 

P4/nmm transition of RbBH4 at 3.63 GPa.[234] 

According to preliminary results, K[Al(BH4)4], Rb[Al(BH4)4] 

and NH4[Al(BH4)4] exhibit phase transitions at 1-2 GPa, see figure 3.45 

for the Rb-containing sample. At the moment, we partially treated data 

for the samples of Rb[Al(BH4)4] and NH4[Al(BH4)4]. Presumably, they 

undergo a first order Fddd → P2 phase transition. The unit cell in the 

space group of P2 (a = 9.12795, b = 6.60655, c = 13.9327 Å; 

β = 113.50) for Rb[Al(BH4)4] at 3.63 GPa was found using FOX.[170] 

An identical unit cell with similar parameters (a = 9.13796, b = 6.92399, 

c = 14.29934 Å; β = 113.31°) was observed for NH4[Al(BH4)4] at 

1.80 GPa. Remarkably, the sample of K[Al(BH4)4] exhibits a different 

phase transition. However, its crystal structure is not indexed nor solved 

due to the complexity of the high pressure data. 
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Despite the fact that these investigations were not a major goal 

in this work, we are still trying to solve the crystal structures of the 

M[Al(BH4)4] (M = K+, NH4
+, Rb+) high pressure polymorphs. 

6. Conclusions 

In summary, a new family of mixed-cation hydrogen-rich 

borohydrides M[Al(BH4)4] (M = Li+, Na+, K+, NH4
+, Rb+, Cs+) was 

obtained with good to excellent yields by the addition reaction of the 

corresponding MBH4 with Al(BH4)3. Furthermore, the formation of 

Li[Al(BH4)4] was found to be accompanied by the byproduct 

Li4Al3(BH4)13, which becomes a major product at higher temperatures. 

The crystal structures of all compounds were elucidated by 

XRPD and optimized by DFT. It was established that complexes 

comprise a distorted tetrahedral [Al(BH4)4]
– anion. 

The experimental decomposition temperatures of metal 

borohydrides linearly correlate with the ionic potential of metal atoms 

calculated from dynamical charges on cations, and the M[Al(BH4)4] 

series falls on the least stable and thus the most practical side. The 

putative bimetallic Mg–Al and Ca–Al borohydrides are most likely 

unstable under ambient conditions. Consequently, the title family of Al-

based borohydrides is likely complete. 

The release of Al(BH4)3 upon thermal decomposition of 

M[Al(BH4)4] (M = Li+, Na+) can be of interest as the solid-state storage 

of this highly unstable and explosive compound. Thermal 

decomposition of the heavier M[Al(BH4)4] (M = K+, Rb+, Cs+) is 

accompanied by the release of hydrogen and diborane. Remarkably, the 
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TGA and volumetric studies of Cs[Al(BH4)4] revealed the release of 

high purity hydrogen at 160 °C. According to the TGA and volumetric 

studies, the thermal decomposition of NH4[Al(BH4)4] releases a 

mixture of hydrogen, diborane and ammonia. Contrary to the 

perovskite-type NH4Ca(BH4)3, which decomposes to 

Ca(BH4)2∙NH3BH3 by release of one H2 molecule, the multinuclei 

NMR experiments have shown the formation of Al(BH4)3, 

Al(BH4)3∙NHBH, [HAl(BH4)2] and diborane upon dissolving of 

NH4[Al(BH4)4] in toluene-d8. The NMR data have further revealed a 

decrease of the Al(BH4)3 amount with an increase of Al(BH4)3∙NHBH, 

[HAl(BH4)2] and diborane quantities over time. It should be noted that 

the formation of Al(BH4)3∙NHBH has recently been observed upon the 

thermal decomposition of Al(BH4)3·NH3BH3 (which will be discussed 

in the next Chapter IV). 

M[Al(BH4)4] can be seen as a convenient store of the highly 

unstable aluminium borohydride, as well as extremely H-rich 

substances suitable for the design of new hydrogen storage materials, 

hopefully, putting alumunium-based borohydrides into the mainstream 

research.
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Chapter IV – Ammonia Borane Complexed with 

Aluminium Borohydride 2 

 

  

                                                 
2 This chapter is based on the following publication: 

Dovgaliuk, I.; Le Duff, C.; Robeyns, K.; Devillers, M.; Filinchuk Y. Mild 

dehydrogenation of ammonia borane complexed with aluminum borohydride, Chem. 

Mater. 2015, 27, 768–777. 
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1. Introduction 

In recent years metal borohydrides M(BH4)n
[21,36] and M-B-N-H 

systems[37,235] of metal amidoboranes (MABs), amine metal 

borohydrides (AMBs), and complexes with ammonia borane NH3BH3 

(AB) have been among the most attractive materials for potential solid-

state hydrogen storage as they exceed by far the year 2017 system 

targets of 5.5 wt% of hydrogen and gravimetric density of 40 g/L set by 

the U.S. Department of Energy.[11] Several metal borohydrides 

M(BH4)n (n = 1, M = Li+, Na+;[236,237] n = 2, M = Be2+, Mg2+, Ca2+ 

[181,238,239] and n = 3, M = Al3+, Ti3+ [186,240]) have been studied as 

potential hydrogen storage media. However, the hydrogen desorption 

temperatures for alkali and most alkaline earth metal borohydrides are 

far from the range of 60–120 °C useful for hydrogen-fuel cells:[184] 

indeed, desorption temperatures of about 470°C for LiBH4, and 290–

500 °C for Mg(BH4)2), the instability of Al(BH4)3 and the toxicity of 

Be(BH4)2 make them unpractical. The high stability of borohydrides 

can be decreased by formation of bimetallic borohydrides. Their 

stability drops with increasing Pauling electronegativity (χp) of the 

complex-forming cation.[92,183] The most unstable metal borohydride 

complexes contain highly electronegative Al3+, Zn2+, Cd2+ (χp = 1.61, 

1.65, 1.69, respectively) which create weaker B−H bonds, together with 

alkali metal cations (0.79 ≤ χp ≤ 0.98). In particular, the series of 

bimetallic borohydrides of Al3Li4(BH4)13, Na[Al(BH4)4-xClx], 

K[Al(BH4)4] (in the Chapter III),[76,77] LiZn2(BH4)5, NaZn2(BH4)5, 

NaZn(BH4)3 and KZn(BH4)3
[85,86] as well as KCd(BH4)3, 

K2Cd(BH4)4
[91] decompose at rather low temperatures. However, they 
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evolve toxic diborane B2H6 during decomposition, which contaminates 

fuels cells and decreases the reversibility of these materials. 

Another group of materials with competitive hydrogen storage 

properties are metal borohydride complexes with ammonia and 

ammonia borane, NH3BH3. The presence of N–Hδ+∙∙∙Hδ-–B dihydrogen 

bonds in these compounds considerably decreases the dehydrogenation 

temperatures, to the range of 60–250 °C. Several amine metal 

borohydrides (AMBs) are considered promising hydrogen storage 

materials, such as: LiBH4·NH3,
[102,103] M(BH4)2·2NH3 (M = Mg2+, Ca2+, 

Zn2+),[104–106] Ti(BH4)3·3NH3,
[107] Al(BH4)3·nNH3,

[108,109] 

LiMg(BH4)3·2NH3,
[110,111] Li2Ti(BH4)5·5NH3 and 

Li2Al(BH4)5·6NH3.
[107,112] AMBs hydrogen decomposition properties 

are affected both by the nature of the metal cation and the number of 

coordinated ammonia molecules per cation. It was reported that 

LiBH4·NH3 and Ca(BH4)2·2NH3 mainly release ammonia rather than 

hydrogen under dynamic flow,[104,115] however cobalt-catalyzed 

thermolysis of LiBH4·NH3 releases 17.8 wt% of H2.
[116] The other 

representatives Mg(BH4)2·2NH3, Al(BH4)3·6NH3 produce only traces 

of ammonia,[104,109] while Zn(BH4)2·2NH3, Ti(BH4)3·3NH3 as well as 

Al(BH4)3·4NH3–LiBH4 composite, bimetallic LiMg(BH4)3·2NH3, 

Li2Ti(BH4)5·5NH3 and Li2Al(BH4)5·6NH3 release high purity 

hydrogen.[104,107,108] The detailed electronic structure of M(BH4)2·2NH3 

(M = Mg2+, Ca2+, Zn2+) reveals the highly ionic character of Ca2+ in 

Ca(BH4)2·2NH3 and partial covalence of Mg–NH3 and Zn–NH3 bonds 

which prevent the release of NH3 from the latter complexes.[114] 

Despite high hydrogen content in ammonia borane (about 

19.6 wt%) and acceptable stability upon transportation and storage, 
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NH3BH3 undergoes stepwise decomposition with 6.5 wt% hydrogen 

released below 112°C and 14.5 wt% near 200 °C, all accompanied by 

undesirable borazine and aminoborane NH2BH2.
[117,118] A considerable 

improvement is achieved by forming metal salts of ammonia borane. 

This improves the decomposition temperature to ~90 °C for 

(Li, Na)NH2BH3,
[120] giving way to a large family of materials. 

Ammonia borane metal-containing derivatives (MABs) M(NH2BH3)n 

(n = 1, M = Li+, Na+; n = 2, M = Ca2+, Mg2+),[120−123] including 

bimetallic Na[Li(NH2BH3)2], Na2[Mg(NH2BH3)4] and mixed-anion 

Li2(NH2BH3)(BH4)/LiNH2BH3 systems were obtained in recent 

years.[124−126] All listed MABs release hydrogen as well as toxic 

ammonia and NH2BH2 traces. For the mixed MAB-AB complex 

LiNH2BH3·NH3BH3, the hydrogen release was reported up to 14.0 wt% 

in a stepwise manner at 80 and 140 °C and neither borazine nor 

aminoborane were detected.[127] Metal borohydride-ammonia borane 

complexes M(BH4)n(NH3BH3)m (n = 1, m = 1 or 2 for M = Li+; n = m = 

2 for M = Ca2+, Mg2+) showed more facile hydrogen desorption with 

less ammonia evolution compared to pure ammonia borane and 

MABs.[128–131] Further improvements in the properties of these 

complexes were achieved by combining some AMBs with ammonia 

borane, such as Li2Al(BH4)5(NH3BH3)3·6NH3 and Mg(BH4)2·2NH3–

NH3BH3, where high purity hydrogen was released.[130,132] 

Compounds in Al−B−N−H systems are among the best in terms 

of hydrogen storage properties. However, the number of components 

involved in the mentioned systems goes increasingly high, leaving little 

(if any) chance for their reversibility. Here we report a new 

Al(BH4)3·NH3BH3 complex with 17.7 wt% of hydrogen, combining 
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only two hydrogen rich-molecules: Al(BH4)3 and NH3BH3. 

Remarkably, the complexation transforms aluminium borohydride into 

a stable solid, which undergoes a two-step thermal decomposition at 

temperatures below 100 °C. We report on the synthesis, crystal 

structures, Raman spectroscopic studies of the complex, as well as 

thermal analysis, 11B, 27Al NMR spectroscopy and volumetric studies 

of its decomposition and reversibility. 

2. Synthesis of Al(BH4)3·NH3BH3 

Caution! Al(BH4)3 is a highly pyrophoric liquid which 

explodes on contact with air. All manipulations were carried out in 

a nitrogen-filled dry box. The reactions were performed using 

commercially available reagents: AlCl3, NH3BH3 (both, from Sigma 

Aldrich with ≥95% purity) and LiBH4 (≥96% purity, Boss chemical 

industry CO, China). The Al(BH4)3·NH3BH3 complex was obtained by 

a two-step synthesis. The first step involves formation of Al(BH4)3 by 

a metathesis reaction: 

AlCl3 + 3LiBH4 → Al(BH4)3 + 3LiCl    (4.1) 

We used the same procedure described in details in Chapter III, 

which is a modification of an earlier one.[191] The final product is 

obtained by the following addition reaction: 

Al(BH4)3 + NH3BH3 → Al(BH4)3·NH3BH3        (4.2) 

For that purpose 1 ml of freshly obtained liquid Al(BH4)3 is 

syringe-injected into a bottle with 70 mg of NH3BH3 powder. The bottle 

is kept sealed during 72 hours until formation of big white crystals 

(Figure 4.1). Ball milling is expected to dramatically speed up the 
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reaction on a large scale, however this method is difficult to apply for 

safety reasons. The excess of liquid Al(BH4)3 was pumped off during 

30 seconds. One should avoid extended vacuum pumping of the excess 

Al(BH4)3, as it decreases the yield of the product. The obtained crystals 

self-ignite in contact with moisture and air. 

 

Figure 4.1 – White crystals of Al(BH4)3·NH3BH3. 

3. Experimental Details 

The detailed characterization of the complex is presented below. 

Firstly it is aimed for an identification of its different crystal forms, co-

existing at ambient conditions, secondly for the understanding of its 

complex dehydrogenation and thirdly for determining the nature of the 

Al-based intermediate species in the dehydrogenation process. 

X-ray single crystal analysis. The complex reveals two 

polymorphs. The crystals of α-Al(BH4)3·NH3BH3 were selected in the 

argon filled glove box and then measured at 100 K under nitrogen flow 

(Oxford cryosystems). For better completeness two crystals were 
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measured independently using a PILATUS 2M pixel detector and 

λ = 0.82103 Å synchrotron X-ray radiation at the SNBL beamline, 

ESRF (Grenoble, France). The recorded data was indexed in the 

monoclinic space group P21/c with a = 7.8585(2), b = 6.8647(1), 

c = 15.7136(8) Å, β = 96.429(4)° and integrated by CrysAlisPro,[241] 

the implemented absorption correction was applied. The data from the 

two crystals were integrated separately, scaled (not merged) in XPREP 

(Bruker) prior to structure solution and refinement. 

Data for ß-Al(BH4)3·NH3BH3 were collected on a MAR345 

image plate detector (Mo Kα radiation, Zr filter). The crystals of 

ß-Al(BH4)3·NH3BH3 were loaded into inert grease in an argon-filled 

glove box and then measured at 295 K under nitrogen flow (Oxford 

cryosystems). The recorded data was indexed in a monoclinic cell and 

integrated with CrysAlisPro, and the implemented absorption 

correction was applied.[241] The structure was solved in the space group 

Cc with a = 10.8196(8), b = 7.2809(4), c = 11.3260(9) Å, 

β = 107.69(1)°, with a pseudo-inversion symmetry for 83% of the 

structure, as determined by ADDSYM in Platon program. 

All single crystal data were solved by direct methods and refined 

by full matrix least-squares on F2 using SHELXL2014.[164] 

X-ray powder diffraction. For variable-temperature in situ X-

ray powder diffraction the crystals of α- and ß-Al(BH4)3·NH3BH3 were 

ground in an agate mortar inside the argon-filled glove box and the 

powder was introduced into 0.7 mm glass capillaries which were sealed 

with vacuum grease. The capillaries were steadily heated from 20 to 

100 °C by a nitrogen blower (Oxford Cryosystems) with 1 and 

0.2 °C/min heating rates. The 2D data images obtained at SNBL were 
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azimuthally integrated by the program Fit2D using LaB6 as 

calibrant.[179] The Rietveld method was used for the phase analysis and 

refinement with Fullprof Suite software.[169] 

NMR spectroscopy. NMR spectra were acquired in toluene-d8 

on a Bruker Avance DRX500 spectrometer operating at 500.1 MHz for 

1H (160.5 MHz for 11B and 130.3 MHz, for 27Al). Chemical shifts are 

reported with reference to SiMe4 (TMS) for 1H, BF3OEt2  for 11B and 

1.1M of Al(NO3)3 in D2O for 27Al. Spectra were measured on solutions 

of α-Al(BH4)3·NH3BH3 crystals, as well as on the starting products 

Al(BH4)3 and NH3BH3 dissolved in toluene-d8 for reference. After 

dissolving the crystals of α-Al(BH4)3·NH3BH3, the evolution of spectra 

with time was measured: fresh, after 2 and after 18 hours. Other samples 

studied by NMR were aged at room temperature for 2 months; heated 

under argon up to 70 °C and up to 100–110 °C in the sealed glass bottles 

using a mineral oil bath during 40 and 60 minutes, respectively. The 

residues were dissolved in toluene-d8 and measured at room 

temperature. 

The deconvolution processing for 27Al NMR spectra has been 

kindly performed by Prof. Michel Luhmer (ULB), including one level 

of zero-filling, exponential multiplication of the free induction decay 

with a line broadening (lb) factor of 1 Hz, Fourier transform and zero-

order phase correction; no correction of the initial decay, no first-order 

phase correction and no baseline correction were applied. The region 

between 8700 Hz (66.76 ppm) and 7700 Hz (59.09 ppm) was submitted 

to deconvolution analyses using a home-made program developed in 

Excel. The 27Al NMR signal was described as a first-order multiplet, 

constraining intensity ratios according to the Pascal’s triangle and 
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imposing Lorenztian lineshape and identical linewidth for all of the 

components. The local baseline was accounted for by a second order 

polynomial (three adjustable parameters). 

NMR data of the compounds recognized in the presented 

spectra. (B2H6) 1H NMR, δ: 3.89 (q, 1JB,H = 132 Hz, terminal 

hydrogens), −0.8 (1JB,H = 44 Hz, bridging hydrogens). 11B NMR, 

δ: 17.6−17.8 (tt, 1JB,H = 132). 11B {1H} NMR, δ: 17.6 (s). (Presumably 

Al(BH4)3·NH3BH3) 11B NMR, δ: −21.8 (quadruplet, 1JB,H = 92 Hz, 

BH3), −33.8 (quint, 1JB,H = 88 Hz, BH4
−).11B {1H} NMR, δ: −21.9 (s, 

BH3), −34.1 (s, BH4
−). 27Al NMR, δ: 60.3 (s, broad). 27Al {1H} NMR, 

δ: 60.3 (s). (Decomposition product, presumably Al(BH4)3·NHBH or 

its oligomer) 11B NMR, δ: −34.4 (quint, 1JB,H = 86 Hz, BH4
−).11B {1H} 

NMR, δ: −34.4 (s, BH4
−). 27Al NMR, δ: 63.0 [nonuplet (doublet of 

heptuplets], Jdoublet = 89.4 and Jheptuplet = 46.4 Hz, BH4
− and 1JAl,H). 

27Al {1H} NMR, δ: 63.0 (s). 

Raman spectroscopy. Raman spectra with 1064 nm excitation 

were recorded from 4000 to 100 cm−1 with a Bruker RFS 100/s 

FT-Raman spectrometer (I = 200 mW) at room temperature using a 

diode-pumped, air-cooled Nd: YAG laser as the excitation. The powder 

sample was placed in a 0.7 mm glass capillary under argon and sealed 

with vacuum grease. Variable-temperature Raman spectroscopy was 

performed using the same spectrometer and temperature control 

chamber under an argon flow. The spectra were collected in a stepwise 

manner every 5 °C from 30 to 125 °C. 

TGA, DSC and MS analyses. TGA and DSC analyses were 

performed on powder samples after preliminary X-ray powder 

diffraction analysis. The data were collected with a TGA/SDTA 851 
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Mettler and a DSC 821 Mettler devices with heating rates of 1 and 

5 °C/min from 25 to 200 °C. The samples for the TGA and DSC 

analyses were loaded in the argon-filled glove box into crucibles with 

caps and sealed into aluminium pans, respectively. The experiments 

were done under 10 ml/min nitrogen flow to prevent hydrolysis or 

oxidation. 

Mass spectrometry (MS) analysis of the residual gas was 

performed using a Hiden Analytical HPR-20 QMS sampling system. 

