24 research outputs found

    ATRX dysfunction Induces replication defects in primary mouse cells

    Get PDF
    The chromatin remodeling protein ATRX, which targets tandem repetitive DNA, has been shown to be required for expression of the alpha globin genes, for proliferation of a variety of cellular progenitors, for chromosome congression and for the maintenance of telomeres. Mutations in ATRX have recently been identified in tumours which maintain their telomeres by a telomerase independent pathway involving homologous recombination thought to be triggered by DNA damage. It is as yet unknown whether there is a central underlying mechanism associated with ATRX dysfunction which can explain the numerous cellular phenomena observed. There is, however, growing evidence for its role in the replication of various repetitive DNA templates which are thought to have a propensity to form secondary structures. Using a mouse knockout model we demonstrate that ATRX plays a direct role in facilitating DNA replication. Ablation of ATRX alone, although leading to a DNA damage response at telomeres, is not sufficient to trigger the alternative lengthening of telomere pathway in mouse embryonic stem cells

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    MHC Class I-restricted Recognition of a Melanoma Antigen by a Human CD4+ Tumor Infiltrating Lymphocyte

    No full text
    It is generally considered that MHC class I-restricted antigens are recognized by CD8+ T cells, whereas MHC class II-restricted antigens are recognized by CD4+ T cells. In the present study, we report an MHC class I-restricted CD4+ T cell isolated from the tumor infiltrating lymphocytes (TILs) of a patient with metastatic melanoma. TIL 1383 I recognized HLA-A2+ melanoma cell lines but not autologous transformed B cells or fibroblasts. The antigen recognized by TIL 1383 I was tyrosinase, and the epitope was the 368–376 peptide. Antibody blocking assays confirmed that TIL 1383 I was MHC class I restricted, and the CD4 and CD8 coreceptors did not contribute significantly to antigen recognition. TIL 1383 I was weakly cytolytic and secreted cytokines in a pattern consistent with it being a T_(h1) cell. The avidity of TIL 1383 I for peptide pulsed targets is 10–100-fold lower than most melanoma-reactive CD8+ T cell clones. These CD4+ T cells may represent a relatively rare population of T cells that express a T-cell receptor capable of cross-reacting with an MHC class I/peptide complex with sufficient affinity to allow triggering in the absence of the CD4 coreceptor

    MHC Class I-restricted Recognition of a Melanoma Antigen by a Human CD4+ Tumor Infiltrating Lymphocyte

    No full text
    It is generally considered that MHC class I-restricted antigens are recognized by CD8+ T cells, whereas MHC class II-restricted antigens are recognized by CD4+ T cells. In the present study, we report an MHC class I-restricted CD4+ T cell isolated from the tumor infiltrating lymphocytes (TILs) of a patient with metastatic melanoma. TIL 1383 I recognized HLA-A2+ melanoma cell lines but not autologous transformed B cells or fibroblasts. The antigen recognized by TIL 1383 I was tyrosinase, and the epitope was the 368–376 peptide. Antibody blocking assays confirmed that TIL 1383 I was MHC class I restricted, and the CD4 and CD8 coreceptors did not contribute significantly to antigen recognition. TIL 1383 I was weakly cytolytic and secreted cytokines in a pattern consistent with it being a T_(h1) cell. The avidity of TIL 1383 I for peptide pulsed targets is 10–100-fold lower than most melanoma-reactive CD8+ T cell clones. These CD4+ T cells may represent a relatively rare population of T cells that express a T-cell receptor capable of cross-reacting with an MHC class I/peptide complex with sufficient affinity to allow triggering in the absence of the CD4 coreceptor
    corecore