30 research outputs found

    Socio-Demographic Determinants of Condom Use Among Sexually Active Young Adults in Rural KwaZulu-Natal, South Africa

    Get PDF
    AIM: To investigate patterns, levels and socio-demographic determinants of condom use and consistency of use among young adults aged 15-24 years.BACKGROUND: Condoms are known to prevent HIV infection. However, HIV prevalence and incidence remain high.METHODS: This study was conducted in the Africa Centre Demographic Surveillance Area (ACDSA) in rural KwaZulu-Natal. Analysis focused on resident young adults aged 15-24 years in 2005. In univariable and multivariable analyses, determinants of condom use and consistency of use among 15-24 year olds were estimated using data collected in 2005. 'Ever' condom use was defined as the proportion who reported having used a condom; consistent use among those ever using as "always" using condoms with most recent partner in the last year.RESULTS: 3,914 participants aged 15-24 years reported ever having sex, of whom 52% reported condom use. Adjusting for age, sex, number of partners, residence of partner, partner age difference, type of partner and socio-economic status (SES), having an older partner decreased likelihood (aOR=0.69, p<0.01), while belonging to a household in a higher SES increased likelihood of ever using condoms (aOR=1.82, p<0.01). Being female (aOR=0.61 p<0.01) and having a regular partner (aOR=0.65 p<0.01) were independently associated with low consistent condom use.CONCLUSIONS: In this rural South African setting, condom use remains low, especially among females and with an older partner, situations commonly associated with increased HIV acquisition. Targeted supportive interventions to increase condom use need to be developed if HIV prevention programmes are to be successful

    Improving local health through community health workers in Cambodia: challenges and solutions

    Get PDF
    Volunteer community health workers (CHWs) are an important link between the public health system and the community. The ‘Community Participation Policy for Health’ in Cambodia identifies CHWs as key to local health promotion and as a critical link between district health centres and the community. However, research on the challenges CHWs face and identifying what is required to optimise their performance is limited in the Cambodian context. This research explores the views of CHWs in rural Cambodia, on the challenges they face when implementing health initiatives

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    Alley coppice—a new system with ancient roots

    Get PDF

    A prenylated dsRNA sensor protects against severe COVID-19

    Get PDF
    Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2. We show that a common splice-acceptor SNP (Rs10774671) governs whether people express prenylated OAS1 isoforms that are membrane-associated and sense specific regions of SARS-CoV-2 RNAs, or only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. Importantly, in hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting this antiviral defense is a major component of a protective antiviral response

    SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses

    Get PDF
    On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses
    corecore