The samples (approximately 2 mg) were loaded into an Al2O3 crucible 

and heated from RT to 70 °C, fixing this temperature during 2 hours 

(1 °C/min for both) in an argon flow of 20 mL/min. The decomposition 

up to 200 °C was measured by a ThermoStarTM GSD 301T spectrometer 

coupled with simultaneous TGA/DTA 851 Mettler. The released gases 

were analyzed for hydrogen, ammonia, diborane, and borazine in both 

experiments. 

Volumetric study. Volumetric analysis was performed using a 

Hiden Isochema IMI-SHP analyzer. Four decomposition experiments 

of the Al(BH4)3·NH3BH3 complex were made with 50–60 mg of 

sample, into 5 bar back-pressure of hydrogen/helium, from 30 to 70 °C 

and from 30 to 100 °C at 1 °C/min heating rate. The gas release was 

calculated from the calibrated volumes of the system, excluding the 

volume of the glass wool (2.06 g/cm3). The re-hydrogenation of the 

samples decomposed at 70 and 100 °C was made at ~150 bar of 

hydrogen, by heating them to 70 and 100 °C and cooling down to 30 °C 

at 0.1 °C/min rate. 
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4. Results and Discussion 

4.1. Crystal Structure of Al(BH4)3·NH3BH3 

We have characterized two polymorphs of Al(BH4)3·NH3BH3: 

the low-temperature α- and the high-temperature ß-phase. The 

α-Al(BH4)3·NH3BH3 is observed only in freshly synthesized samples, 

while it slowly transforms at room temperature into the ß-phase. The 

structural details are given in the supporting information 

(Tables S2.1−2.5 in the supporting information). In both structures, 

aluminium atoms coordinate three BH4
– anions and one NH3BH3 

molecule, forming a mononuclear Al(BH4)3·NH3BH3 heteroleptic 

complex, like the one shown in Figure 4.2. 

 

Figure 4.2 – The isolated Al(BH4)3·NH3BH3 complex, where Al3+ cation coordinates 

three BH4
- anions and one NH3BH3 molecule. 

Weak dihydrogen bonds between BH4
– and –NH3 groups 

associate the complexes into a 3D structure. N–Hδ+∙∙∙Hδ-–B bonds are 

often bifurcated on the N–H side, thus the H∙∙∙H distances are rather 

long, exceeding 2.6 Å while N–Hδ+∙∙∙Hδ− angles are not very close to 

180° (see Figure 4.3 and Table 4.1). 
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a) 

 

b) 

Figure 4.3 – Association of molecular Al(BH4)3·NH3BH3 complexes by dihydrogen 

bonds in a) the α-phase; b) the ß-phase. 
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Table 4.1. Interatomic distances and angles between hydrogen atoms in 

α,ß-Al(BH4)3·NH3BH3 

H∙∙∙H bond H∙∙∙H distance, (Å) N∙∙∙H∙∙∙H angle, (°) 

α-Al(BH4)3·NH3BH3 

H3C∙∙∙H4C 2.27(1) 146.1(6) 

H3C∙∙∙H6C 2.53(1) 135.8(6) 

H3A∙∙∙H6C 2.59(1) 102.5(5) 

H3B∙∙∙H6D 2.56(2) 113.1(5) 

H3B∙∙∙H5C 2.28(1) 168.5(6) 

H3B∙∙∙H5B 2.48(1) 125.8(4) 

H3B∙∙∙H5D 2.60(2) 128.3(5) 

β-Al(BH4)3·NH3BH3 

H3C∙∙∙H5C 2.33(7) 129.7 

H3C∙∙∙H6C 2.47(5) 136.8 

H3A∙∙∙H6D 2.46(6) 142.0 

H3B∙∙∙H5D 2.45(5) 111.9 

H3B∙∙∙H4C 2.23(8) 143.8 

The Al3+ cation is linked via BH2 edges to three BH4
– anions and 

to one ammonia borane molecule. With respect to B-atoms, Al adopts 

a distorted tetrahedral coordination, and the AlH8 polyhedron has a 

shape of a snub disphenoid, as Mg in Mg(BH4)2 structures.[58,60] This 

contrasts with planar trigonal AlB3/trigonal prismatic AlH6 

coordination in both known polymorphs of Al(BH4)3.
[66,212] The Al∙∙∙B 

distances with BH4
– ions are in the narrow range of 2.21–2.23 Å and are 

slightly longer than 2.10–2.15 Å as determined by gas electron 

diffraction and in the solid α,β-Al(BH4)3.
[66,212] It is nearly identical to 

the 2.22–2.26 Å Al∙∙∙B distances in M[Al(BH4)4] and 

[Ph3MeP][Al(BH4)4] where the Al3+ cation is also coordinated to 8 

hydrogen atoms.[189] The interatomic Al∙∙∙B distances involving 

ammonia borane’s BH3 group are slightly longer (2.31 Å), than the 

distances to the BH4
– anions. They are still much shorter than metal-
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boron distances in other borohydride-NH3BH3 complexes, namely 

2.63–2.92 Å in (LiBH4)2·NH3BH3, LiBH4·NH3BH3 and 

Ca(BH4)2·2NH3BH3.
[128,129] The Al–H bond distances vary 

accordingly: they range from 1.65(8) to 1.81(1) Å where BH4
– is 

involved, similar to those in Al-based complex hydrides,[189] to 1.86(1)–

1.96(8) Å where the BH3 group is involved. The latter are much shorter 

than the 2.44 and 2.50 Å M–H bond distances in Ca(BH4)2·(NH3BH3)2 

and the 2.08-2.32 Å distances in (LiBH4)2·NH3BH3. 

4.2. Relative Stability of Al(BH4)3·NH3BH3 polymorphs 

The phase analysis by X-ray powder diffraction was performed 

prior to further characterization of the complex by other techniques. 

Both α- and ß-Al(BH4)3·NH3BH3 can be obtained as single phases using 

the synthesis procedures described above. Figure 4.4 shows the 

Rietveld refinement profiles for single phase samples of α- and 

ß-polymorphs. α-Al(BH4)3·NH3BH3 was found as a single phase only 

in freshly prepared samples. Within a few days at room temperature we 

found a mixture of the two phases. The crystals of the ß-phase cooled 

to 100 K did not turn into the α-phase, thus the α to ß transition is 

irreversible or at least slow. 
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Figure 4.4 – The experimental, calculated and difference diffractograms of α- and 

ß-Al(BH4)3·NH3BH3 single phases from X-ray powder diffraction (Mo Kα radiation). 

Variable-temperature in situ X-ray powder diffraction done on 

both polymorphs at 1 °C/min heating rate (Figure 4.5) reveals that the 

α-Al(BH4)3·NH3BH3 undergoes a first order phase transition to 

ß-Al(BH4)3·NH3BH3 at ~62 °C, the latter is melting and presumably 

decomposing at ~71 °C. Heating the single phase sample of the ß-phase 

with a 5-fold smaller rate of 0.2 °C/min reveals melting at the lower 

temperature of 52 °C (see Fig. S2.1 in the supporting information), thus 

confirming the simultaneous decomposition. 
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Figure 4.5 – Variable-temperature in situ synchrotron X-ray powder diffraction of α- 

and ß-Al(BH4)3·NH3BH3 (λ = 0.821693 Å from SNBL). The unit cell volume as a 

function of temperature is shown in the inset. 

4.3. Raman Spectroscopy 

The Raman spectrum of ß-Al(BH4)3·NH3BH3 is shown in 

Figure 4.6. Several stretching B–H modes can be recognized in the 

2080–2600 cm–1 range, similar to the vibrational modes of [Al(BH4)4]
– 

and of Al(BH4)3, where BH4
– is coordinated to Al3+ in a bidentate 

manner.[223] Three intense peaks at 2441, 2496 and 2530 cm–1 probably 

belong to the outward B–H (terminal) stretching modes from different 

BH4 and BH3 groups; the peaks from 2040 to 2300 cm–1 correspond to 

inward B–H (bridging with Al) stretching modes. The vibrations 

between 950–1650 cm–1 can be attributed to B–H bending, and the 
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peaks near 490 cm–1 likely correspond to an Al∙∙∙H–B stretching band, 

as observed for [Al(BH4)4]
– anion and for Al(BH4)3.

[223,242] The N–H 

stretching region is represented by two intense peaks at 3240 and 

3299 cm–1 which are slightly shifted to lower frequencies with respect 

to the symmetric (3250 cm–1) and antisymmetric (3316 cm–1) stretches 

in NH3BH3.
[243] Literature reports the B–N vibrations at around 800 

cm-1 and we can surmise that the vibration at 858 cm–1 belongs to the 

B–N stretch in the coordinated NH3BH3.
[243] 

 

Figure 4.6 – Raman spectrum of ß-Al(BH4)3·NH3BH3. 

4.4. Thermal Analysis: Two Decomposition Steps 

Several thermal effects are observed on heating the samples 

from 25 to 200 °C (Figure 4.7a). The first endothermic (~39 kJ/mol) 

peak near 46–52 °C (DSC) corresponds to the melting/decomposition 

of ß-Al(BH4)3·NH3BH3. The next endothermic (~65 kJ/mol) peak near 

93 °C is assigned to the second decomposition step. TGA also displays 
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two decomposition steps: the first starts at ~60 °C and finishes at 

~80 °C, the second is centered around 90 °C. The bottom part of the 

Figure 4.7b shows that the higher heating rate increases the 

decomposition temperature from ~60 °C for 1 °C/min to ~77 °C for 

5 °C/min due to the kinetic effect. This behavior is also similar to 

ammonia borane, which showed different decomposition reaction 

pathways depending on the heating rate.[117,118] 

We performed additional experiments aiming to separate the 

two decomposition steps, holding samples at the fixed temperature of 

70 °C and 80 °C. Remarkably, the mass loss asymptotically reached 

very different values of 5 and 25 wt%, respectively, see Figure 4.7b. 

The decomposition step at 70 °C with a ~5 wt% loss looks very 

interesting, as it suggests that potentially pure hydrogen is released from 

the sample (see the volumetric studies for more details). The 

decomposition of the other borohydride–ammonia borane complexes, 

M(BH4)n(NH3BH3)m (n = 1, m = 1, 2 for M = Li+; n = m = 2 for 

M = Ca2+, Mg2+), yields significant amounts of ammonia, diborane and 

borazine, besides hydrogen, on the first decomposition step.[128−131] 

While these compounds undergo complete decomposition involving 

both borohydride and ammonia borane moieties, the thermal analysis 

of the title complex suggests hydrogen release from ammonia borane in 

the first step, followed by a diborane release (theoretical 27 wt% loss) 

in the second step. The volumetric and mass spectrometry studies help 

to verify this hypothesis. 
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Figure 4.7 – Thermal analysis of Al(BH4)3·NH3BH3 complex: a) overlap of the TGA 

and DSC data collected at 1 °C/min rate; b) weight loss as a function of time, at 

constant temperatures of 70 and 80 °C (top graph), and as a function of the heating 

rate (bottom); c) MS curves of evolving gases measured in 30–70 °C temperature 

range. The signals of ammonia, diborane and borazine are close to zero level, which 

confirms the high purity of hydrogen release at 70 °C. 
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Figure 4.8 – The TGA and MS measurements of Al(BH4)3·NH3BH3 upon heating to 

200 °C (1 °C/min heating). The hydrogen desorption starts around 60 °C, which 

corresponds to the first decomposition step, and diborane evolution is observed only 

after the start of the second decomposition step. It is possible that there is also the 

third step around 105 °C which was not easily visible by TGA, but two maximums in 

MS suggest its presence. 

The MS determination of the released gases was made in the 

same manner as the TGA: the first decomposition step is characterized 

isothermally at 70 °C and the complete decomposition at temperatures 

above 100 °C. Remarkably, desorption at 70 °C showed exclusively the 

release of hydrogen, while the possible impurities of ammonia, 

diborane and borazine were not detected, see Figure 4.7c. Further 

heating provokes release of diborane, which was detected around the 

start of the second decomposition step at 85 °C, see Figure 4.8. 

Variable-temperature in situ Raman spectroscopy also confirmed 

decomposition of the complex around 75 °C, see Figure S2.2. 

Unfortunately, the detailed characterization of the decomposition 

products of the first and second steps was not possible from Raman 
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spectra. Visually, the residue of the fully decomposed (at 150 °C) 

samples resembles foamed polymer-like products. 

4.5. Volumetric Study of the Decomposition and a Reversibility 

Test 

Taking into account the information from TGA and DSC 

analysis, we performed two volumetric measurements at different 

temperatures: 70 °C, which corresponds to the first decomposition step, 

and 100 °C, which relates to the second decomposition step. 

Samples were steadily heated at 1 °C/min rate, as in the TGA 

experiment. Decomposition at 70 °C produces ~1.15 mmol of gas from 

0.54 mmol of the starting complex (Figure 4.9), i.e. 2.15 mol of gas per 

formula unit (f. u.). To verify this result, two additional volumetric 

experiments were done for the first step of the decomposition in He and 

H2 backpressure at 70 °C, yielding 1.93 and 2.10 mol of gas per f. u. 

The second decomposition step at 100 °C shows the release of 

~2.81 mmol of gas per f. u. Combined with the TGA data we infer that 

the first decomposition step gives ~2 moles of hydrogen per 

Al(BH4)3·NH3BH3 unit (~5 wt% mass loss), and the second step gives 

almost 1 mole of diborane (close to ~25 wt% mass loss). 



 152 

 

Figure 4.9 – Volumetric analysis of Al(BH4)3·NH3BH3 decomposition at 70 °C, 

0.54 mmol of the complex and at 100 °C, 0.58 mmol of the complex, at 1 °C/min 

heating rate. 

Our attempts to rehydrogenate at 150 bar the samples 

decomposed at 70 and 100 °C were not successful: the H2 pressure 

returns exactly to the same value after very slow cooling (see 

Figures S2.3). 

4.6. NMR Spectroscopy Study of Al(BH4)3·NH3BH3 and Its 

Decomposition 

Multinuclei 1H, 11B and 27Al NMR spectra were measured on 

Al(BH4)3 prior to being used in the synthesis of Al(BH4)3·NH3BH3 and 

were found to be in good agreement with the literature.[244] 

Interpretation of the 1H NMR spectra being difficult due to the presence 

of very broad signals around 0.5 ppm (Figure S2.4), that is why herein 

we focused our attention on the interpretation of the 11B and 27Al NMR 

spectra and all the 1H NMR spectra will be shown in the supporting 
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information (Figures S2.4–S2.6). The main 11B peak for Al(BH4)3 is 

found at –36.3 ppm with negligible amount of diborane, due to slow 

Al(BH4)3 degradation, present at 17.8 ppm (not even visible in Figure 

4.10b). The main 27Al peak for Al(BH4)3 is at 99.7 ppm, and an 

unknown impurity observed at 78.2 ppm (Figures 4.10a and 4.10b). 

Broad signals in the spectra originate from the solid Al-containing 

material in the probe, and from the 11B in the borosilicate NMR tubes, 

as proved by blank measurements, and can be removed by using a 

backward linear prediction during data processing. 

Samples of Al(BH4)3·NH3BH3 stored in a glovebox at 25–30 °C 

over two weeks turned into a viscous mass, prompting us to study by 

NMR spectroscopy the decomposition products obtained at different 

temperatures. In order to observe the changes of Al(BH4)3·NH3BH3 we 

performed experiments on: 1) freshly dissolved sample in toluene-d8; 

2) the same sample in solution kept at room temperature for 2 

(Figure S2.7 in supporting information) and 18 hours; 3) samples 

heated to 70 and 100 °C, as in the volumetric study, and then dissolved 

in toluene-d8. 
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a) 

 

b) 

Figure 4.10 – a) 27Al NMR and b) 11B NMR spectra of Al(BH4)3 in toluene-d8. 

Al(BH4)3·NH3BH3 does not decompose into Al(BH4)3, as no 

signal at 99.7 ppm in the 27Al NMR spectrum appears, instead, we 

observe a signal at 60.3 ppm which is not present anymore after 18h. In 

the 11B NMR spectrum (Figure 4.11b) we observe a sextuplet, 

consisting of two overlapped quintets at –33.8 and –34.4 ppm, and a 

quadruplet at −21.9 ppm (Figure 4.11c). The presence of a small 

amount of diborane B2H6 was observed as a triplet of triplets at 

17.5 ppm in the 11B NMR spectrum.[245] It is likely the result of partial 

decomposition of Al(BH4)3·NH3BH3 into B2H6, for instance via the 

following reaction: 
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nAl(BH4)3·NH3BH3 → [Al(BH4)2(NH2)]n + n/2H2 + n/2B2H6    (4.3) 

 
a) 

 
b) 

 
c) 

Figure 4.11 – a) 27Al NMR, b) 11B and c) 11B{H} NMR spectra of freshly dissolved 

Al(BH4)3·NH3BH3 in toluene-d8. 
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There is no diborane forming up to 70 °C in the absence of the 

solvent, see the MS data in Figure 4.7. However, the intensity of the 

diborane peak increases with time in the toluene solution. 

In contrast to the broad signal of the starting compound at 

60.3 ppm which disappears with time, the intensity of a nonuplet at 

63.0 ppm increases in the 27Al NMR spectrum (Figures 4.11a and 

4.12a). In the 11B NMR spectrum a quintet at –34.4 ppm, corresponding 

to the BH4
– anion, increasingly dominates the spectrum over the 

disappearing signal at –33.8 ppm present at 2 and 18 hours (Figures 

4.11b and 4.12b). 

  
a) b) 

  
c) d) 

Figure 4.12 – a) 27Al and b) 27Al{H} NMR spectra of Al(BH4)3·NH3BH3 in toluene-d8 

after 18 hours; c) 11B  and d) 11B{H} NMR spectra of Al(BH4)3·NH3BH3 in toluene-

d8 after 18 hours. 

In the sample decomposed at ~70 °C, the same main NMR 

signals, as in the 18h-aged sample spectrum, were observed at 63 and 

−34.5 ppm in the 27Al and 11B NMR spectra, respectively (compare 
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Figures 4.12 and 4.13). The intensities of the several other minor signals 

at 82.0, 77.6 and 74.4 ppm changed in the 27Al spectrum. After 100 °C 

we observe (Figure 4.14) only a single 27Al NMR signal at 81.9 ppm, 

which probably has the same nature as the one at 82.0 ppm heated to 

70 °C (Fig. 4.13a). 

  
a) b) 

  
c) d) 

Figure 4.13 – a) 27Al and b) 27Al{H} NMR spectra of Al(BH4)3·NH3BH3 in toluene 

non-deuterated after heating to 70 °C; c) 11B and d) 11B{H} NMR spectra of 

Al(BH4)3·NH3BH3 in toluene non-deuterated after heating to 70 °C. 

11B NMR signals at –35.0 ppm are present in all the samples as 

well as an unknown signal in the 27Al spectrum and are suspected to 

belong to AlBxHy products, as well as the 11B signals at –36.0 ppm with 

27Al 81.9 and 82.0 ppm. They can be the result of B2H6 reaction with 

the starting compound or/and forming products previously described 

for Al(BH4)3 with B2H6, giving the AlB4H11 at 100 °C.[245] The 

assignment of the remaining weak 11B signals is not certain, but they 

likely belong to polyhydroboranes. The presence of compounds such as 
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DADB [BH2(NH3)2]BH4 is excluded because no characteristic BH2 

signal  at around –15 ppm 11B spectrum was detected in our 

experiment.[246] 

  

a) b) 

  

c) d) 

Figure 4.14 – a) 27Al and b) 27Al{H} NMR spectra of Al(BH4)3·NH3BH3 in toluene-d8 

after heating to 100 °C; c) 11B  and d) 11B{H} NMR spectra of Al(BH4)3·NH3BH3 in 

toluene toluene-d8 after heating to 100 °C. 

