132 research outputs found

    Factors regulating Hb F synthesis in thalassemic diseases

    Get PDF
    BACKGROUND: The thalassemic syndromes originate from mutations of the globin genes that cause, besides the characteristic clinical picture, also an increased Hb F amount. It is not yet clear if there are more factors, besides the beta globin genotype, determining the Hb F production. We have tried to find out if there are relations between total Hb and Hb F, between erythropoietin (Epo) and Hb F, between Hb F and point mutations of the gamma gene promoters. MATERIALS AND METHODS: Hematologic parameters, iron status, alpha/non-alpha globin ratio, Epo level, and thalassemic defects of the alpha-, beta-, and gamma-globin genes were explored using standard methods in patients affected by thalassemic diseases. Ninety-five non thalassemic individuals have been examined as controls. RESULTS: Two clinical variants of beta-thalassemia intermedia referred to as beta-thal int sub-silent and evident are associated with distinct sets of mutations of the beta-globin gene. Silent beta thal mutations are invariably associated with sub-silent beta thal int; beta° or severe beta(+) thal mutations are associated with evident beta thal int (88%) and almost invariably (98%) with thalassemia major. A positive correlation was observed between the severity of the disease and the Hb F level, but no correlation was found between the Hb F and erythropoietin (Epo) level. The mutation Ggamma -158 C→T was detected in 26.9% of patients affected by beta-thal int sub-silent and evident, respectively, but only in 2% of patients with thalassemia major. CONCLUSIONS: The severity of beta-thal int and the increased Hb F level are strictly dependent from the type of beta-globin gene mutations. No relation is found between Hb F synthesis and Epo secretion. The mutation Ggamma -158 C→T, common among patients affected by beta-thal int and very rare in thal major patients, does not seem, in this study, to influence the Hb F content in beta thal int patients

    Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell

    Get PDF
    Biopolymer composite cell walls maintain cell shape and resist forces in plants, fungi and bacteria. Peptidoglycan, a crucial antibiotic target and immunomodulator, performs this role in bacteria. The textbook structural model of peptidoglycan is a highly ordered, crystalline material. Here we use atomic force microscopy (AFM) to image individual glycan chains in peptidoglycan from Escherichia coli in unprecedented detail. We quantify and map the extent to which chains are oriented in a similar direction (orientational order), showing it is much less ordered than previously depicted. Combining AFM with size exclusion chromatography, we reveal glycan chains up to 200 nm long. We show that altered cell shape is associated with substantial changes in peptidoglycan biophysical properties. Glycans from E. coli in its normal rod shape are long and circumferentially oriented, but when a spheroid shape is induced (chemically or genetically) glycans become short and disordered

    The Kolumbo submarine volcano of Santorini island is a large pool of bacterial strains with antimicrobial activity

    Get PDF
    Microbes in hydrothermal vents with their unique secondary metabolism may represent an untapped potential source of new natural products. In this study, samples were collected from the hydrothermal field of Kolumbo submarine volcano in the Aegean Sea, in order to isolate bacteria with antimicrobial activity. Eight hundred and thirty-two aerobic heterotrophic bacteria were isolated and then differentiated through BOX-PCR analysis at the strain level into 230 genomic fingerprints, which were screened against 13 different type strains (pathogenic and nonpathogenic) of Gram-positive, Gram-negative bacteria and fungi. Forty-two out of 176 bioactive-producing genotypes (76 %) exhibited antimicrobial activity against at least four different type strains and were selected for 16S rDNA sequencing and screening for nonribosomal peptide (NRPS) and polyketide (PKS) synthases genes. The isolates were assigned to genus Bacillus and Proteobacteria, and 20 strains harbored either NRPS, PKS type I or both genes. This is the first report on the diversity of culturable mesophilic bacteria associated with antimicrobial activity from Kolumbo area; the extremely high proportion of antimicrobial-producing strains suggested that this unique environment may represent a potential reservoir of novel bioactive compounds

    Expression and In Vivo Rescue of Human ABCC6 Disease-Causing Mutants in Mouse Liver

    Get PDF
    Loss-of-function mutations in ABCC6 can cause chronic or acute forms of dystrophic mineralization described in disease models such as pseudoxanthoma elasticum (OMIM 26480) in human and dystrophic cardiac calcification in mice. The ABCC6 protein is a large membrane-embedded organic anion transporter primarily found in the plasma membrane of hepatocytes. We have established a complex experimental strategy to determine the structural and functional consequences of disease-causing mutations in the human ABCC6. The major aim of our study was to identify mutants with preserved transport activity but failure in intracellular targeting. Five missense mutations were investigated: R1138Q, V1298F, R1314W, G1321S and R1339C. Using in vitro assays, we have identified two variants; R1138Q and R1314W that retained significant transport activity. All mutants were transiently expressed in vivo, in mouse liver via hydrodynamic tail vein injections. The inactive V1298F was the only mutant that showed normal cellular localization in liver hepatocytes while the other mutants showed mostly intracellular accumulation indicating abnormal trafficking. As both R1138Q and R1314W displayed endoplasmic reticulum localization, we tested whether 4-phenylbutyrate (4-PBA), a drug approved for clinical use, could restore their intracellular trafficking to the plasma membrane in MDCKII and mouse liver. The cellular localization of R1314W was significantly improved by 4-PBA treatment, thus potentially rescuing its physiological function. Our work demonstrates the feasibility of the in vivo rescue of cellular maturation of some ABCC6 mutants in physiological conditions very similar to the biology of the fully differentiated human liver and could have future human therapeutic application

    Molecular Mining of Alleles in Water Buffalo Bubalus bubalis and Characterization of the TSPY1 and COL6A1 Genes

    Get PDF
    discovered in the process. gene in water buffalo, which localized to the Y chromosome.The MASA approach enabled us to identify several genes, including two of clinical significance, without screening an entire cDNA library. Genes identified with TGG repeats are not part of a specific family of proteins and instead are distributed randomly throughout the genome. Genes showing elevated expression in the testes and spermatozoa may prove to be potential candidates for in-depth characterization. Furthermore, their possible involvement in fertility or lack thereof would augment animal biotechnology

    Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control

    Get PDF
    Local field-potentials (LFPs) are generated by neuronal ensembles and contain information about the activity of single neurons. Here, the LFPs of the cerebellar granular layer and their changes during long-term synaptic plasticity (LTP and LTD) were recorded in response to punctate facial stimulation in the rat in vivo. The LFP comprised a trigeminal (T) and a cortical (C) wave. T and C, which derived from independent granule cell clusters, co-varied during LTP and LTD. To extract information about the underlying cellular activities, the LFP was reconstructed using a repetitive convolution (ReConv) of the extracellular potential generated by a detailed multicompartmental model of the granule cell. The mossy fiber input patterns were determined using a Blind Source Separation (BSS) algorithm. The major component of the LFP was generated by the granule cell spike Na+ current, which caused a powerful sink in the axon initial segment with the source located in the soma and dendrites. Reproducing the LFP changes observed during LTP and LTD required modifications in both release probability and intrinsic excitability at the mossy fiber-granule cells relay. Synaptic plasticity and Golgi cell feed-forward inhibition proved critical for controlling the percentage of active granule cells, which was 11% in standard conditions but ranged from 3% during LTD to 21% during LTP and raised over 50% when inhibition was reduced. The emerging picture is that of independent (but neighboring) trigeminal and cortical channels, in which synaptic plasticity and feed-forward inhibition effectively regulate the number of discharging granule cells and emitted spikes generating “dense” activity clusters in the cerebellar granular layer

    Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Get PDF
    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods
    corecore