  

a) b) 

Figure 4.15 – a) 27Al and b) 11B{H} NMR spectra of Al(BH4)3·NH3BH3 in toluene-d8 

after degradation at room temperature during 2 months. 
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Notably, the fresh Al(BH4)3·NH3BH3 sample kept in toluene-d8 

solution at room temperature; the sample aged in the inert atmosphere 

at ambient temperature and then dissolved in toluene-d8  (Figure 4.15); 

and the sample heated to 70 °C and then dissolved in toluene-d8 all give 

the same spectral features. No insoluble products were formed upon the 

dissolution in toluene. Therefore, it is likely the same decomposition 

pathway is taking place in toluene solutions and in the absence of any 

solvent. This means we can interpret by NMR the decomposition 

intermediate obtained in TGA/DSC and volumetric experiments, 

responsible for the release of 2 moles of H2. Its fingerprint is the 

nonuplet at 63.0 ppm in the 27Al NMR spectrum, with an intensity 

distribution of 14:22:40:64:70:64:40:22:14. With proton decoupling, 

this nonuplet at 63.0 ppm becomes a singlet (Figures 4.12a and 4.12b, 

4.13a and 4.13b), implying the splitting of this peak into nine lines is 

indeed due to protons coupled to aluminium. The experimental signal 

exhibits nine maxima or shoulders but, as can be seen in Figure 4.16a, 

it is not properly described by a first-order nonuplet (relative intensity 

ratios of 1:8:28:56:70:56:28:8:1; four adjustable parameters: chemical 

shift, linewidth, overall intensity, and one scalar coupling constant). In 

contrast, considering a doublet of heptuplets as model yields excellent 

agreement (Figure 4.16b; relative intensity ratios of 

{1:6:15:20:15:6:1}:{1:6:15:20:15:6:1}; five adjustable parameters 

including the overall intensity). The relevant best-fit parameters are 

δ = 62.954 ppm, Δν½ = 40.0 Hz (full linewidth at half-height corrected 

for lb), scalar coupling constant: Jdoublet = 89.4 Hz, Jheptuplet = 46.4 Hz. 

Our observed J value of 46.4 Hz is similar to that reported for 1JAl,H of 

44 Hz in Al(BH4)3.
[247] 
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Figure 4.16 – Best-fit of a) a first-order nonuplet and b) a first-order doublet of 

heptuplets to the 27Al NMR signal observed at 63.0 ppm. 

4.7. Decomposition Intermediate 

The NMR study shows that the first step of the decomposition 

of Al(BH4)3·NH3BH3 yields a product where an Al ion is bound to three 

borohydride anions with edges and further bound to one hydrogen, most 

likely a part of an “HN–HB” molecule or its oligomers, as shown in the 

scheme below: 
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This evidence ties in very well with the results of our 

volumetric/TGA data suggesting the loss of 2 H2 molecules. The 

6H + 1H coordination of Al in the decomposition intermediate of 

Al(BH4)3·NH3BH3 is the first evidenced by the deconvolution analysis 

of the 27Al NMR spectrum. The molecular structure of the other 

aluminium borohydride complexes had been previously assigned on the 

basis of the supposed reaction equilibria in solutions and the known 

solid state structures.[189,248] In all cases the BH4
– anions are coordinated 

via the BH2 edges. Broad singlets at 49.5 ppm in the spectra of 

[(Ph3P)2N][Al(BH4)4] in CD2Cl2 correspond to 8 equivalent H around 

Al,[189] and at 99.7 ppm in the spectrum of Al(BH4)3 correspond to 6 

equivalent H around Al; both are significantly different from the 

63.0 ppm shift we observed. The complex with the closest chemical 

shift is [AlH(BH4)2]n with a signal at 64.7 ppm: it contains 4H from the 

BH4
− groups and 2H bridging Al atoms.[244] 
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5. Perspectives of Tuning Properties of AlX3·L Complexes, 

X = Cl–, BH4
– and L = CH3NH2BH3, (CH2NH2BH3)2 

5.1. Motivation 

The improvement of hydrogen storage properties of AB 

complexed with Al(BH4)3 moved our attention to new possible 

combinations of other Al salts with different BH3-containing ligands, 

like methylamine borane CH3NH2BH3 (MeAB) and ethylenediamine-

bisborane (CH2NH2BH3)2 (EDBB). The determination of the influence 

of both the anion and the ligand on the thermal decomposition 

properties of these starting materials is very important for the control of 

the hydrogen purity and thermodynamics of the decomposition 

processes.  

The AB derivatives of MeAB and EDBB have also been 

previously investigated as potential hydrogen storage compounds. 

However, on their own they have several disadvantages for potential 

hydrogen storage. In particular, MeAB exhibits a high degree of 

volatility upon thermal treatment,[249] and EDBB exhibits thermal 

stability higher than that of its parent counterparts, AB and MeAB.[250] 

That is why we tried to obtain and characterize their complexes with 

AlX3 (X = Cl−, BH4
−) salts, expecting the analogy with the Al(BH4)3 

complex with AB. The substitution of one hydrogen in NH3 group by 

alkyl group may also prevent the second decomposition step of 

Al(BH4)3·NH3BH3. 

We obtained three new compounds. The first is 

Al(BH4)3·CH3NH2BH3, which is indeed a close analogy of 

Al(BH4)3·NH3BH3 adopting a molecular structure. The second 
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compound, [Al(CH3NH2BH3)2Cl2][AlCl4], is an autoionised isomer of  

the expected AlCl3·CH3NH2BH3. The last as yet compound, 

[Al(NH2CH2CH2NH2)(BH4)2][Al(BH4)4], is a result of unwanted 

borane splitting from the EDBB compex. The obtained compounds, 

especially the first two, are of interest not only in terms of hydrogen 

storage, but might be potentially studied for catalytic activity of Al 

atoms in the cationic form. These results were obtained quite recently, 

and only their crystal structures from X-ray single crystal diffraction 

were characterized. Further analysis of thermal decomposition will be 

done soon in collaboration with Aarhus University. 

5.2. Synthesis of L (L = CH3NH2BH3, (CH2NH2BH3)2) and of 

AlX3·L Complexes (X = Cl–, BH4
–) 

The syntheses of MeAB and EDBB. Powders of CH3NH2BH3 

and (CH2NH2BH3)2 were obtained according to the simplified 

procedures described in the literature.[250,251] These syntheses were 

performed using commercially available methylamine hydrochloride, 

ethylene diamine dihydrochloride (Sigma-Aldrich, 98 %) and NaBH4 

(Alfa Aesar, 97 %). The 37 mmol of NaBH4 and stoichiometric 

amounts of methylamine hydrochloride or ethylene diamine 

dihydrochloride have been dissolved in 125 ml of THF and were stirred 

during ~24 h at room temperature, according to the reactions: 

CH3NH2·HCl + NaBH4 → CH3NH2BH3 + NaCl + H2 (4.3) 

(CH2NH2)2·2HCl + 2NaBH4 → (CH2NH2BH3)2 + 2NaCl + 2H2 

        (4.4) 
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The obtained mixtures were filtrated on air to flasks and the 

filtrate was pumped using rotary evaporator. The remaining viscous 

liquid was washed with hexane to precipitate crystals of methylamine 

borane and ethylenediamine bis-borane. The obtained white powders 

were dried on air and dissolved in D2O for multinuclei 1H, 13C and 11B 

NMR spectroscopy measurements, which confirmed the desired 

compounds. 

The syntheses of [Al(CH3NH2BH3)2Cl2][AlCl4]. The obtained 

crystals of CH3NH2BH3 were mixed with powder of AlCl3 (Sigma-

Aldrich, 95 %) in an inert glove box. The mixture readily melts/reacts 

at room temperature giving a slurry, which can be crystallized at room 

temperature or in the fridge (–35 °C). Single crystal X-ray analysis 

reveals formation of [Al(CH3NH2BH3)2Cl2][AlCl4], according to the 

possible autoionized reaction: 

2AlCl3 + 2CH3NH2BH3 → [Al(CH3NH2BH3)2Cl2][AlCl4] (4.5) 

However, this is not the only crystalline phase, which was 

observed from the X-ray powder diffraction. Further analysis is 

required to determine the possible byproduct(s) or polymorph(s) of 

reaction (4.5). 

The interaction of AlCl3 with (CH2NH2BH3)2. In contrast to 

the spontaneous reaction of AlCl3 with MeAB, the same interaction 

with (CH2NH2BH3)2 in 1 : 1 or 2 : 1 molar ratio does not yield new 

products neither at room temperature, nor upon heating to 70 and 85 °C. 

The syntheses of Al(BH4)3·CH3NH2BH3. Reaction conditions 

to obtain Al(BH4)3·CH3NH2BH3 are similar to the preparation of 

Al(BH4)3·NH3BH3. The amount of the reagents can be scaled up to 

100–200 mg of CH3NH2BH3 and 2–3 ml of Al(BH4)3, here the X-ray 
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powder diffraction analysis confirms only a single phase of 

Al(BH4)3·NH3BH3. 

The interaction of Al(BH4)3 with (CH2NH2BH3)2 and the 

formation of [Al(NH2CH2CH2NH2)(BH4)2][Al(BH4)4]. In order to 

observe the interaction of Al(BH4)3 with EDBB, we used the same 

reaction procedure, as for the Al(BH4)3·NH3BH3 and 

Al(BH4)3·CH3NH2BH3 syntheses. During the search for a single crystal, 

the presence of two types of crystal shapes was observed: flakes (major) 

and needles (minor). The determination of the needle-like single 

crystals confirmed the formation of 

[Al(NH2CH2CH2NH2)(BH4)2][Al(BH4)4] complex, probably by the 

following reaction: 

2Al(BH4)3 + (CH2NH2BH3)2 → 

[Al(NH2CH2CH2NH2)(BH4)2][Al(BH4)4] + B2H6  (4.6) 

Unfortunately, the X-ray powder diffraction analysis of the 

sample reveals the major presence of the starting EDBB, thus the 

fraction of [Al(NH2CH2CH2NH2)(BH4)2][Al(BH4)4] is negligible. On 

the other hand, splitting of diborane puts the chemistry of this system 

far away from that of Al(BH4)3·NH3BH3. This side reaction will likely 

prevent us from obtaining a complex with EDBB. 

5.3. Crystal Structures of AlX3·Ln Complexes (X = Cl–, BH4
–) 

and of L (L = CH3NH2BH3, (CH2NH2BH3)2)  

The complex [Al(CH3NH2BH3)2Cl2][AlCl4] crystallizes in the 

Pbca space group (a = 12.5826(5), b = 12.6510(5), c = 20.4039(8) Å), 

see the details in Tables S2.5–S2.7. The [AlCl2(CH3NH2BH3)2]
+ cation 
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adopts a distorted tetrahedral coordination with ∠B∙∙∙Al∙∙∙B of 104.1(2)° 

and ∠Cl∙∙∙Al∙∙∙Cl of 108.5(6)°, compared to the [AlCl4]
– anion with 

angles close to the ideal tetrahedral, ∠Cl∙∙∙Al∙∙∙Cl 107.9(7)–112.1(7)°. 

The distribution from 96.7(1), 99.4(1) to 124.3(1), 125.3(1)° for the 

∠Cl∙∙∙Al∙∙∙B angles is more similar to ∠B∙∙∙Al∙∙∙B in homoleptic 

M[Al(BH4)4] (M = Li+, Na+, K+, NH4
+, Rb+, Cs+) and 

[Ph3MeP][Al(BH4)4],
[189] than to the nearly ideal tetrahedral shape of 

the heleroleptic complex anion in Na[Al(BH4)2Cl2].
[77] 

 

Figure 4.17 – The representation of [Al(CH3NH2BH3)2Cl2]+ cation with anisotropic 

displacement ellipsoids and isotropic spheres (hydrogen). Color code: Al–red, B–

olive, Cl–green, N-blue, C–teal, H–grey. 

The Al∙∙∙Cl separations in the [Al(CH3NH2BH3)2Cl2]
+ cation of 

2.11(1) and 2.14(1) Å are in a good agreement with the 2.1–2.3 Å from 

other known cationic complexes of Al, see Figure 4.17.[252] 

CH3NH2BH3 ligand coordinates to Al via bridging hydrogens of the 

BH3 groups with Al∙∙∙B and Al−H distances of 2.24(5)–2.26(4) and 

1.8(2)–1.9(2) Å, respectively. The same coordination was found in the 

molecular Al(BH4)3·NH3BH3 complex, where corresponding distances 

of 2.31 and 1.65(8)-1.81(1) Å are quite similar, see the section 4.1. The 

C∙∙∙N, B∙∙∙N distances of 1.48(5) and 1.57(5) Å are almost identical to 

the non-complexed CH3NH2BH3.
[249,253] The C−H, N−H and B−H 
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apparent bond distances of 0.98, 0.91 and 1.16 Å in 

[AlCl2(CH3NH2BH3)2]
+ cation are also quite similar to those of 0.96, 

0.88 and 1.13 Å, reported for the neutral molecule of 

CH3NH2BH3.
[249,253] 

Al(BH4)3·CH3NH2BH3 crystallizes in the triclinic space group 

P-1 (a = 6.2764(3), b = 7.9566(5), c = 10.3058(8) Å; α = 70.28(1), 

β = 74.74(1), γ = 86.04(1)°), see the details in Tables S2.9 and S2.10. 

In contrast to [AlCl2(CH3NH2BH3)2][AlCl4], it adopts a molecular 

structure and resembles the heteroleptic complex of Al(BH4)3·NH3BH3. 

Aluminum atoms coordinate three BH4
– anions and one CH3NH2BH3 

molecule, forming a mononuclear Al(BH4)3·CH3NH2BH3 complex, like 

the one shown in Figure 4.18. 

 

Figure 4.18 – The isolated Al(BH4)3·CH3NH2BH3 complex, where Al3+ cation 

coordinates three BH4
- anions and one CH3NH2BH3 molecule. Color code: Al–red, 

B–olive, N-blue, C–teal, H–grey. 

Al3+ cation is linked via BH2 edges to three BH4
– anions and to 

one methylamine borane molecule. It adopts a distorted tetrahedral 

coordination, and the AlH8 polyhedron has the shape of a snub 

disphenoid, similar to Al in Al(BH4)3·NH3BH3 or Mg in Mg(BH4)2 

structures.[58,60] The Al∙∙∙B distances with the BH4
– ions are in the 
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narrow range of 2.22–2.24 Å and are similar to 2.21−2.23 Å as 

determined in α,β-Al(BH4)3·NH3BH3 polymorphs. It is nearly identical 

to the Al∙∙∙B distances of 2.22–2.26 Å in K[Al(BH4)4] and 

[Ph3MeP][Al(BH4)4], where the Al3+ cation is also coordinated to 8 

hydrogen atoms.[189] The interatomic Al∙∙∙B contact involving the 

methylamine borane’s BH3 group is slightly longer (2.34 Å), than the 

distances to the BH4
– anions, fully consistent with the same elongation 

in Al(BH4)3·NH3BH3 (2.31 Å). However, they remain much shorter 

than the metal-boron distances in the known metal borohydride-

NH3BH3 complexes, namely 2.63−2.92 Å in (LiBH4)2·NH3BH3, 

LiBH4·NH3BH3 and Ca(BH4)2·2NH3BH3.
[128,129] The Al−H bond 

distances vary accordingly: they range from 1.76(2) to 1.80(2) Å for the 

BH4
– groups, similar to those in Al-based complex hydrides, to 1.89(1) 

and 1.96(1) Å where the −BH3 group is involved. The latter are much 

shorter than the 2.44 and 2.50 Å M−H bond distances in 

Ca(BH4)2·(NH3BH3)2 and the 2.08−2.32 Å distances in 

(LiBH4)2·NH3BH3. 

 

Figure 4.19 – The Al(BH4)3·CH3NH2BH3 molecules linked via dihydrogen bonds, 

depicted by violet dashed lines. 
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The molecules of Al(BH4)3·CH3NH2BH3 are linked via simple 

and bifurcated N–Hδ+∙∙∙Hδ-–B dihydrogen bonds with H∙∙∙H distances of 

2.10–2.42 Å and ∠H∙∙∙H–N angles of 130–160°, see Figure 4.19. These 

values are slightly below the sum of the van der Waals distance of 

2.4 Å, and are in an agreement with directionality criterion accepted for 

dihydrogen bonds.[254] 

[Al(NH2CH2CH2NH2)(BH4)2][Al(BH4)4] crystalizes in the 

monoclinic space group P21/c (a = 8.4168(5), b = 12.0021(7), 

c = 16.2933(12) Å; β=101.89(1)°), see the details in Tables S2.11 and 

S2.12. It is the first autoionized Al-borohydride complex known so far. 

Both ions adopt a distorted tetrahedral coordination for Al atoms. The 

∠N∙∙∙Al∙∙∙N of 86.5(2)° is similar the other known bidentate chelates of 

Al.[252] The ∠B∙∙∙Al∙∙∙B of 118.1(3)° in the cation is close to tetrahedral, 

while the the angles around Al in the [Al(BH4)4]
– anion range from 

98.9(3) to 135.4(3)°, typical for a slightly flattened tetrahedron. This 

geometry is similar in aluminum borohydrides of alkali-metals 

M[Al(BH4)4] (M = Li+, Na+, K+, NH4
+, Rb+, Cs+) and in 

[Ph3MeP][Al(BH4)4].
[189] 

 

Figure 4.20 – Geometry of [Al(NH2CH2CH2NH2)(BH4)2]+ cation in the solid state. 

Color code: Al–red, B–olive, N-blue, C–teal, H–grey. 
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[Al(NH2CH2CH2NH2)(BH4)2]
+ is a chelate cation, where the Al 

atom is linked via N atoms to the same ethylene diamine molecule, and 

via BH2 edges to two BH4
– groups, see Figure 4.20. Remarkably, the 

Al∙∙∙B distances of 2.16(7) and 2.17(8) Å in the cation are slightly 

shorter, compared to the separations of 2.23(8)−2.27(8) Å in 

[Al(BH4)4]
–. The Al∙∙∙N distances of 1.95(4) and 1.96(4) Å are typical 

(1.9−2.0 Å) for other Al-containing cations.[252] The Al−H distances of 

1.72(4)-1.77(5) Å in the cation and 1.79(4)−1.89(4) Å in the anion are 

correlated with the Al∙∙∙B distances. The structure also has both 

bifurcated and simple dihydrogen N–Hδ+∙∙∙Hδ-–B bonds with H∙∙∙H 

distances of 2.0–2.4 Å and ∠H∙∙∙H–N angles of 136–160°. 

6. Conclusions 

The thermal decomposition of the new complex, 

Al(BH4)3·NH3BH3, showed several striking features as compared with 

the previously investigated systems involving ammonia borane. We 

found that the decomposition of the complex in toluene solutions and 

upon heating the solid gives the same intermediate, releasing 2 

equivalents of hydrogen at 70 °C and then diborane at 100 °C. The first 

decomposition step occurs at considerably lower temperature than for 

the pure NH3BH3, desorbing the first equivalent at 120 °C and the 

second at 150 °C.[255] To our knowledge, this is the first metal 

borohydride - ammonia borane complex, resulting in pure hydrogen 

release. The other systems produce significant amounts of ammonia, 

diborane and borazine already on the first decomposition step.[128−131] 

Also, we do not observe polyaminoboranes (PAB) and polyborazylene, 
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which form during liquid state pyrolysis of NH3BH3 in ionic liquids and 

in the presence of strong Lewis and Brønsted acids. They would result 

in 11B signals in the –10 to for –13 ppm for BH2
+, near –5 ppm for N–

BH2–N and near –22 ppm from BH3 polymer terminating groups for 

PAB and 26 ppm for polyborazylene.[256,257] 

The system of Al(BH4)3·NH3BH3 is also encouraging in terms 

of a possible direct rehydrogenation of ammonia borane, which is 

currently regenerated successfully only via multistep chemical 

cycles.[133,134] The striking property of the title system is the 

endothermic dehydrogenation on the first decomposition step 

(39 kJ/mol, including melting), compared to the exothermic one for 

ammonia borane (-22 kJ/mol on the first decomposition step, including 

melting).[117] Despite our unsuccessful attempts to directly 

rehydrogenate the intermediate, a catalyzed reaction may be possible. 

The absence of complicated mixtures on the dehydrogenation may also 

allow for a viable chemical recycling of ammonia borane. 

The favorable decomposition pathway producing pure hydrogen 

and the decomposition temperature make this system an attractive 

model for efficient hydrogen elimination from ammonia borane. Taking 

into account all our data, we conclude that the decomposition of the 

starting complex into the Al-based intermediate can be assigned to 

Al(BH4)3 as a unique mild Lewis acid which coordinates both the 

starting and the dehydrogenated BHn groups (n = 1, 3). This urges to 

use other Al-based Lewis acids, less challenging with respect to 

stability and safety than aluminum borohydride.  

Our recent investigations proved the possibility to obtain the 

other derived complexes, such as Al(BH4)3·CH3NH2BH3, which adopts 
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a molecular structure, similar to the Al(BH4)3·NH3BH3, and the unique 

autoionized complex [Al(CH3NH2BH3)2Cl2][AlCl4], being an isomer of 

AlCl3·CH3NH2BH3. Further analysis of these compounds will help to 

understand the possibility to improve the hydrogen storage properties 

of AB, MeAB and EDBB by complexation with AlX3 salts. 
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Chapter V – A Composite of NaAlH4 and Ammonia 

Borane3 

 

  

                                                 
3 This chapter is based on the following publication: 

Dovgaliuk, I.; Jepsen, L. H.; Safin, D. A.; Łodziana, Z.; Dyadkin, V.; Jensen, T. R.; 

Devillers, M.; Filinchuk, Y. A composite of complex and chemical hydrides yields 

the first Al-based amidoborane with improved hydrogen storage properties, Chem. 

Eur. J. 2015, 21, 14562–14570. 
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1. Introduction 

Alkali metal alanates, M(AlH4)n, have shown remarkable 

hydrogen storage properties. For example, NaAlH4, the most 

intensively studied member of this class of compounds, has a reversible 

hydrogen capacity of 5.6 wt%.[27] However, high de- and 

rehydrogenation temperatures for alanates (e.g. 210–220 °C for 

NaAlH4) as well as moderate hydrogen content have directed attention 

to lighter complex hydrides such as borohydrides, M(BH4)n.
[21,36] At the 

same time, reversible systems based on borohydrides were developed 

only in the form of reactive hydride composites (RHCs), containing 

complex and binary metal hydrides. In particular, the reversible system, 

comprising LiBH4 and MgH2, doped with TiCl3 to catalyze 

rehydrogenation, yields 8–10 wt% of hydrogen according to the 

following reaction:[99,258] 

MgH2 + 2LiBH4 ⇌ MgB2 + 2LiH + 4H2    (5.1) 

In the middle of the last decade, an intensive research has been 

focused on the so-called chemical hydrides, in particular ammonia 

borane, NH3BH3 (AB).[37,235] The high hydrogen content in AB (about 

19.6 wt%, 152 g/L) and its stability under ambient conditions have 

attracted significant attention to this compound.[259] AB undergoes 

stepwise decomposition with 6.5 wt% of hydrogen released below 

112 °C and the total amount of 14.5 wt% at about 200 °C. However, 

this release is accompanied by the evolution of undesirable borazine 

(BHNH)3, aminoborane BH2NH2 and diborane B2H6.
[117,118] Another 

disadvantage of practical application of AB as a hydrogen storage 
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material arises from its spectacular foaming leading to dramatic volume 

expansion during its thermolysis. 

A significant improvement in hydrogen release temperature was 

achieved by forming metal amidoboranes (MABs), M(NH2BH3)n, from 

AB and metal hydrides, decreasing the decomposition temperature to 

about 90 °C for M = Li+ and Na+.[120] Recently, numerous MABs 

(M = Li+, Na+, K+, Mg2+, Ca2+, Sr2+, Y3+),[120–123, 260–262], including 

mixed-metal Na[Li(NH2BH3)2],
[124] Na2[Mg(NH2BH3)4]

[125] and 

K2[Mg(NH2BH3)4],
[263] have been obtained and characterized. 

Although all the listed MABs release NH3 and NH2BH2 in addition to 

hydrogen, LiNH2BH3·NH3BH3 produces up to 14.0 wt% of pure 

hydrogen upon heating to 230 °C.[127] A system that can reversibly 

release pure hydrogen at lower temperatures is seen as the ultimate goal 

for practical hydrogen storage. 

The formation of metal amidoboranes starting from binary 

hydrides and AB can be considered by itself as a method to produce 

hydrogen. In this case, the MHn–AB (M = Li+, Na+, K+, Ca2+, Mg2+, 

Al3+, Y3+)[262,158,264] mixtures can be considered as RHCs according to 

the following reaction: 

MHn + nNH3BH3 → M(NH2BH3)n + nH2   (5.2) 

Although this reaction releases hydrogen at mild conditions 

(e.g., ~70 °C for M = Mg2+),[123] it is of low purity, ranging from 90 % 

for M = Li+, Mg2+ and Al3+, and can be also contaminated by a large 

amount of NH3 as observed for M = Na+ and Ca2+.[158] 

On the contrast, the lithium- or sodium-containing composites 

of alanates with AB release relatively pure hydrogen.[158–160] The 

alanates are not binary, like in reaction (5.2), but complex hydrides; and 
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the reaction pathways for these Al-based systems are not yet 

determined. Thus, understanding the behaviour of Al-based composites 

can help to develop a new family of materials with improved hydrogen 

storage properties. This goal prompted current studies of the 

composition, structure and reaction mechanisms of the hydrogen 

release in the alanate-AB systems. By combining the beneficial 

properties of the hydrogen storage systems based on aluminium, boron 

and nitrogen, new possibilities to create a reversible high hydrogen 

density storage material are generated. 

This work is focused on the NaAlH4–4AB system, where the 

first Al-based amidoborane, Na[Al(NH2BH3)4], is obtained. 

Crystallographic studies allowed to determine its composition and 

structure, thus, defining the previously unexplored, but favourable 1:4 

stoichiometry of the starting composite. Na[Al(NH2BH3)4] is formed 

via either mechanochemical treatment at room temperature or by 

heating the mixture up to ~70 °C according to the following equation: 

NaAlH4 + 4NH3BH3 → Na[Al(NH2BH3)4] + 4H2        (5.3) 

It was found that reaction (5.3) is slightly exothermic and non-

reversible. However, Na[Al(NH2BH3)4] also releases, in two steps, 

additionally up to 8 equivalents of H2. Remarkably, this desorption is 

partially reversible. Thus, the decomposition properties of 

Na[Al(NH2BH3)4] were systematically investigated by in situ 

synchrotron radiation X-ray powder diffraction (SRXRPD), thermal 

analysis coupled with mass spectrometry, temperature-programmed 

photographic analysis (TPPA) and volumetric methods. It was 

established that the hydrogen re-absorption does not regenerate NaAlH4 
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or Na[Al(NH2BH3)4], but rather occurs between amorphous product(s) 

and intermediate(s) of the dehydrogenation process. 

Na[Al(NH2BH3)4] is the first compound coming from the 

combination of complex and chemical hydrides going beyond the 

addition reaction, its formation is favoured by the lower stability of the 

Al–H bonds compared to the B−H ones, and due to the Lewis acidity of 

the complex-forming aluminium cation. On the other hand, the 

NaAlH4–4AB system opens a route to design a series of aluminium 

tetraamidoboranes, using, e.g., other alkali and alkali-earth metal 

alanates instead of NaAlH4, with improved hydrogen storage 

properties. 

2. Materials and Synthesis 

All samples were obtained from commercially available 

LiAlH4, NaAlH4, TiCl3 and NH3BH3 (95, 93, 99.99 and 98 % purity, 

respectively) purchased from Alfa Aesar, Sigma Aldrich Co and 

Katchem. All operations were done in gloveboxes with high purity 

argon atmosphere. The starting materials were placed into stainless 

steel vials and milled in a planetary ball mill Fritsch Pulverisette 7, 

using the Easy GTM gas pressure and temperature detection system to 

monitor the reaction. The gas release measured during ball milling for 

the NaAlH4−4AB composite is shown in Figure 5.1. The rotation speed 

was set to 600 rpm and the ball to powder mass ratio to 30:1. Synthetic 

approaches for different samples are listed in Table 5.1. 
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Figure 5.1 – The in situ monitoring of the hydrogen release during ball milling of 

NaAlH4–4AB. The dashed line is an interpolation between the measured solid line 

and the final observed pressure of 3.5 bar (4.3 bar expected for the complete reaction). 

Table 5.1 – Samples studied in this work. 

Sample Synthetic approach Phase composition from XRPD 

(RT) 

s1 
NaAlH4–4AB 

160 milling/break cycles of 3/5 minutes 

~55 wt% of Na[Al(NH2BH3)4] 

~26 wt% of NH3BH3 

~19 wt% of NaAlH4 

s2 
NaAlH4–4AB 
20 milling/break cycles of 3/3 minutes 

~83 wt% of NH3BH3 

~17 wt% of NaAlH4 

s3 
NaAlH4–4AB 

240 milling/break cycles of 3/5 minutes 

~90 wt% of Na[Al(NH2BH3)4] 

~4 wt% of NH3BH3 

~6 wt% of NaAlH4 

s4 
NaAlH4–4AB doped by 2 mol % of TiCl3 

240 milling/break cycles of 3/5 minutes 

~88 wt% of Na[Al(NH2BH3)4] 

~11 wt% of NH3BH3 

~1 wt% of NaAlH4 

3. Experimental Details 

X-ray powder diffraction analysis (XRPD). Samples were 

filled into 0.5 mm thin-walled glass capillaries and sealed under argon 

atmosphere. Laboratory diffraction data were recorded on a MAR345 
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diffractometer, rotating anode MoKα radiation equipped with a 

XENOCS focusing mirror. Sample s3 was tested for rehydrogenation 

using a sapphire-based cell for in situ XRPD.[173] The starting powder 

was kept in a single-crystal sapphire capillary with 1.09 mm outer 

diameter. Decomposition of Na[Al(NH2BH3)4] under 5 bar of hydrogen 

was performed by heating the capillary from room temperature to 

250 °C with a heating rate of 1 °C/min. The decomposed sample was 

heated to 250 °C under 150 bar of hydrogen, while powder diffraction 

data was continuously collected for ~26 h. 

Variable temperature in situ synchrotron X-ray powder 

diffraction (SRXRPD). SRXRPD data were collected on a 

PILATUS@SNBL diffractometer (SNBL, ESRF, Grenoble, France) 

equipped with a Dectris PILATUS 2M single photon counting pixel 

area detector (λ = 0.823065 Å). Temperature was increased linearly in 

time using Oxford Cryostream 700+ at a 5 °C/min rate from room 

temperature to 150 °C. Powder patterns were obtained using raw and 

integrated data preprocessed by the SNBL Toolbox software against 

data of the LaB6 standard.[265] 
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Figure 5.2 – Rietveld refinement profile (Rwp = 12.7 %) for s1 at 100 °C (SNBL/ESRF 

synchrotron, λ = 0.823065 Å). Na[Al(NH2BH3)4]: SG. P–1, a = 9.4352(2), 

b = 7.7198(1), c = 7.6252(1) Å; α = 97.211(1), β = 109.223(2), γ = 89.728(2)°; 

RF = 5.7 %. NaAlH4: SG. I41/a, a = 5.0398(1), b = 11.4319(1) Å; RF = 6.7 %. 

Crystal structure determination. The SRPXRD data for s1 at 

100 °C was indexed in a triclinic crystal lattice and the structure of 

Na[Al(NH2BH3)4] was solved in the P–1 space group using the program 

FOX.[167] ADDSYM procedure did not reveal any higher symmetry. 

The obtained crystal structure was further optimized by DFT 

calculations (see below) in order to obtain accurate hydrogen positions. 

The final structure, obtained from DFT calculations, was refined using 

bond distance restraints for H-atoms by the Rietveld method 

implemented in Fullprof (Figure 5.2).[169] 

DFT optimization. Theoretical calculations were performed in 

order to prove the structural model and the thermodynamic properties 

of the determined system. We owe thanks to Professor Zbigniew 

Łodziana from the Department of Structural Research INP Polish 
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Academy of Sciences for these calculations. The structure of 

Na[Al(NH2BH3)4] was optimized by simulated annealing within plane 

wave formulation of the DFT method.[199] Electronic configurations of 

1s1 for H, 2s22p1 for B, 2s22p3 for N, 2p63s1 for Na and 3s23p1 for Al 

were represented by projected augmented wave potentials.[200] The 

gradient corrected (GGA) functional[201] and correction for weak 

dispersive interaction were applied.[266] The initial structure from the 

Rietveld refinement was optimized with respect to the internal atomic 

positions and unit cell shape. This optimized structure was heated to T 

= 400 K at a rate of 100 K/ps and cooled down to T = 0 K at a rate of 

20 K/ps. No constraints were imposed on the internal atomic positions 

and the unit cell parameters were kept fixed. Nose-Hoover 

thermostat[202,267] was applied for this procedure, and the time step for 

integration of equations of motion was 0.6 fs. Six independent 

structures with the lowest energy from the temperature range below 

50 K were optimized with respect to internal atomic positions with the 

conjugated gradient method; then the symmetry was determined to be 

P–1 for five structures with the lowest ground state energy. For these 

structures the symmetry was imposed and the unit cell shape, together 

with atomic positions, was re-optimized. Within the accuracy of GGA 

calculations all five structures were identical with the following lattice 

parameters at the ground state: a = 9.435, b = 7.719, c = 7.625 Å; 

α = 97.213, β = 109.219, γ = 89.725°. The total energy of the optimized 

structure was 0.03 eV/formula unit lower than that for the initial guess, 

proposed by FOX. Normal mode analysis was performed with the finite 

displacement method for the Γ point; atoms were displaced by ±0.25 Å 

along each Cartesian direction. All modes are real positive. 
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In order to assess the enthalpy of the reaction (5.3), the ground 

state and vibrational properties were calculated for AB and NaAlH4, 

based on their crystal structures.[31,268] For all systems two independent 

calculations were done with and without corrections for weak 

dispersive interactions. The enthalpy was calculated within harmonic 

approximation.[204] Thus, it consists of the electronic ground state 

energy and contribution from the vibrational degrees of freedom. 

For the phonon calculations the dynamical matrix was 

constructed from the forces exerted on atoms upon displacements. The 

dynamical matrix was diagonalized and the normal mode frequencies 

and polarization vectors were extracted. The enthalpy of the reaction 

(5.3), H(T) = E0 + Hvibra(T), was calculated within harmonic 

approximation as a sum of vibrational 𝐻𝑣𝑖𝑏𝑟𝑎(𝑇) =

∑
1

2
ℏ𝜔𝑖 +𝑖 ∑ ℏ𝜔𝑖 (exp (

ℏ𝜔𝑖

𝑘𝑇
) − 1)

−1

𝑖  and electronic contributions at 

the ground state E0 for each reactant and products (ωi is the normal 

mode frequency at T = 0 K, k is the Boltzmann constant). For the 

hydrogen in the gas phase, terms related to rotational, translational and 

pV are added as (7/2)kT. The ground state energy normal modes were 

calculated for two independent cases: with and without weak van der 

Waals forces. For AB the later interactions are important. The lattice 

parameters calculated for the ground state are given in Table S3.2 in the 

Supporting Information. 

Fourier Transform Infrared Spectroscopy (FTIR). Infrared 

spectra were recorded with a NICOLET 380 FTIR spectrometer from 

Thermo Electron Corporation in collaboration with Aarhus University. 

Samples were exposed to air for about 15 s when transferring from the 

sample vial to the instrument. In order to determine decomposition 
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products of s3, the same measurements were performed after heating in 

a Schlenk tube under argon atmosphere at 250 °C for 3 h. 

Thermal analysis and mass spectrometry. 

Thermogravimetric analysis (TGA) and differential scanning 

calorimetry (DSC) measurements were done using a PerkinElmer STA 

6000 apparatus simultaneously with mass spectrometry (MS) analysis 

of the residual gas with the use of a Hiden Analytical HPR-20 QMS 

sampling system, in collaboration with Aarhus University. Samples (~2 

mg) were loaded into an Al2O3 crucible and heated from room 

temperature to 400 °C (5 °C/min) in an argon flow of 20 mL/min. 

Released gases were analyzed for hydrogen, ammonia, diborane, and 

borazine. 

Temperature programmed photographic analysis (TPPA). 

Approximately 10 mg of s2 and s3 were sealed under argon in a glass 

tube placed in a home-built aluminium heating block as described 

recently.[73] Samples were heated from room temperature to 300 °C 

(ΔT/Δt = 5 °C/min), while s2 was also heated from room temperature 

to 76 °C (ΔT/Δt = 3 °C/min) and kept at this temperature for 1 h pictures 

of the samples were collected every five seconds. The data were 

obtained in collaboration with Aarhus University. 

Volumetric analysis and reversibility tests. Volumetric 

analysis was performed using a Hiden Isochema IMI-SHP analyzer. 

40–50 mg of s2–s4 was heated from 30 to 85 °C and to 250 °C, 

respectively, (1 °C/min, p(H2) = 5 bar). Subsequently, rehydrogenation 

was performed at p(H2) = 150 bar by heating s2 to 85°C, and s3 and s4 

to 250 °C, respectively (0.1 °C/min). Gas release was calculated from 

the calibrated volumes of the system, excluding the volume of the glass 
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wool (2.06 g/cm3). The final uptake was calculated from the difference 

between the average start uptake at 30 °C (equal to the temperature of 

the manifold) and the decomposition uptake after cooling to the same 

temperature, in order to decrease uncertainties of calibrations. Usually, 

the uptake calculated by the manifold’s IMI software at 250 °C is about 

3% lower (~0.2 mol) than at 30 °C. 

4. Results and Discussion 

4.1 Phase Analysis and in situ SRXRPD data 

The in situ SRXRPD patterns have been collected from room 

temperature to 150 °C (5 °C/min) (Figure 5.3) for the NaAlH4–4AB 

mixture s1, obtained after 160 milling/break cycles (Table 5.1). The 

temperature-dependent composition of s1, extracted from the sequential 

Rietveld refinement, are given in Figure 5.3. 

At room temperature s1 contains Bragg reflections from AB[215] 

(26.3 wt%), NaAlH4
[22] (18.5 wt%) and from the previously unknown 

Na[Al(NH2BH3)4] (55 wt%). Peaks from AB disappear at around 90 °C 

without appearance of new peaks. At the same time, intensities of the 

peaks of Na[Al(NH2BH3)4] are continuously increasing and the peaks 

become narrower. According to the sequential refinement, the weight 

fraction of Na[Al(NH2BH3)4] increases after ~80 °C due to the reaction 

of AB with NaAlH4 (Figure 5.3). NaAlH4 peaks vanish at ~120 °C with 

an appearance of peaks for NaBH4 implying the formation of 

amorphous product(s). 
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Figure 5.3 – The variable temperature plot of SRXRPD patterns of s1 (SNBL/ESRF 

synchrotron, λ = 0.823065 Å) (top), and fractional content of compounds extracted 

from the Rietveld refinement of powder patterns (bottom). 

Complementary measurements on the NaAlH4–4AB mixture s2 

(Table 5.1), obtained after 20 milling/break cycles, exhibited the 

formation of a negligible amount of Na[Al(NH2BH3)4] (Figure 5.4). 

Thus, s2, being a homogenous physical mixture of AB and NaAlH4, 
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was used to examine the temperature as a stimulus of the formation of 

Na[Al(NH2BH3)4] in the reaction (5.3). Variable temperature XRPD 

studies made on s2 from room temperature to 76 °C at 1 °C/min rate 

have revealed the formation of Na[Al(NH2BH3)4], accompanied by the 

disappearance of the crystalline precursors (Figure 5.5). XRPD patterns 

collected on s2 at 76 °C show that Na[Al(NH2BH3)4] gradually 

decomposes during 1 h with the formation of NaBH4 and an amorphous 

product(s) (Figure 5.4). The same behavior was described by Ohnuki et 

al.[160] However, in their work numerous peaks were not well resolved, 

probably, due to a negligible amount of the then-unknown 

Na[Al(NH2BH3)4] and the limitations of the laboratory XRPD. Indeed, 

the formation of Na[Al(NH2BH3)4] with high yields requires a long-

time milling that was not done earlier. Moreover, the stoichiometry of 

the starting mixture studied previously was 1:1[160] but not 1:4, hence, 

significantly decreasing the yield. Na[Al(NH2BH3)4] can be readily 

obtained by gentle heating of the NaAlH4–4AB composite at about 

80 °C. However, the resulting Na[Al(NH2BH3)4] starts to decompose 

extensively when kept for extended times at this temperature. Therefore 

this synthetic approach seems to be less attractive and more reliable 

alternative synthesis should be suggested. With this in mind we have 

directed our attention to the prolonged ball-milling of the NaAlH4–4AB 

composite at room temperature. Indeed, as a result we have obtained 

the mixture s3, containing about 90 wt% of Na[Al(NH2BH3)4] 

(Table 5.1, Figure 5.6). 
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Figure 5.4 – Rietveld refinement profile for s2 (MAR345 diffractometer, rotating 

anode with Mo-Kα radiation, XENOCS focusing mirror). 

 

Figure 5.5 – The variable temperature plot of XRPD patterns of s2 (MAR345 

diffractometer, rotating anode with Mo-Kα radiation, XENOCS focusing mirror). The 

temperature was increased from room temperature up to 76 °C during about 1 h, and 

kept at the same temperature for another 1 h, leading to the gradual increasing of the 

concentration of Na[Al(NH2BH3)4], which peaks gradually disappeared during the 

next 1 h due to the decomposition of Na[Al(NH2BH3)4] with the formation of NaBH4. 
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Figure 5.6 – Rietveld refinement profile for s3 (SNBL/SRF synchrotron, 

λ = 0.68884 Å). 

We have also attempted to characterize the corresponding Li-

containing system,[158–160] by milling the LiAlH4–4AB composite using 

the same experimental conditions as for the Na-containing mixture. 

However, the reaction appeared to be extremely violent. In particular, 

after a few seconds of milling the pressure exceeded twice the 

calculated value, coming close to the limit of the reaction vial, and as a 

result the milling was automatically stopped. Characterization of the 

resulting sample by XPRD revealed metallic Al and LiBH4 along with 

other unidentified phases present as weak peaks (Figure S3.1 in the 

Supporting Information). This indicates that the LiAlH4–4AB mixture 

reacts highly exothermically, and the ball milling is not an appropriate 

synthesis route. 

The formation of borohydrides upon decomposition of 

Na[Al(NH2BH3)4] of the LiAlH4–4AB composite, also recently found 

in the reaction products from MHn–AB[158] and MAlH4–AB (M = Li, 

Na)[160] composites, is remarkable. The origin of BH4
– in the systems 

with AB was explained[160] by the exchange reaction between its ionic 
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dimer, diammoniate of diborane (DADB) [(NH3)2BH2]BH4,
[269] and 

alkali metal alanate salts. This mechanism is not suitable in our case, 

since NaBH4 is one of the decomposition products of 

Na[Al(NH2BH3)4]. Characteristic peaks of NaBH4 appear immediately 

after the decomposition of Na[Al(NH2BH3)4]. It should be noted, that 

the unreacted AB does not participate in this process, since it still 

remains in the mixture during some time after the decomposition of 

Na[Al(NH2BH3)4] and the appearance of the NaBH4 peaks (Figure 5.5). 

Thus, our work shows that the formation of borohydrides is not an 

intrinsic property of AB but of the amidoboranes decomposition. 

4.2 Crystal Structure of Na[Al(NH2BH3)4] 

The crystal structure of Na[Al(NH2BH3)4] was solved in the 

triclinic space group P–1. Experimental coordinates and those 

optimized by DFT methods are listed in Tables S3.1 in the Supporting 

Information. Indexing / solution of triclinic structures from powder 

diffraction data is generally difficult, and this is the second 

amidoborane with a triclinic crystal system, after the mixed-metal 

complex Na[Li(NH2BH3)2].
[124] The central Al3+ atom has a tetrahedral 

environment formed by four nitrogen atoms from four NH2BH3
– anions 

(Figure 5.4). Thus, the tetrahedrally configured [Al(NH2BH3)4]
– anion 

is a new member of Al3+ complex hydrides with a tetrahedral 

coordination, after alanates [AlH4]
–, complex amides [Al(NH2)4]

– and 

complex borohydrides [Al(BH4)4]
–. The Na+ atoms are octahedrally 

coordinated by six BH3 groups arising from six NH2BH3
– anions 

(Figure 5.7), similar to Na+ in Na2[Mg(NH2BH3)4].
[125] Thus, all 
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NH2BH3
– anions exhibit a bridging coordination mode linking Al3+ and 

Na+ cations with the formation of a 3D polymer structure (Figure 5.8). 

 

Figure 5.7 – Ball and stick plots of the tetrahedral [Al(NH2BH3)4]– (left) and the 

octahedral [Na(NH2BH3)6]5– (right) fragments. Color code: N = blue, B = olive, 

H = grey, Al = red, Na = dark grey. 

The Al∙∙∙N bond lengths range from 1.840(9) to 1.929(8) Å and 

are close to 1.90 Å found in the DFT-optimized experimental model of 

Na[Al(NH2BH3)4], which, in turn, is slightly longer than 1.85 Å 

observed in Na[Al(NH2)4].
[270] The Na∙∙∙B distances are 

2.92(1)-3.55(2) Å and 2.90–3.64 Å, as evidenced from the XRPD 

experiments and DFT calculations, respectively. These values are in 

line with 2.90–3.63 Å Na∙∙∙B distances found in 

Na2[Mg(NH2BH3)4].
[125] Remarkably, the dihydrogen N–Hδ+∙∙∙Hδ––B 

bonds in Na[Al(NH2BH3)4] (1.96(1)–2.28(1) Å from XRPD and 1.92–

2.34 Å from DFT) are close to the shortest dihydrogen bonds 

(1.91(5) Å) in pristine AB,[215] and significantly shorter compared to all 

known MABs (Table S3.3 in the Supporting 

Information).[118, 120-124, 260-262] 
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Figure 5.8 – Crystal packing of Al and Na coordination polyhedra in the structure of 

Na[Al(NH2BH3)4] along the a (top), b (middle) and c (bottom) axis. Color code: 

N = blue, B = olive, Al = red, Na = dark grey. Hydrogen atoms are omitted for clarity. 
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4.3 Fourier Transformed Infrared (FTIR) Spectroscopy 

In order to characterize changes induced by ball-milling, FTIR 

measurements on s2, s3 as well as on AB were conducted. The IR 

spectra of s2 and s3 exhibit characteristic bands for the B–H (1100-1150 

and 2340–2420 cm–1), N–H (1500–1650 and 3200–3430 cm–1) and B-N 

(780 cm–1) vibration modes similar to those for AB (Figure 5.9).[271] 

While the IR spectrum of s2 shows no significant changes compared to 

those of the pristine AB and NaAlH4, the spectrum of s3 contains new 

bands at 630–673 cm-1 assigned to the Al–N vibrational modes (similar 

to Na[Al(NH2)4] and aluminium nitride AlN).[270,272] Calculated values 

for the selected vibrational modes in Na[Al(NH2BH3)4] are given in 

Figure 5.10. 

 

Figure 5.9 – FTIR spectra of s2 and s3 (top panel). Spectra of NH3BH3 and NaAlH4 

are given for comparison. The bottom panel shows phonon spectra of 

Na[Al(NH2BH3)4] and NH3BH3. 
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Figure 5.10 – Calculated vibrational normal modes for NH3BH3 (top) and 

Na[Al(NH2BH3)4] (bottom). The modes related to the N–B distortions are 

accompanied by rotations of the rigid AlN4 tetrahedron. Color coding for atoms is the 

same as in Figure 5.7 in the main text. 

4.4 Temperature-Programmed Photographic Analysis 

As mentioned in the Introduction, one of the disadvantages to 

the practical application of AB for hydrogen storage arises from its 

spectacular foaming leading to a dramatic volume expansion during its 

thermolysis. With this in mind, we have applied a temperature-

programmed photographic analysis to visually observe the volume 

expansion of s2 and s3 during thermal decomposition from room 

temperature to 275 °C. The s2 mixture showed a drastic volume 

expansion upon heating starting from about 70 °C, increasing up to 

~110 °C (Figure 5.11). In the applied experimental conditions with 

5 °C/min heating rate, this observation can be explained by the 

decomposition of the unreacted AB, as its decomposition temperature 

is at about 107 °C.[118,273] Indeed, at ~110 °C the foaming reaches its 

maximum. 
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Figure 5.11 – Temperature-programmed photographic analysis of s2 and s3 at 

5 °C/min heating rate. The foaming during the AB decomposition (top) is not 

observed for Na[Al(NH2BH3)4] (middle), and is suppressed for the s2 reaction mixture 

by annealing at 76 °C (bottom). 

The volume of s3 remained constant under the same 

experimental conditions (Figure 5.11), showing a remarkable 

difference between the starting composite NaAlH4–4AB and the 

reaction product Na[Al(NH2BH3)4]. On the other hand, the foaming of 

the unreacted AB can be decreased by keeping the temperature below 

the decomposition of AB, viz. at 76 °C, where Na[Al(NH2BH3)4] is 

forming from s2 over about one hour. This is yet another evidence of 

the formation of Na[Al(NH2BH3)4] at temperatures below the 

decomposition of AB. 

4.5 Thermal Analysis and Mass Spectrometry 

Simultaneous TGA–DSC–MS analysis has been conducted on 

s2 aiming to characterize the hydrogen release through the formation of 

Na[Al(NH2BH3)4]; and on s3 aiming to observe the decomposition 

properties of Na[Al(NH2BH3)4]. Thermal decomposition of both 
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samples is described mainly by two resolved steps of weight loss 

centered at about 120 and 160 °C (Figure 5.12). The first step in the 

TGA plot for s2 is seen as a sharp weight deviation due to the so-called 

“jet” effect, which is explained by a drastic volume expansion upon 

heating. This finding is in line with spectacular foaming, which, in turn, 

is the result of the decomposition of unreacted AB, as it was observed 

by the TPPA (Figure 5.11 and the description above). 

 

Figure 5.12 – TGA-DSC-MS analyses for s2 (top) and s3 (bottom) performed in a 

dynamic argon atmosphere. 

Both decomposition steps were found to be exothermic and 

correspond to hydrogen evolution. An additional exothermic peak was 

found at about 75 °C for both samples (much less pronounced in the 
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DSC plot of s3), and can be explained by the reaction between NaAlH4 

and AB according to equation (5.3). The exothermic peak at 115 °C in 

the DSC plot of s2 is the result of the decomposition of the unreacted 

AB that is in agreement with our XRPD data (Figure 5.5) and thermal 

decomposition pathway of pristine AB.[10] 

 

Figure 5.13 – The MS signal from s2 during the annealing at 71 °C for 1 h, showing 

hydrogen release. 

According to the TGA–MS data, neither borazine nor diborane 

and only traces of ammonia were observed during the decomposition of 

s2 and s3 (Figure 5.12). The total mass loss of ~9 wt% for s3 indicates 

a partial hydrogen release out of the theoretical 11.9 wt% in 

Na[Al(NH2BH3)4]. Notably, the formation of Na[Al(NH2BH3)4] from 

s2 at the constant temperature of 71 °C results in hydrogen release 

without detectable impurities of ammonia, diborane and borazine 

(Figure 5.13). The calculated enthalpy of the reaction (5.3) at room 

temperature was found to be about –25 and -30 kJ/mol (Figure 5.14), 

calculated with and without van der Waals interactions, respectively. 

These results are in agreement with the exothermic events in the DSC 

data (Figure 5.12). 
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Figure 5.14 – Calculated standart enthalpy values of the hydrogen formation 

according to the reaction (5.3) in the main text. Red and blue lines correspond to the 

calculations with and without van der Waals interactions, respectively. 

4.6 Reaction Pathways, Volumetric Analysis and Reversibility 

Tests 

The s2 mixture heated to 85 °C releases about 3.5 mol of 

hydrogen per one mole of aluminium (Figure 5.15). This value is close 

to the calculated 4 moles of hydrogen according to the reaction (5.3), 

and, together with diffraction, thermal and mass spectrometry analyses, 

proves the formation of Na[Al(NH2BH3)4] during the heating of the 

NaAlH4–4AB composite. 

Volumetric studies of the decomposition of s3 and of the TiCl3-

dopped but otherwise identical sample s4 (Table 5.1) were performed 

from room temperature up to 250 °C. The decomposition profiles of s3 

and s4 differ slightly, showing a total hydrogen release of about 6.2 and 

6.6 mol per one mole of Na[Al(NH2BH3)4] for s3 and s4, respectively 

(Figure 5.15). 
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Figure 5.15 – Volumetric desorption curves for s2–s4. 

We have also applied the volumetric technique to study the two 

decomposition steps centered at about 120 and 160 °C (Figure 5.15), by 

fast heating of s3 to 120 °C, after which the temperature was kept 

constant for 60 h, followed by the complete decomposition at 250 °C 

(constant tempearture for 30 h). Complete separation of these two steps 

seems impossible due to their partial overlap as evidenced from the 

TGA–DSC–MS experiments (Figure 5.12). However, the two 

decomposition steps are clearly visible on the volumetric curve 

(Figure 5.16). The first decomposition step at 120 °C yields ~5.3 mol 

of hydrogen, while the total amount of about 8.0 mol is desorbed at 

250 °C. These data confirm the prevalent formation of hydrogen: the 

weight loss of ~9 wt% in the TGA is in agreement with 8 mol of 

hydrogen gas found volumetrically. 
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Figure 5.16 – Volumetric data on the hydrogen desorption of s3. 

The absence of the crystalline Al and Na3AlH6 (the 

decomposition products of NaAlH4),
[27] of the boron nitride (BN), 

which can be formed during the decomposition of AB;[117,118] as well as 

of AlN, which hypothetically can form via the decomposition of 

Na[Al(NH2BH3)4] at 250 °C has been shown by XRPD (Figure 5.17). 

The only crystalline phase present there is NaBH4. However, the FTIR 

spectrum of the final residue reveals all characteristic bands of NaBH4 

and a number of additional bands suggesting the presence of the Al–N, 

B–N, B–H and N–H groups. The latter two bands are similar to those 

observed upon thermal decomposition of the pristine AB with the 

formation of polymeric (NHxBHx)n (1 ≤ x ≤ 2) species 

(Figure 5.18).[271,272] Furthermore, in resemblance to binary 

amidoboranes M(NH2BH3)n (n = 1, M = Li+, Na+, K+; n = 2, M = Ca2+, 

Mg2+)[122,274–276] and to the Li3AlH6–4AB[158] system, we observed the 

formation of amorphous product(s), most likely, of the hydrogen-poor 

Al–N–B–H composition(s). Interestingly, recent theoretical 

calculations of the decomposition mechanism of Al(NH2BH3)3 propose 
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the formation of Al(NBH)3.
[277] However, to the best of our knowledge, 

no experimental evidence of the existence of Al(NH2BH3)3 was 

reported so far. Taking into account all the data on the decomposition 

pathway of Na[Al(NH2BH3)4] obtained in this work, the following 

simplified total decomposition reaction can be suggested: 

Na[Al(NH2BH3)4] → NaBH4 + AlN4B3H(0÷1.8) + (6.2÷8.0)H2  (5.4) 

 

 
Figure 5.17 – The variable temperature plot of in-situ XRPD patterns of s3, collected 

from room temperature to 250 °C at p(H2) = 5 bar (left), followed by the 

rehydrogenation at 250 °C and p(H2) = 150 bar (right) (MAR345 diffractometer, 

rotating anode with Mo-Kα radiation, XENOCS focusing mirror). 

Two regeneration tests were performed for s3 and s4 by 

applying 150 bar of hydrogen: one at 85 °C, to check for a hypothetical 

transformation back to the starting NaAlH4–4AB composite; and 

another at 250 °C, to attempt a rehydrogenation of AlN4B3H(0÷1.8). It 

was found that Na[Al(NH2BH3)4] does not take hydrogen at 

temperatures up to 85 °C but instead decomposes slowly 

(Figures 5.19a,e). Thus, the final uptake was negative both for s3 and 

s4. This behavior is expected, since the reaction (5.3) is slightly 
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exothermic according to the DSC data (Figure 5.12) and the DFT 

calculations (Figure 5.16). 

 

Figure 5.18 – FTIR spectra of s3 and the product of its decomposition at 250 °C and 

cooled down to room temperature. Spectra of NH3BH3, decomposed at 250 °C and 

cooled down to room temperature, and NaBH4 are given for comparison. 

Slow hydrogen absorption was observed at 250 °C for the 

completely decomposed samples s3 and s4 (Figures 5.19b,f). 

Surprisingly, about 1.7 out of 6.2 mol (~27%) of the released hydrogen 

has been adsorbed by the amorphous residue during ~225 h 

(Figures 5.19c,g). The absorbed amount can be readily released 

(Figures 5.19d,h). This reversible absorption can be due to the 

hydrogen uptake with the formation of the amorphous intermediate(s) 

observed between the two decomposition steps at 120 and 160 °C 

(Figure 5.3). This scenario is likely, since in situ XRPD done at 250 °C 

and 150 bar of hydrogen did not show any crystalline phases forming 

upon the rehydrogenation during 26 h of the decomposed s3 

(Figure 5.17). This rehydrogenation can be a result of a continuous 

hydrogen absorption in the amorphous compound AlN4B3H(0÷1.8) to 

phases with a higher hydrogen content. 
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a) e) 

  
b) f) 

  
c) g) 

  
d) h) 

Figure S3.6 – The volumetric rehydrogenation (first and third rows) and desorption 

(second and fourth rows) data for s3 (left column) and s4 (right column). 
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5. Conclusions 

The new NaAlH4–4AB composite, combining complex and 

chemical hydrides, releases pure hydrogen and produces the first Al-

based amidoborane, Na[Al(NH2BH3)4]. The reaction proceeds already 

at 70 °C or under mechanochemical treatment at room temperature. 

This is the first example of a reaction where a complex hydride anion 

is deprotonating AB. Until now only binary metal hydrides were reacted 

with AB, forming amidoboranes, see equation (5.2). Breaking of the 

Al–H bonds in the [AlH4]
− anion is, apparently, easier than of the B–H 

bonds in the [BH4]
– anion since the latter one does not deprotonate AB. 

Therefore, alkali and alkali earth metal borohydrides (M = Li+, Mg2+ 

and Ca2+) merely form adducts with AB:[128–131, 278 

M(BH4)n + mNH3BH3 → M(BH4)n∙(NH3BH3)m  (5.5) 

The formation of Na[Al(NH2BH3)4] by the reaction (5.3) is not 

reversible at 150 bar of hydrogen, which is in line with the observed 

exothermic dehydrogenation. Therefore, an RHC based on the reaction 

(5.3) cannot be used as a reversible hydrogen store. 

Na[Al(NH2BH3)4] decomposes in two steps with the formation 

of NaBH4, up to 8 equivalents of pure hydrogen and an amorphous 

product AlN4B3H(0÷1.8). The latter reversibly reabsorbs about 27% of 

hydrogen. This reabsorption regenerates neither NaAlH4 nor 

Na[Al(NH2BH3)4] but occurs between the amorphous product and 

intermediate(s) of the dehydrogenation. Further in-depth studies of 

AlN4B3H(0÷1.8), viz. its chemical structure and an optimization of the 

rehydrogenation process, are required. 
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During the recent years, Al-based complex hydrides attracted an 

ever-growing attention as potential hydrogen storage media. Indeed, the 

reaction (5.3) is possible not only because the Al–H bonds are less 

stable than the B–H ones but also due to the strong Lewis acidity of the 

Al3+ cation forming the tetraamidoborane complex. The title system 

opens an avenue to a series of aluminium tetraamidoboranes, 

M[Al(NH2BH3)4], with improved hydrogen storage properties, such as 

hydrogen storage density, hydrogen purity and reversibility. Our 

preliminary experiments, not presented in this work, show that the 

reaction (5.3) easily takes place in a THF solution at room temperature, 

and these conditions are successfully applied to the reaction in the 

LiAlH4-4AB system, uncontrollable in the solid state. 

Future works can also exploit the combination of amidoborane 

and borohydride ligands in the same Al-based compound, tuning their 

stability via different electron donor-acceptor properties of the ligands. 

Our recent discovery of the M[Al(BH4)4] series (see, Chapter III) allows 

this goal to be achieved in a one-step reaction with M[Al(NH2BH3)4]. 
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Chapter VI – CO2-promoted Hydrolysis of KBH4
4 

  

                                                 
4 This chapter is based on the following publication: 

Dovgaliuk, I.; Hagemann, H.; Leyssens, T.; Devillers, M.; Filinchuk, Y. CO2-

promoted hydrolysis of KBH4 for efficient hydrogen co-generation, Int. J. Hydr. 

Energy 2014, 39, 19603–19608. 
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1. Introduction 

Hydrogen can be released from borohydrides either by 

thermolysis or via hydrolysis. Alkali metal borohydrides, MBH4, were 

also intensively studied with respect to hydrogen release by hydrolysis, 

where hydrogen can be generated in accordance with the following 

simplified reaction:[137] 

MBH4 + (2+n)H2O → MBO2·nH2O + 4H2   (6.1) 

Depending on hydrolysis conditions, such as temperature, 

LiBH4 gives different products:[138,139] LiBO2, LiBO2·H2O, 

LiBO2·2H2O, the latter also known as Li[B(OH)4].
[140] NaBH4 attracted 

the biggest attention due to its higher stability and ease to handle as 

compared with LiBH4 (the latter reacts vigorously with water at room 

temperature), and high hydrogen content of 10.6 wt%, contrary to 

7.4 wt% in KBH4.
[141] Aqueous solutions of NaBH4 are usually 

chemically stabilized by rendering solutions basic and do not generate 

significant amounts of H2 under ambient conditions.[142] However, 

NaBH4 hydrolysis rate can be dramatically accelerated upon the 

addition of certain heterogeneous catalysts.[143,144] Among the 

conventional catalysts studied for the reaction, ruthenium-based 

catalysts were proposed to be most effective for promoting H2 

generation.[145,146] The hydrolysis of KBH4 was also reported,[147] 

showing the lowest hydrolysis rate without the use of catalysts. 

Acid is known to accelerate hydrolysis of borohydrides.[279] 

However, the hydrolysis of metal borohydrides in the presence of CO2 

has not been studied so far, even though its influence on the hydrogen 

release rate from aqueous solution of NaBH4 has been noticed already 

in 1962:[279] the influence of CO2 on NaBH4 hydrolysis in open air was 
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assigned to the lowering of the pH of the solution. Our work is 

dedicated to the hydrolysis of KBH4 in open air, attempting to clarify 

the role of CO2, as well as to the hydrolysis reaction promoted by CO2 

gas put through the reaction mixture. Such process is interesting due to 

its potential of producing hydrogen on-board, making use of the exhaust 

gases (CO2 and H2O) from hydrocarbon fuels. The co-generation of 

hydrogen may thus improve the energy density of the system, as well 

as allow for CO2 sequestration. 

We found that CO2 boosts up the hydrolysis reaction rates, 

transforming in solution the borohydride ions, BH4
−, into tetraborates, 

B4O5(OH)4
2−. Analysis of solid residues reveals a new complex 

intermediate, K9[B4O5(OH)4]3(CO3)(BH4)·7H2O. This substance was 

studied by single-crystal and X-ray powder diffraction, DSC, TGA, 

Raman, IR spectroscopy and elemental analysis, all the results are 

consistent with the presence of three different anions and of the 

crystallized water molecules. 

2. Experimental Details 

Hydrolysis reaction on open air. A ~190 g/L water solution of 

potassium borohydride (95 % purity, Sigma Aldrich) was left at 4º C in 

an open flask for approximately one year. The solution was found 

completely dried and transparent needle-like hexagonal crystals were 

observed, see Figure 6.1. Microscopy analysis revealed that the sample 

was almost single-phase, with only a small fraction of cubic crystals 

corresponding to the original KBH4. The needle-like crystals, which 

formed the largest part of the solid phase, were hand-picked from the 
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mixture for further characterization. They were found to be well soluble 

in water. 

 

Figure 6.1 – The optical microscopy image of a hexagonal crystal of 

K9[B4O5(OH)4]3(CO3)(BH4)·7H2O. 

Single-crystal synchrotron X-ray diffraction. Synchrotron 

radiation with λ = 0.69790 Å and a MAR345 detector were used for the 

data collection (SNBL/ESRF) at room temperature. The structure was 

solved by direct methods and refined by a full matrix least-squares 

technique on F2 using SHELXL97 program.[164] The experimental 

details for the two alternative compositions from structure analysis are 

presented in a Table 6.1. Further characterization by other methods (see 

below) suggested a K9[B4O5(OH)4]3(CO3)(BH4)·7H2O composition of 

the complex with disordered BH4
−, which gives slightly better R–values 

compared to the initially assumed K9[B4O5(OH)4]3BO3·8.2H2O 

composition (see the comparison in the Table 6.1). 

Hydrolysis reaction promoted by CO2. As both elementary 

and IR analyses indicate the crystals to contain the carbonate anion (see 



Chapter VI – CO2-promoted Hydrolysis of KBH4 

 209 

below), we attempted to repeat this synthesis under the CO2 

atmosphere. The same phase was obtained albeit by a much faster 

hydrolysis of KBH4 under partial CO2 pressure. 5 ml portions of 

190 g/L aqueous solution of KBH4 were exposed to CO2 gas at room 

temperature. Hydrogen was readily desorbed from the solution on 

contact with CO2, and the reaction was completed within minutes. 

Different portions of incompletely and completely hydrolyzed 

(saturated with CO2) solutions were dried and the resulting powder was 

analyzed by X-ray powder diffraction. The completely hydrolyzed 

sample did not contain the K9[B4O5(OH)4]3(CO3)(BH4)·7H2O phase, 

while it was the major crystalline phase in the incompletely hydrolyzed 

samples. 

Table 6.1 – Experimental details of crystal structure analysis. 

Formula Hypothetical composition 

K9[B4O5(OH)4]3BO3·8.2H2O 

True composition 

K9[B4O5(OH)4]3(CO3)(BH4)·7H2O 

Formula mass 1122.62 1124.26 

T [K] 296(2) 

λ [Å] 0.69790 (synchrotron) 

Space group P-62c 

Z 2 

Cell parameters [Å] a = 7.8585(2) 

c = 15.7136(8) 

V [Å3] 1881.54(13) 

ρcalc [g·cm-3] 1.982 1.984 

μ [mm-1] 1.146 1.144 

F(000) 1126 1132 

θ range max [°] 29.87 

Reflections 

collected 

11935 

Independent 

reflections 

1949 [Rint = 0.0982] 

Data / restraints / 

parameters 

1949 / 0 / 106 1949 / 0 / 107 
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Goodness-of-fit  1.131 1.134 

R indices [I ≥ 2σ(I)] R1 = 0.0411, wR2 = 0.1165 R1 = 0.0381, wR2 = 0.1084 

R indices (all data) R1 = 0.0419, wR2 = 0.1169 R1 = 0.0390, wR2 = 0.1088 

Addition of aqueous solutions of sodium hydrogen carbonate 

(NaHCO3) to potassium borohydride leads to a vigorous hydrogen 

evolution, indicating that the hydrogen carbonate is a strong enough 

acid to promote BH4
− hydrolysis, yielding the carbonate anion and 

hydroxyborates. 

X-ray powder diffraction. In line with the crystal structure 

model, the X-ray powder diffraction analysis of the separated and 

ground hexagonal crystals and of the mixture with cubic KBH4 were 

made. The diffraction experiments were done on 0.5 mm glass 

capillaries, MAR345 image plate diffractometer with Mo Kα radiation. 

The received data images were azimuthally integrated by the program 

Fit2D,[179] using LaB6 callibrant, followed by a calculation of intensity 

uncertainties. Phase analysis was done using Rietveld method with 

Fullprof Suite software.[169] 

Infrared and Raman spectroscopy was performed to verify 

the crystal structure model. The infrared spectra were recorded on 

Shimadzu Benelux FTIR-84005 spectrometer between 400 and 

4000 cm-1 using pressed pellets of the sample powder with dried KBr. 

Raman spectroscopy analysis was done using a Raman Thermo 

Scientific with a 532 nm DXR laser between 200 and 3500 cm−1. 

Time-resolved online ATR-FTIR spectra were recorded on a 

ReactIR 15 spectrometer (Mettler-Toledo) equipped with a diamond 

probe with a resolution of 4 cm−1. Spectra were collected continuously 

at 1 min intervals. CO2 gas was put through a 190 g/L water solution of 
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KBH4 during the 4 hours of the measurements. Changes of the spectra 

were recorded during the first 90 minutes. 

Thermal analyses were done using TGA/SDTA 851 Mettler 

and DSC 821 Mettler in the temperature range 25–500 °C with a heating 

rate of 10°C/min and under a 0.5 ml/min nitrogen flow to avoid 

oxidizing reactions. 

Elemental analysis. The determination of carbon, hydrogen 

and nitrogen quantity was made using microanalysis at MEDAC Ltd 

(England). 

3. Results and Discussion 

3.1 Crystal Structure and Phase Analysis 

The X-ray single crystal analysis of the hexagonal crystals 

allowed to establish a new crystal structure with a P−62c space group 

shown on Figure 6.2a. Although structure solution first suggested a 

composition of K9[B4O5(OH)4]3BO3·8.2H2O, containing two types of 

anions: tetraborate and orthoborate, with four independent co-

crystallized water molecules, a slightly different picture was obtained 

by a combination of techniques. In particular, Raman analysis 

suggested the presence of carbonate anions, and IR as well as Raman 

analysis clearly revealed the presence of a borohydride group. This 

forced us to revise the structural assignment of the molecular entities, 

changing the orthoborate to a carbonate, and one of the poorly resolved 

water molecules to a borohydride group orientationally disordered 

around the –6 axis. The resulting formula is charge-neutral, 

K9[B4O5(OH)4]3(CO3)(BH4)·7H2O, and the calculated content of 
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carbon is 1.08 wt%, close to the measured value of 1.11 wt%. The fit to 

the single-crystal diffraction data is furthermore slightly better than for 

the original model (compare the two columns in Table 6.1). The 

compound is thus stabilized by a very small amount of the atmospheric 

CO2 that slowly reacted with the borohydride solution yielding CO3
2− 

anions. 

The X-ray powder diffraction pattern of the manually separated 

and ground crystals is shown in the bottom of Figure 6.2b. It fits very 

well with that of the crystal structure model described above. According 

to the Rietveld refinement, the sample hydrolyzed on open air contains 

a K9[B4O5(OH)4]3(CO3)(BH4)·7H2O intermediate as a major phase 

(bottom Fig. 2b) and traces of potassium tetraborate dihydrate 

K2[B4O5(OH)4]·2H2O.[280] The same intermediate was also observed 

after incomplete hydrolysis of KBH4 under CO2 (middle pattern in the 

Figure 6.2b). Structure determination is difficult to perform due to the 

low resolution; however K2CO3, KHCO3, as well as other known K-B-

O-H compounds listed in the Pearson’s crystal database are not present 

in the mixture. It likely involves tetraborate and (hydrogeno)carbonate 

anions, since all the borohydride is hydrolyzed. 

The new compound K9[B4O5(OH)4]3(CO3)(BH4)·7H2O is a 

complex salt, containing isolated tetraborate [B4O5(OH)4]
2−, 

tetrahydroborate BH4
− and carbonate CO3

2− anions, Figure 6.2a. The 

tetraborate ion is common in alkali metal–B–O–H chemistry, present in 

borax [281] and in its potassium-based analogue 

K2[B4O5(OH)4]·2H2O.[282] The geometry of the tetraborate anion is not 

affected by the presence of carbonate and borohydride, as it is 

practically identical to the one in K2[B4O5(OH)4]·2H2O. More complex 
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polymeric anions contain fragments identical to tetraborate, as in the 

infinite 1D anion found in K4[B10O15(OH)4].
[283] 

 

Figure 6.2 – a) The crystal structure of K9[B4O5(OH)4]3(CO3)(BH4)·7H2O, space 

group P−62c, cell parameters: a = 11.2551(4), c = 17.1508(8) Å; b) Powder diffraction 

patterns from the samples in KBH4–H2O–CO2 system. The bottom pattern shows the 

Rietveld fit for the sample hydrolyzed on open air, the peaks of 

K9[B4O5(OH)4]3(CO3)(BH4)·7H2O are highlighted by the blue triangles. The peak 

positions of the minor phase, K2[B4O5(OH)4]·2H2O, are marked by the second row of 

green bars. The middle pattern from a partly reacted KBH4–H2O–CO2 contains 

K9[B4O5(OH)4]3(CO3)(BH4)·7H2O as the major phase, and the top pattern shows no 

title phase in the fully hydrolyzed product. 

In the title structure, the CO3
2‒ anion has a trigonal prismatic 

coordination by K atoms, capped on the square sides, increasing the 

coordination number to 9. These three extra contacts correspond to the 

shortest K∙∙∙O distances of 2.725(3) Å and to the linear B–O∙∙∙K 

arrangement. The structure contains two independent K cations, 

coordinated to 9 and 10 oxygen atoms from both anions and from four 

independent water molecules, designated Ow1–Ow3. The K∙∙∙Ow 

distances range from 2.706(4) to 3.468(1) Å; the latter contact 

corresponds to the weakly bound Ow3 site, populated by 49(1)%. The 



 214 

hydrogen atoms of the hydroxyl groups and the localized H-atoms of 

water molecules Ow1 and Ow2 form short and well directed hydrogen 

bonds. Unlike in the hydrated NaBH4,
[51,284] there are no dihydrogen 

bonds formed between O–Hδ+ and Hδ‒–B. 

3.2 Infrared and Raman Spectroscopy 

The infrared and Raman spectra of the complex include the 

typical anions' characteristic peaks (Figure 6.3). Most of the Raman and 

IR shifts correspond to the tetraborate anion [B4O5(OH)4]
2− known from 

borax Na2[B4O5(OH)4]·6H2O and potassium tetraborate dyhydrate 

K2[B4O5(OH)4]·2H2O: (Btetr–O) 573, 826, 944, 1006; (Btrig–O) 

1337 cm-1.[285−287] The characteristic shifts of tetrahydroborate BH4
− 

anion are close to those of KBH4: 1226, 2188, 2267, 2290 and 

2346 cm−1.[54,288] The strong Raman shift at 1050 cm−1 is typical for the 

carbonate anion (1040–1100 cm−1).[286] 

The evolution of the time-resolved ATR–FTIR spectra is shown 

in Figure 6.4. During the bubbling of CO2 through the water solution of 

KBH4 the intensity of the BH4
− band near 1100 cm−1 is going down to 

practically zero in 30–40 min, while the intensity of HCO3
− 

(~1630 cm−1) does not change significantly. The new peaks appear at 

930-1000 and 1320–1420 cm−1, and are identified as [B4O5(OH)4]
2− 

anion or similar derivatives forming during the hydrolysis.[287,289] In 

contrast to CO2-promoted hydrolysis, the KBH4 solution kept at room 

temperature without access of CO2 (closed even from air) retains BH4
– 

bands after 24 and even 96 hours, see Figure 6.5. 
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Figure 6.3 – The infrared (top) and Raman (bottom) spectra of 

K9[B4O5(OH)4]3(CO3)(BH4)·7H2O at RT. 

 

Figure 6.4 – The time-resolved online ATR-FTIR (adsorption) plot. 
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Figure 6.5 – The ATR-FTIR spectra from hydrolyzed of KBH4 under inert 

atmosphere after 24 and 96 hours, the signals from in 1300–1500 cm-1 are affected by 

the oversaturation. 

3.3 Thermal Analysis 

The title compound steadily gives mass loss starting from room 

temperature up to 350 °C. From TGA and DSC curves in Figure 6.6, 

we can discern only one big decomposition step, of about 19.3 wt. % of 

mass loss. The latter is higher than the expected loss of 7 water 

molecules (11.2 wt%) and rather corresponds to the loss of 12 H2O 

(19.2 wt%). The phenomena of releasing water both from crystalline 

and coordinated water (dehydration) as well as from complex anions 

containing OH (dehydroxylation) was known so far only for hydrated 

borates.[290] 
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Figure 6.6 – Thermal analysis of K9[B4O5(OH)4]3(CO3)(BH4)·7H2O crystals. 

4. Conclusions 

Hydrolysis of potassium borohydride in the presence of CO2 

yields an intermediate, containing three anions: the borohydride is 

almost fully hydrolyzed into tetraborate, with 1/13 of unreacted BH4
− 

co-crystallized in the solid, along with a minor amount of the carbonate. 

The same K9[B4O5(OH)4]3(CO3)(BH4)·7H2O solid is obtained by slow 

reaction of atmospheric CO2 with a water solution of KBH4, as well as 

upon bubbling the gas through the solution. The latter drastically 

increases the rate of hydrogen production, and thus enables to hydrolyze 

KBH4 on demand, by controlling the CO2 gas flow. This prompts us to 

suggest borohydride hydrolysis promoted by CO2 as a convenient 

system for the co-generation of hydrogen using spent fossil fuel gases 

(CO2 + H2O). The structural data and the studies in solution, in 

particular by time-resolved FTIR measurements allow us to suggest the 

following reaction for the formation of the intermediate: 
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13KBH4 + 37H2O + 3CO2 → 

→ K9[B4O5(OH)4]3(CO3)(BH4)·7H2O + 2K2CO3 + 48H2  (6.2) 

It produces 16 moles of H2 per mole of the adsorbed CO2 and 

thus is gravimetrically very efficient. This reaction shows gravimetric 

hydrogen release of 8.4 wt%, higher than the total hydrogen content in 

KBH4 (7.5 wt%). Thus it allows converting efficiently carbon dioxide 

into fuel, H2. Regarding the yield of H2 per KBH4, it reaches 92.3% 

compared to the complete hydrolysis of all the BH4
− groups. Carbon 

dioxide in water solution is a cheap and mild acid which drastically 

accelerates the hydrolysis of borohydrides. In particular, the hybrid 

system with CO2/H2O exhaust gases used for hydrolysis of 

borohydrides can achieve two targets: the generation of hydrogen for 

PEMFCs as an additional source of energy and the capture of carbon 

dioxide. 
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Chapter VII – General Conclusions 

This work presents several approaches to design new materials 

with better hydrogen storage properties in the field of complex 

hydrides. The biggest efforts have been devoted to the family of mixed-

cation M[Al(BH4)4] (M = Li+, Na+, K+, NH4
+ Rb+, Cs+) compounds. 

They were obtained by the reaction of solid MBH4 with liquid 

Al(BH4)3, the latter is highly unstable and explosive on air. Our 

synthetic approach excludes the formation of so-called “dead weight” 

MCl, as well as of the borohydride/chloride solid-state solutions and 

substitutions previously obtained by milling AlCl3 + 3MBH4 mixtures. 

The chloride-free compounds also show different crystal structures, 

determined by synchrotron X-ray powder diffraction and completed by 

DFT calculations. 

The thermal decomposition properties of M[Al(BH4)4] are 

diverse: Al(BH4)3 is released below 100 °C for M = Li+ and Na+, while 

heavier derivatives evolve hydrogen and diborane at 150 °C. 

Li[Al(BH4)4] firstly decomposes into Li4Al3(BH4)13 at 60 °C, desorbing 

Al(BH4)3, and the latter decomposes at 90 °C, releasing the rest of the 

starting borohydrides. Among this family, NH4[Al(BH4)4] occupies a 

special place, as it contains protic and hydridic hydrogens, recombining 

into hydrogen already at 35 °C. The major decomposition product was 

found to be Al(BH4)3∙NHBH, which we observed for the first time upon 

the thermal decomposition of Al(BH4)3∙NH3BH3. 

The experimental decomposition temperatures of metal 

borohydrides linearly correlate with the square root of the ionic 
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potential of metal atoms, and the M[Al(BH4)4] series falls on the least 

stable and thus the most practical side. The putative bimetallic Mg–Al 

and Ca–Al borohydrides are most likely unstable under ambient 

conditions. Consequently, the title family of Al-based borohydrides is 

likely complete. The new family of solids with convenient and versatile 

properties puts aluminum borohydride chemistry in the mainstream 

research in hydrogen storage, e.g. for the development of reactive 

hydride composites with an increased hydrogen content. 

The alternative way to stabilize Al(BH4)3 is the reaction with 

NH3BH3, which results in the new molecular compound 

Al(BH4)3·NH3BH3. Remarkably, this complex decomposes at ~70 °C, 

releasing 2 equivalents of pure hydrogen both in toluene solution and 

upon heating the solid. It shows considerably lower decomposition 

temperature, compared to the pure NH3BH3, desorbing the first 

equivalent at 120 °C and the second at 150 °C. To our knowledge, this 

is the first metal borohydride - ammonia borane complex, resulting in 

pure hydrogen release. This decomposition reaction yields an 

amorphous intermediate Al(BH4)3∙NHBH, characterized by NMR 

methods, which decomposes above 100 °C. 

The striking property of the title system is the endothermic 

dehydrogenation on the first decomposition step (39 kJ/mol, including 

melting), compared to the exothermic one for the pure ammonia borane 

(-22 kJ/mol on the first decomposition step, including melting). This 

feature gives a theoretical possibility for the direct rehydrogenation of 

Al(BH4)3∙NHBH, despite our trials were unsuccessful. The absence of 

complicated mixtures on the dehydrogenation may allow also for a 

viable chemical recycling of ammonia borane. 
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The alternative way to obtain hydrogen using new Al-based 

RHC was also explored in this work. In particular, the chosen RHC 

system NaAlH4–4NH3BH3 shows fascinating properties: the reaction 

proceeds already at 70 °C or under mechanochemical treatment at room 

temperature. This is the first example of a reaction where a complex 

hydride anion deprotonates AB. Until now only binary metal hydrides 

were reacted with AB, forming amidoboranes. The reaction was found 

to be exothermic, making this RHC nonapplicable as a reversible 

hydrogen store. 

Nevertheless, the properties of the first Al-based amidoborane, 

Na[Al(NH2BH3)4], look more promising. This compound decomposes 

in two steps with the formation of NaBH4, 8 equivalents of pure 

hydrogen and an amorphous product with the presumable composition 

of AlN4B3H(0÷1.8). The latter reversibly reabsorbs about 27% of the 

released hydrogen. This reabsorption regenerates neither NaAlH4 nor 

Na[Al(NH2BH3)4] but occurs between the amorphous product and 

intermediate(s) of the dehydrogenation. The example of 

Na[Al(NH2BH3)4] decomposition to AlN4B3H(0÷1.8) requires further in-

depth studies, viz. its chemical structure and an optimization of the 

rehydrogenation. 

Perspectives 

Our investigations open several potential applications for 

Al-based coplex hydrides. Firstly, the solid state storage of the unstable 

Al(BH4)3 was implemented. The future green rocket bipropellants 

might be based on M[Al(BH4)4] (M = Li+, Na+) in combination with 

H2O2 or other oxidizing agents. The new series of Al-based complex 
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borohydrides can also be used in the development of the reactive 

hydride composites with high hydrogen storage capacity. 

The second important result of this work shows the possibility 

of the endothermic dehydrogenation of ammonia borane in 

Al(BH4)3·NH3BH3, giving rise to a possible direct rehydrogenation. A 

significant drop of the decomposition temperature and the suppression 

of the undesirable decomposition products are the strong points of this 

system. Moreover, this model can be developed towards substituted 

ammonia boranes and other Al salts. We conclude that the 

decomposition of the staring complex into the Al-based intermediate 

can be assigned to Al(BH4)3 as a unique mild Lewis acid which 

coordinates both the starting and the dehydrogenated BHn groups (n = 

1, 3). This urges to use other Al-based Lewis acids e. g. AlCl3, less 

challenging with respect to stability and safety than aluminum 

borohydride. Our work proved the possibility to obtain the other derived 

complexes, such as Al(BH4)3·CH3NH2BH3, which adopts molecular 

structure similar to Al(BH4)3·NH3BH3, and the unique autoionized 

complex [Al(CH3NH2BH3)2Cl2][AlCl4], being an isomer of 

AlCl3·CH3NH2BH3. Further analysis of these compounds will help to 

understand the possibility to improve the hydrogen storage properties 

of ammonia boranes complexed with Al salts. 

Thirdly, the Al-based amidoborane was obtained for the first 

time and it was shown that it can be partially reversible in terms of 

hydrogen storage, making it one of the most attractive systems today. 

Our preliminary experiments show that the reaction of 

Na[Al(NH2BH3)4] formation easily takes place in a THF solution at 

room temperature, and these conditions are successfully applied to the 
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reaction in the LiAlH4-4AB system, uncontrollable in the solid state. 

Future works can also exploit the combination of amidoborane and 

borohydride ligands in the same Al-based compound, tuning their 

stability via different electron donor-acceptor properties of the ligands, 

e.g. by combining M[Al(BH4)4] and M[Al(NH2BH3)4] series. Further 

investigations on their decomposition products and the conditions of 

reversibility will shed a light to the possibility to obtain materials for 

solid-state hydrogen storage. 
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Appendices 

1. Supporting information for Chapter III 

 

Figure S1.1 – The logarithmic plot of ion current with temperature change. The 

highest change is observed for H2
+ at m/z = 2. The peak with m/z = 27 corresponds to 

diborane B2H5
+. The m/z = 42, 43, 56 and 57 can indicate an evolution of Al(BH4)3, 

however on the linear scale this change is not visible. 
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2. Supporting information for Chapter IV 

Table S2.1 – Crystal structure and refinement data for α,ß-Al(BH4)3·NH3BH3 

Polymorph α-Al(BH4)3·NH3BH3 ß-Al(BH4)3·NH3BH3 

Formula mass 102.37 102.37 

T [K] 150(2) 293(2) 

λ [Å] 0.82103 (synchrotron) 0.71073 (Mo Kα) 

Space group P21/c Cc 

Z 4 4 

Cell parameters a = 7.8585(2), 

b = 6.86473(14), 

c = 15.7136(8) Å; 

β = 96.429(4) °. 

a = 10.8196(8), 

b = 7.2809(4), 

c = 11.3260(9) Å; 

β = 107.695(8) °. 

V [Å3] 842.36(5) 850.0(1) 

ρcalc [g·cm-3] 0.807 0.800 

μ [mm-1] 0.198 0.135 

F (000) 232 232 

θ range max [°] 31.773 25.677 

Reflections collected 7815 2629 

Independent reflections 1661 [R(int) = 0.0299] 1442 [R(int) = 0.0577] 

Completeness 95.0 % (theta: 29.513°) 99.2 % (theta = 25.242°) 

Data / restraints / 

parameters 

1661 / 49 / 102 1442 / 120 / 101 

Goodness-of-fit  1.082 1.060 

R indices [I ≥ 2σ(I)] R1 = 0.0280, wR2 = 

0.0768 

R1 = 0.0645, wR2 = 

0.1618 

R indices (all data) R1 = 0.0301, wR2 = 

0.0780 

R1 = 0.0895, wR2 = 

0.1801 

Largest difference 

peak/hole [eÅ-3] 

0.158 and -0.214 0.400 and -0.265 

Table S2.2 – Atomic coordinates ( x 104) and equivalent isotropic displacement 

parameters (Å2x 103) for α-Al(BH4)3·NH3BH3. U(eq) is defined as one third of  the 

trace of the orthogonalized Uij tensor. 

 x y z U(eq) 

Al(1) 6828(1) 1001(1) 6479(1) 16(1) 

B(2) 6573(1) 944(1) 7933(1) 19(1) 

N(3) 8079(1) 169(1) 8583(1) 22(1) 

B(4) 8903(2) -1246(2) 6544(1) 24(1) 

B(5) 4020(1) 1170(2) 6074(1) 19(1) 

B(6)  7788(2) 3213(2) 5609(1) 26(1) 
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Table S2.3 – Hydrogen coordinates ( x 104) and isotropic displacement parameters 

(Å2x 103) for α-Al(BH4)3·NH3BH3. 

 x  y  z  U(eq) 

H(2A) 6158(14) -246(16) 7440(7) 29 

H(2B) 7083(14) 2209(15) 7559(7) 29 

H(2C) 5487(14) 1389(17) 8232(8) 29 

H(3A) 8818(8) -316(11) 8319(2) 33 

H(3B) 7713(4) -659(10) 8893(4) 33 

H(3C) 8493(7) 1077(8) 8878(4) 33 

H(4A) 9025(17) 311(16) 6814(8) 37 

H(4B) 7518(14) -1402(19) 6224(8) 37 

H(4C) 9696(16) -1350(18) 6043(8) 37 

H(4D) 9087(15) -2257(18) 7077(7) 37 

H(5A) 4898(14) -105(15) 5960(8) 28 

H(5B) 4878(14) 2313(16) 6469(7) 28 

H(5C) 3554(15) 1783(17) 5498(7) 28 

H(5D) 3141(14) 760(16) 6482(7) 28 

H(6A) 7267(16) 1663(16) 5431(9) 38 

H(6B) 7805(16) 3360(20) 6331(7) 38 

H(6C) 9069(14) 3220(20) 5464(9) 38 

H(6D) 6938(16) 4275(17) 5312(9) 38 

Table S2.4 – Atomic coordinates ( x 104) and equivalent isotropic displacement 

parameters (Å2x 103) for ß-Al(BH4)3·NH3BH3 U(eq) is defined as one third of the 

trace of the orthogonalized Uij tensor. 

 x y z U(eq) 

Al(1) 4407(5) -257(2) 3344(4) 44(1) 

B(2) 5000(11) -2272(17) 5000(10) 55(3) 

N(3) 4585(9) -4288(10) 4925(8) 78(2) 

B(4) 3894(11) -2462(18) 1919(9) 65(4) 

B(5) 6031(9) 1694(17) 4068(9) 52(3) 

B(6) 2760(13) 1670(20) 2603(11) 66(4) 
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Table S2.5 – Hydrogen coordinates ( x 104) and isotropic  displacement parameters 

(Å2x 103) for ß-Al(BH4)3·NH3BH3. 

 x  y  z  U(eq) 

H(2A) 4090(50) -1350(100) 4760(80) 82 

H(2B) 5600(80) -2110(130) 4320(70) 82 

H(2C) 5500(80) -1880(120) 5870(50) 82 

H(3A) 4051 -4525 4171 117 

H(3B) 4178 -4508 5486 117 

H(3C) 5282 -5004 5074 117 

H(4A) 4780(60) -1490(90) 2210(70) 98 

H(4B) 3300(80) -2050(120) 2570(60) 98 

H(4C) 4220(60) -3780(60) 2130(80) 98 

H(4D) 3370(60) -2140(110) 1030(40) 98 

H(5A) 5760(80) 700(90) 3250(50) 79 

H(5B) 5180(50) 1330(110) 4450(70) 79 

H(5C) 5910(70) 3000(60) 3750(60) 79 

H(5D) 6870(50) 1280(90) 4710(50) 79 

H(6A) 2950(90) 710(100) 3450(60) 99 

H(6B) 3650(50) 1470(130) 2260(80) 99 

H(6C) 1970(50) 1180(110) 1920(50) 99 

H(6D) 2760(80) 2990(60) 2910(70) 99 

 

 

Figure S2.1 – In-situ temperature variable X-ray powder diffraction analysis of 

ß-Al(BH4)3·NH3BH3, with 0.2 °C/min heating rate. The melting temperature is around 

52 °C. 
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Figure S2.2 – a) and b) The sample, used for variable-temperature Raman 

measurements, contained some impurity of NH3BH3, possibly form the unreacted 

NH3BH3, or due to the slow decomposition of the complex at low temperature (the 

sample was kept in argon during ~6 months at –35 °C). The comparison between the 

diffraction-pure Al(BH4)3·NH3BH3 and the “aged” sample is given in the Fig. S2.3a. 

The significantly different intensities between samples are highlighted and are 

characteristic for NH3BH3. 

c) and d) According to variable-temperature Raman spectroscopy, Al(BH4)3·NH3BH3 

decomposes near 75 °C, depicted by red color in the Fig. S2.3c. The highest drop of 

its intensities is observed for B–H (corresponding to B–H, coordinated with Al) and 

Al–B vibration regions. The temperature dependence of the most intense peak at 

2430–2435 cm–1 is shown in Fig. 2.3d. The peaks of NH3BH3 are becoming sharper 

at higher temperature, however their intensities do not changes significantly until 

105 °C, where NH3BH3 decomposes. Unfortunately, it is difficult to follow the two-

step decomposition of Al(BH4)3·NH3BH3 in this experiment. 
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Figure S2.3 – The two cycles of Al(BH4)3·NH3BH3 regeneration (top and middle) 

decomposed at 70 °C and 1 cycle at 100 °C (boom). The pressure before applying 

~150 bar of hydrogen at 30 °C and after heating it to 70°C (top and middle) with 

100 °C (bottom) with cooling back to 30 °C doesn’t significantly differ after cycles. 

The pressure changes are correlated to temperature variation rather than to chemical 

adsorption. 
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a) b) 

Figure S2.4 – a) and b) 1H NMR spectra of freshly obtained Al(BH4)3 in toluene-d8, 

where concentration of Al(BH4)3 in spectrum a) is higher than in spectrum b). 

 

Figure S2.5 – 1H NMR spectra of freshly dissolved Al(BH4)3·NH3BH3 in toluene-d8. 

 

Figure S2.6 – 1H NMR spectra Al(BH4)3·NH3BH3 in d8 toluene after 18 hours. 
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a) b) 

  
c) d) 

Figure S2.7 – a) 27Al and b) 27Al{H} NMR spectra of Al(BH4)3·NH3BH3 in toluene-d8 

after 2 hours; c) 11B  and d) 11B{H} NMR spectra of Al(BH4)3·NH3BH3 in toluene-d8 

after 2 hours. 

 

 
Figure S2.8 – 1H NMR spectra Al(BH4)3·NH3BH3 in toluene-d8 after heating to 

100 °C. 
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Table S2.6 – Crystal structure and refinement data for AlX3·L 

Compound [Al(CH3NH2BH3)2Cl2][AlCl4] Al(BH4)3·CH3NH2BH3 [Al(en)(BH4)2][Al(BH4)4] 

Formula mass 356.45 116.40 203.11 

T [K] 150(2) 150(2) 150(2) 

λ [Å] 0.71073 (Mo Kα) 0.71073 (Mo Kα) 0.71073 (Mo Kα) 

Space group Pbca P–1 P21/c 

Z 8 2 4 

Cell 

parameters  

a, b, c [Å] 



, ,  [°] 

a = 12.5826(5) 

b = 12.6510(5) 

c = 20.4039(8) 

a = 6.2764 (3) 

b = 7.9566 (5) 

c = 10.3058 (8) 

a = 8.4168(5),   

b = 12.0021(7) 

c = 16.2933(12) 

 70.277(7) 

74.744 (5) 

 = 86.041 (4) 

101.886(7)

V [Å3] 3247.9(2) 467.28(6) 1610.66(18) 

ρcalc [g·cm-3] 1.458 0.827 0.838 

μ [mm-1] 1.14 0.13 0.14 

F (000) 1440 132 456 

θ range max [°] 25.187 25.348 25.027 

Reflections 

collected 

11779 5863 9112 

Independent 

reflections 

2927 [R(int) = 0.088] 5863 2807 [R(int) = 0.119] 

Completeness 99.5 % (theta = 25.242°) 99.8 %  

(theta = 25.242°) 

98.6 %  

(theta = 25.242°) 

Data / 

restraints / 

parameters 

2927 / 0 / 133 5863 / 30 / 106 2807 / 32 / 181 

Goodness-of-
fit  

1.02 1.02 1.16 

R indices 

[I ≥ 2σ(I)] 

R1 = 0.042, wR2 = 0.086 R1 = 0.040,  

wR2 = 0.124 

R1 = 0.102,  

wR2 = 0.174 

R indices (all 

data) 

R1 = 0.077, wR2 = 0.075 R1 = 0.060,  

wR2 = 0.118 

R1 = 0.15,  

wR2 = 0.16 

Largest 

difference 
peak/hole  

[eÅ-3] 

0.39 and –0.33 0.29 and –0.23 0.36 and –0.25 
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Table S2.7 – Atomic coordinates ( x 104) and equivalent isotropic displacement 

parameters (Å2x 103) for [Al(CH3NH2BH3)2Cl2][AlCl4], U(eq) is defined as one third 

of the trace of the orthogonalized Uij tensor. 

 x y z U(eq) 

Al(1) 36163(10) 62198(8) 57885(5) 21.8(3) 

Cl(2) 42864(9) 70958(7) 65643(4) 35.3(3) 

Cl(3) 41216(8) 69067(7) 48806(4) 28.2(2) 

B(4) 1875(4) 6119(3) 5558(2) 28.8(10) 

N(5) 1450(3) 6695(2) 49317(14) 29.8(8) 

C(6) 741(4) 6021(3) 45297(18) 35.4(10) 

B(7) 4046(4) 4573(3) 61209(19) 25.2(10) 

N(8) 4945(3) 4448(2) 66407(13) 29.7(8) 

C(9) 4612(4) 3787(3) 72088(17) 39.8(12) 

Al(11) 26534(10) 65031(8) 83288(5) 22.5(3) 

Cl(12) 18382(9) 58793(7) 75025(4) 33.0(3) 

Cl(13) 18734(9) 59285(7) 92014(4) 27.9(2) 

Cl(14) 42738(9) 60516(8) 83434(5) 40.8(3) 

Cl(15) 25682(9) 81945(7) 83369(5) 32.3(3) 

Table S2.8 – Hydrogen coordinates ( x 104) and isotropic displacement parameters 

(Å2x 103) for [Al(CH3NH2BH3)2Cl2][AlCl4]. 

 x  y  z  U(eq) 

H(4A) 1194(12) 5732(16) 5822(8) 43 

H(4B) 2265(17) 6710(11) 5892(8) 43 

H(4C) 2471(16) 5501(16) 5411(3) 43 

H(5A) 10890 72850 50560 36 

H(5B) 20120 69030 46830 36 

H(6A) 11010 53530 44290 53 

H(6B) 05670 63870 41210 53 

H(6C) 860 58750 47740 53 

H(7A) 3774(12) 3743(13) 5945(8) 38 

H(7B) 4364(8) 5053(16) 5677(8) 38 

H(7C) 3331(13) 5015(16) 6353(5) 38 

H(8A) 55230 41490 64480 36 

H(8B) 51380 51000 67880 36 

H(9A) 39680 40860 74050 60 

H(9B) 51820 37760 75360 60 

H(9C) 44680 30650 70590 60 
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Table S2.9 – Atomic coordinates ( x 104) and equivalent isotropic displacement 

parameters (Å2x 103) for Al(BH4)3·CH3NH2BH3, U(eq) is defined as one third of the 

trace of the orthogonalized Uij tensor. 

 x y z U(eq) 

Al(1) 49960(8) 67166(7) 20222(5) 20.1(2) 

B(2) 5562(3) 3728(3) 3236(2) 24.7(5) 

N(3) 7721(2) 27647(19) 26978(16) 24.1(4) 

C(4) 8693(3) 1588(3) 03846(2) 32.6(5) 

B(5) 1345(4) 6589(3) 2903(3) 29.9(5) 

B(6) 5806(4) 9341(3) 2111(3) 28.9(5) 

B(7) 7433(4) 6739(3) -0013(2) 26.3(5) 

 

Table S2.10 – Hydrogen coordinates ( x 104) and isotropic displacement parameters 

(Å2x 103) for Al(BH4)3·CH3NH2BH3. 

 x  y  z  U(eq) 

H(2A) 6158(14) -246(16) 7440(7) 37 

H(2B) 4689(14) 4238(15) 2382(10) 37 

H(2C) 6008(6) 4853(16) 3521(13) 37 

H(3A) 74270 21190 21950 29 

H(3B) 87480 36020 21050 29 

H(4A) 90730 22940 43730 49 

H(4B) 300 10490 34250 49 

H(4C) 76200 06440 44980 49 

H(5A) 271(3) 641(3) 352(2) 45 

H(5B) 234(3) 682(3) 1722(16) 45 

H(5C) 042(3) 536(2) 325(2) 45 

H(5D) 054(3) 779(2) 301(2) 45 

H(6A) 488(3) 906(3) 135(2) 43 

H(6B) 620(4) 792(2) 284(2) 43 

H(6C) 738(3) 996(3) 147(2) 43 

H(6D) 473(3) 000(3) 279(2) 43 

H(7A) 551(2) 686(3) 20(2) 39 

H(7B) 783(3) 662(3) 1064(16) 39 

H(7C) 789(3) 549(2) -21(2) 39 

H(7D) 821(3) 797(2) -77(2) 39 



 236 

Table S2.11 – Atomic coordinates ( x 104) and equivalent isotropic displacement 

parameters (Å2x 103) for [Al(NH2CH2CH2NH2)(BH4)2][Al(BH4)4], U(eq) is defined 

as one third of the trace of the orthogonalized Uij tensor. 

 x y z U(eq) 

Al(1) 67800(17) 42122(12) 17204(9) 29.1(4) 

B(2) 8644(8) 5312(6) 1432(5) 42.3(16) 

B(3) 4273(8) 4737(6) 1359(5) 49.8(18) 

N(4) 7608(4) 2766(3) 1457(2) 30.9(10) 

C(5) 8414(6) 2237(4) 2262(3) 37.7(13) 

C(6) 7319(6) 2422(4) 2877(3) 36.1(12) 

N(7) 6876(5) 3624(3) 2850(2) 34.1(10) 

Al(11) 25537(17) 34359(11) 49655(9) 27.6(4) 

B(12) 4083(6) 3982(4) 6213(3) 19.5(11) 

B(13) 4606(8) 2939(6) 4357(4) 39.7(15) 

B(14) 627(8) 2534(6) 5451(5) 46.6(17) 

B(15) 976(9) 4330(6) 3883(5) 49.8(18) 
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Table S2.12 – Hydrogen coordinates ( x 104) and isotropic displacement parameters 

(Å2x 103) for [Al(NH2CH2CH2NH2)(BH4)2][Al(BH4)4]. 

 x  y  z  U(eq) 

H(2A) 847(6) 504(4) 2057(17) 63 

H(2B) 760(4) 496(4) 098(2) 63 

H(2C) 848(6) 6143(16) 143(3) 63 

H(2D) 965(4) 495(4) 131(3) 63 

H(3A) 531(4) 521(4) 173(3) 75 

H(3B) 479(6) 396(3) 115(3) 75 

H(3C) 357(6) 444(4) 174(3) 75 

H(3D) 376(6) 522(4) 087(2) 75 

H(4A) 67790 23300 11880 37 

H(4B) 83320 28540 11170 37 

H(5A) 94900 25800 24730 45 

H(5B) 85680 14300 21800 45 

H(6A) 63290 19590 27220 43 

H(6B) 78890 22130 34500 43 

H(7A) 76280 40080 32250 41 

H(7B) 58940 37090 29930 41 

H(12A) 395(5) 3109(17) 600(3) 29 

H(12B) 336(4) 453(3) 574(2) 29 

H(12C) 353(5) 400(3) 6700(19) 29 

H(12D) 525(2) 420(3) 633(3) 29 

H(13A) 377(5) 239(3) 461(3) 60 

H(13B) 431(6) 3802(19) 451(3) 60 

H(13C) 578(3) 282(4) 463(3) 60 

H(13D) 430(6) 286(4) 3729(11) 60 

H(14A) 82(6) 3446(16) 547(3) 70 

H(14B) 154(5) 217(4) 513(3) 70 

H(14C) 81(6) 228(4) 6054(15) 70 

H(14D) -47(3) 236(4) 509(3) 70 

H(15A) 119(6) 3421(16) 392(4) 75 

H(15B) 172(5) 475(4) 443(2) 75 

H(15C) 147(6) 460(4) 340(3) 75 

H(15D) -19(3) 443(5) 393(4) 75 
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3. Supporting information for Chapter V 

 

Figure S3.1 – The variable temperature plot of XRPD patterns of the LiAlH4–4AB 

composite after ball milling (SNBL/SRF synchrotron, λ = 0.823065 Å). 

Transformation of the low temperature (LT) orthorhombic polymorph, present 

alongside with metallic aluminium, to high temperature (HT) hexagonal form of 

LiBH4 was found. 
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Table S3.1 – Atomic coordinates and isotropic atomic displacements for 

Na[Al(NH2BH3)4]. 

 Experimental data DFT data 

Atom Wyck. x y z U [Å2] x y z 

Na1 2i 0.1429(6) 0.7228(7) 0.0397(6) 0.059(2) 0.14514 0.71106 0.05273 

Al1 2i 0.2803(4) 0.2439(5) 0.6364(6) 0.0256(15) 0.28000 0.24528 0.63692 

N1 2i 0.6581(9) 0.8779(9) 0.1606(10) 0.0113(15) 0.65158 0.87372 0.14871 

N2 2i 0.3017(8) 0.1254(9) 0.4168(10) 0.0113(15) 0.30791 0.11082 0.42315 

N3 2i 0.6104(7) 0.5401(11) 0.3135(10) 0.0113(15) 0.61196 0.53865 0.32940 

N4 2i 0.0694(8) 0.2757(9) 0.5947(11) 0.0113(15) 0.07273 0.28206 0.59668 

B1 2i 0.6745(14) 0.0820(15) 0.2292(16) 0.0113(15) 0.67187 0.07873 0.22372 

B2 2i 0.1600(12) 0.0768(14) 0.2338(15) 0.0113(15) 0.16229 0.06401 0.24040 

B3 2i 0.4316(14) 0.5769(17) 0.2511(16) 0.0113(15) 0.43403 0.56381 0.25547 

B4 2i 0.0400(13) 0.4176(14) 0.7461(15) 0.0113(15) 0.03852 0.42232 0.74857 

H11 2i 0.5492(9) 0.8461(9) 0.0759(10) 0.0113(15) 0.54267 0.84192 0.06405 

H12 2i 0.7217(9) 0.8486(9) 0.0749(10) 0.0113(15) 0.71518 0.84437 0.06305 

H13 2i 0.5736(14) 0.1235(15) 0.2926(16) 0.0113(15) 0.57088 0.12017 0.28711 

H14 2i 0.7968(14) 0.1085(15) 0.3532(16) 0.0113(15) 0.79412 0.10525 0.34767 

H15 2i 0.6691(14) 0.1682(15) 0.1022(16) 0.0113(15) 0.66646 0.16491 0.09674 

H21 2i 0.3474(8) 1.0100(9) 0.4582(10) 0.0113(15) 0.35354 0.99539 0.46458 

H22 2i 0.3814(8) 0.1869(9) 0.3787(10) 0.0113(15) 0.38761 0.17236 0.38507 

H23 2i 0.0810(12) 1.9684(14) 0.2672(15) 0.0113(15) 0.08332 1.95558 0.27376 

H24 2i 0.0921(12) 0.1973(14) 0.2024(15) 0.0113(15) 0.90745 0.80433 0.79709 

H25 2i 0.2030(12) 0.0065(14) 0.1080(15) 0.0113(15) 0.79656 0.99508 0.89143 

H31 2i 0.6370(7) 0.4907(11) 0.4395(10) 0.0113(15) 0.63858 0.48928 0.45533 

H32 2i 0.6375(7) 0.4441(11) 0.2252(10) 0.0113(15) 0.63902 0.44268 0.24106 

H33 2i 0.4026(14) 0.7053(17) 0.3457(16) 0.0113(15) 0.40506 0.69218 0.35008 

H34 2i 0.6018(14) 0.4240(17) 0.9047(16) 0.0113(15) 0.60423 0.41090 0.90910 

H35 2i 0.6308(14) 0.5796(17) 0.7274(16) 0.0113(15) 0.63331 0.56648 0.73172 

H41 2i 0.0137(8) 0.1604(9) 0.5918(11) 0.0113(15) 0.01702 0.16681 0.59381 

H42 2i 0.0188(8) 0.3111(9) 0.4632(11) 0.0113(15) 0.02217 0.31748 0.46516 

H43 2i 0.9041(13) 0.4331(14) 0.7070(15) 0.0113(15) 0.90263 0.43780 0.70941 

H44 2i 0.0951(13) 0.3714(14) 0.9023(15) 0.0113(15) 0.09364 0.37612 0.90474 

H45 2i 0.0989(13) 0.5590(14) 0.7446(15) 0.0113(15) 0.09738 0.56368 0.74708 
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Table S3.2 – Calculated lattice parameters for NaAlH4, NH3BH3 and 

Na[Al(NH2BH3)4]. 

 NaAlH4 (Å) NH3BH3 (Å) Na[Al(NH2BH3)4] (Å, °) 

Present without 

van der Waals 

interactions 

a = 4.999, 

c = 11.122 

a = 5.209, 

b = 4.988, 

c = 5.447 

a = 9.435, b = 7.719, c = 7.625;  

α = 97.21, β = 109.22, γ = 89.73 

Present with van 

der Waals 

interactions 

a = 4.746, 

c = 10.572 

a = 5.576, 

b = 4.269, 

c = 4.768 

a = 9.056, b = 7.290, c = 7.241;  

α = 97.89, β = 110.28, γ = 88.53 

Experimental 

data 

a = 5.0265,  

c = 11.3706[1] 

a = 5.0398, 

c = 11.4319[a] 

a = 5.395, 

b = 4.887, 

c = 4.986[2] 

a = 9.4352, b = 7.7198, c = 7.6252;  

α = 97.211; β = 109.223, γ = 89.728[a] 

Calculated data a = 5.0004, 

c = 11.1141[3] 

a = 5.172, 

b = 4.968, 

c = 5.612[4] 

 

[a] Obtained in this work at 100 °C. 

[1] Gross, K. J.; Guthrie, S.; Takara S. et al. J. Alloys Compd. 2000, 297, 270–281. 

[2] Klooster, W. T.; Koetzle, T. F.; Siegbahn, P. E. M. et al. J. Am. Chem. Soc. 1999, 121, 6337–6343. 

[3] Frankcombe, T. J.; Løvvik, O. M. J. Phys. Chem. B 2006, 110, 622–630. 

[4] Bheema Lingam, C.; Ramesh Babu, K.; Tewari S. P.; J. Comput. Chem. 2011, 32, 1734–1742. 

 

 

Table S3.3 – Dihydrogen bond lengths (Å) and angles (°) for in Na[Al(NH2BH3)4]. 

 Experimental data DFT data 

N–Hδ+∙∙∙Hδ––B d(H∙∙∙H) ∠(N–H∙∙∙H) d(H∙∙∙H) ∠(N–H∙∙∙H) 

N(1)–H(11)∙∙∙H(15)–B(1) 2.06(2) 169.0(8) 1.95 167.8 

N(1)–H(12)∙∙∙H(25)–B(2) 2.18(1) 134.4(7) 2.17 133.5 

N(2)–H(22)∙∙∙H(13)–B(1) 2.16(2) 139.3(8) 2.12 141.7 

N(3)–H(31)∙∙∙H(35)–B(3) 2.24(1) 137.2(8) 2.13 138.8 

N(3)–H(32)∙∙∙H(15)–B(1) 2.28(1) 157.6(8) 2.34 160.2 

N(4)–H(41)∙∙∙H(23)–B(2) 1.96(1) 143.9(8) 1.92 144.0 

N(4)–H(42)∙∙∙H(45)–B(4) 2.00(1) 162.1(8) 1.97 163.9 
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4. Supporting information for Chapter VI 

Table S4.1 - Elemental analysis of carbon and hydrogen. 

Element C H N 

% Theory 1.08  2.56  

% Found 1.11 2.80 <0.10 

 

Figure S4.1 – Raman spectrum of the title compound excited at 488nm. It corresponds 

well to the spectrum excited at 532 nm (Figure 6.3) 

 

Figure S4.2 – Comparison of the transmission IR spectrum of a KBr pellet with the 

title compound upper trace) with the ATR FT-IR of a neat sample. The B–H stretches 

at 2300 cm-1 do not appear well for this ATR spectrum, as this region is equally subject 

to the diamond absorption by the ATR cell.  
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5. In Pursuit of the Crystal Structure of Ti(BH4)3 

5.1 Motivation 

As it was mentioned in the Chapter V, the presence of Ti in 

alanates allows for their rehydrogenation.[27] The mechanism of the 

reactions between complex hydrides and these additives is still not fully 

knonw,[291] that is why any information on Ti-containing hydrides is of 

interest for hydrogen storage community. In particular, Ti(BH4)3 is 

among the least investigated borohydrides due to its extreme reactivity 

and instability. The investigations of gaseous Ti(BH4)3 reveals 

autocatalytic decomposition at 25 °C.[292] Serious difficulties of the 

characterization of Ti(BH4)3 in the solid state allowed only for the gas-

phase studies. Hence, the structure of gaseous Ti(BH4)3 has been 

characterized using electron diffraction[293] and photoelectron 

spectroscopic methods.[294] Due to the recent development of X-ray 

powder diffraction methods, which allow to determine compounds at 

low temperatures and inert conditions, we tried to determine the crystal 

structure of Ti(BH4)3. 

5.2 Experiments and Preliminary Results 

Synthesis. The synthesis of Ti(BH4)3 has been performed, using 

the commercially available TiCl4 (Sigma-Aldrich, ≥99 %) and LiBH4 

(Boss chemical industry Co., 96 %). The reaction (7.1) between the 

reagents was performed in the inert glove box according to the 

simplified procedure, described by Refs.[292,293]: 

2TiCl4 + 8LiBH4 → 2Ti(BH4)3 + 8LiCl+B2H6 + H2  (7.1) 
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Presumably Ti(BH4)3 was prepared by passing a stream of TiCl4 

vapor thought a layer of powdered LiBH4 (situated under the dry glass 

filter) at room temperature. The volatile products were removed under 

continuous vacuum and trapping at 77 K. During the reaction, the 

products were condensing on the glass under dynamic vacuum, with 

formation of greenish (at room temperature) and down the vacuum line 

of purple (77 K) colour, in accordance to the phase transitions of 

Ti(BH4)3 described in the literature. For the transportation, the trapped 

products were kept in the dry ice before the synchrotron X-ray powder 

diffraction measurements. 

Variable-temperature synchrotron X-ray powder 

diffraction determination. The synchrotron measurements were 

performed at SNBL (Grenoble, France). The trapped purple powder 

was placed under nitrogen atmosphere on the copper plate partly 

submerged in the liquid nitrogen. The sample was loaded on the cold 

surface and manipulated under the microscope. It was mouned on the 

MicroMeshes pin, frozen in LN2 and put rapidly under the nitrogen 

stream at 100 K. The gas flow was gradually heated (6 °C/min) from 

100 K to 400 K, see the diffraction data in Figure 7.1. 

According to the variable-temperature powder diffraction, three 

different regions can be recognized: at 100−245 K, at 245−317 K and 

above 317 K, they are depicted by black, red and blue colors, 

respectively in the Figure 7.1. In the first region we saw two different 

crystalline phases, their diffraction peaks vanishing at 245 and 317 K. 

The more stable of the two phases was identified as TiCl3·6H2O.[295] 
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Figure 7.1 – Temperature evolution of X-ray powder diffraction patterns from TiCl4 

reacted with LiBH4 (SNBL, λ = 0.823065 Å). 

 

Figure 7.2 – The phase analysis of TiCl4 reacted with LiBH4 (SNBL, λ = 0.823065 Å) 

collected at 245 K. The phase of “X” was refined in Le Bail mode (SG. I2/m 

a = 18.3733(9); b = 11.7120(6); c = 12.6878(6) Å; β = 100.632(4)°). 

The data below 245 K are difficult to analyze, due to the 

broadening of the diffraction peaks with a simple unknown phase. That 

is why we focused our attention on the second phase, “X” at the point 

when the broad peaks disappear. The indexing in DICVOL[166] of the 
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resolved diffraction peaks of “X”, suggested the monoclinic unit cell. 

Le Bail fit with the space group I2/m fits well the diffraction pattern, 

see Figure 7.2. The obtained unit cell volume of 2683.4(2) Å3 of the 

phase “X” is very close to one of 2652 Å3 for α-Al(BH4)3 (space group 

C2/c),[66] supporting the likely composition Ti(BH4)3. However, neither 

crystal structure of α-Al(BH4)3, nor direct space method of crystal 

structure solution in FOX[167] succeed with possible Z = 16 of Ti(BH4)3 

in this lattice. 

In conclusion, this volume of the unit cell, as well as the 

decomposition temperature near 40 °C are suggesting the presence of 

Ti(BH4)3 (decomposing at 25 °C) or its chlorine-containing derivative, 

e.g. TiCl(BH4)2.
[292] Moreover, the complex of TiCl3·6H2O confirms 

the reduction of Ti4+ to Ti3+. Unfortunately, the presence of H2O is 

undesirable for the further investigations, as numerous unwanted 

products can form. That is likely why our efforts to solve the crystal 

structure of “X” did not succeed. For the further analysis of the products 

of the reaction 7.1, it is necessary to improve the synthesis procedure, 

both for the synthetic and for X-ray powder diffraction procedures. 
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