6,791 research outputs found

    Chaotic Type I Migration in Turbulent Discs

    Full text link
    By performing global hydrodynamical simulations of accretion discs with driven turbulence models, we demonstrate that elevated levels of turbulence induce highly stochastic migration torques on low-mass companions embedded in these discs. This scenario applies to planets migrating within gravito-turbulent regions of protoplanetary discs as well as stars and black holes embedded in the outskirts of active galactic nuclei (AGN) accretion discs. When the turbulence level is low, linear Lindblad torques persists in the background of stochastic forces and its accumulative effect can still dominate over relatively long timescales. However, in the presence of very stronger turbulence, classical flow patterns around the companion embedded in the disc are disrupted, leading to significant deviations from the expectations of classical Type I migration theory over arbitrarily long timescales. Our findings suggest that the stochastic nature of turbulent migration can prevent low-mass companions from monotonically settling into universal migration traps within the traditional laminar disc framework, thus reducing the frequency of three-body interactions and hierarchical mergers compared to previously expected. We propose a scaling for the transition mass ratio from classical to chaotic migration q∝αRq\propto \alpha_R, where αR\alpha_R is the Reynolds viscosity stress parameter, which can be further tested and refined by conducting extensive simulations over the relevant parameter space.Comment: 6 pages, 7 figures, accepted by MNRAS Letters. Welcome any comments and suggestions

    On the Nature of the Bright Short-Period X-ray Source in the Circinus Galaxy Field

    Full text link
    The spectrum and light curve of the bright X-ray source CG X-1 in the field of the Circinus galaxy are re-examined. Previous analyses have concluded that the source is an accreting black hole of about 50 solar masses although it was noted that the light curve resembles that of an AM Her system. Here we show that the short period and an assumed main sequence companion constrain the mass of the companion to less than one solar mass. Further a possible eclipse seen during one of the Chandra observations and a subsequent XMM-Newton observation constrains the mass of the compact object to less than about 60 solar masses. If such a system lies in the Circinus galaxy, then the accreting object must either radiate anisotropically or strongly violate the Eddington limit. Even if the emission is beamed, then the companion star which intercepts this flux during eclipse will be driven out of thermal equilibrium and evaporate within about 1000 years. We find that the observations cannot rule out an AM Her system in the Milky Way and that such a system can account for the variations seen in the light curve.Comment: 25 pages, 8 figures, accepted for publication in the Astrophysical Journa

    A retrospective evaluation of subsurface monopolar radiofrequency for lifting of the face, neck, and Jawline

    Get PDF
    BACKGROUND Subsurface monopolar radiofrequency (SMRF) has emerged as a new method for reducing skin laxity via the controlled delivery of thermal energy below the skin using a radiofrequency probe. OBJECTIVE To evaluate the overall efficacy of the treatment and satisfaction ratings of subjects who underwent a single SMRF treatment to the face, neck, or jawline (or some combination). MATERIALS AND METHODS A retrospective, single-center study was conducted in which data were obtained via subject follow-ups at 90 and 180 days posttreatment. RESULTS A total of 35 subjects, 6 men and 29 women, underwent a single SMRF treatment. Overall, 77% of subjects reported improvement, and 64% reported satisfaction with the treatment site at Day 180 posttreatment. CONCLUSION Subsurface monopolar radiofrequency represents an effective modality to achieve skin tightening of the face, neck, and jawline. The data suggest that there is an energy delivery threshold, above which a higher percentage of subjects report satisfaction. Analysis of treatments parameters suggests an optimal treatment time and tissue temperature that should be achieved to maximize results. © 2016 by the American Society for Dermatologic Surgery, Inc. Published by Wolters Kluwer Health, Inc

    Privacy analysis of forward and backward untraceable RFID authentication schemes

    Get PDF
    In this paper, we analyze the rst known provably secure RFID authentication schemes that are designed to provide forward untraceability and backward untraceability: the L-K and S-M schemes. We show how to trace tags in the L-K scheme without needing to corrupt tags. We also show that if a standard cryptographic pseudorandom bit generator (PRBG) is used in the S-M scheme, then the scheme may fail to provide forward untraceability and backward untraceability. To achieve the desired untraceability features, we show that the S-M scheme can use a robust PRBG which provides forward security and backward security. We also note that the backward security is stronger than necessary for the backward untraceability of the S-M scheme

    Two-Dimensional QCD in the Wu-Mandelstam-Leibbrandt Prescription

    Get PDF
    We find the exact non-perturbative expression for a simple Wilson loop of arbitrary shape for U(N) and SU(N) Euclidean or Minkowskian two-dimensional Yang-Mills theory regulated by the Wu-Mandelstam-Leibbrandt gauge prescription. The result differs from the standard pure exponential area-law of YM_2, but still exhibits confinement as well as invariance under area-preserving diffeomorphisms and generalized axial gauge transformations. We show that the large N limit is NOT a good approximation to the model at finite N and conclude that Wu's N=infinity Bethe-Salpeter equation for QCD_2 should have no bound state solutions. The main significance of our results derives from the importance of the Wu-Mandelstam-Leibbrandt prescription in higher-dimensional perturbative gauge theory.Comment: 7 pages, LaTeX, REVTE

    Leibniz Seminorms and Best Approximation from C*-subalgebras

    Full text link
    We show that if B is a C*-subalgebra of a C*-algebra A such that B contains a bounded approximate identity for A, and if L is the pull-back to A of the quotient norm on A/B, then L is strongly Leibniz. In connection with this situation we study certain aspects of best approximation of elements of a unital C*-algebra by elements of a unital C*-subalgebra.Comment: 24 pages. Intended for the proceedings of the conference "Operator Algebras and Related Topics". v2: added a corollary to the main theorem, plus several minor improvements v3: much simplified proof of a key lemma, corollary to main theorem added v4: Many minor improvements. Section numbers increased by

    embCAB Sequence Variation Among Ethambutol-Resistant Mycobacterium Tuberculosis Isolates Without embB306 Mutation

    Get PDF
    Mechanisms of resistance to ethambutol in Mycobacterium tuberculosis remain inadequately described. Although there is mounting evidence that mutations of codon 306 in embB play a key role, a significant number of phenotypically ethambutol-resistant strains do not carry mutations in this codon. Here, other mutations in the embCAB operon are suggested to be involved in resistance development

    Physical Therapy Management Of A Patient After Hemorrhagic Stroke Using A Task-Oriented Approach In A Skilled Nursing Facility: A Case Report

    Get PDF
    Stroke is the leading cause of long term disability in the U.S.; nearly 800,000 Americans have a stroke each year. Subarachnoid hemorrhagic stroke occurs when one of the blood vessels in the brain bursts causing a release of blood which increases intracranial pressure. There is a lack of rehabilitation research in the skilled nursing setting for hemorrhagic stroke. The purpose of this case report is to describe the PT management, using a task-oriented approach, of a patient with a subarachnoid hemorrhagic stroke being treated in a skilled nursing setting.https://dune.une.edu/pt_studcrposter/1104/thumbnail.jp

    Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser

    Get PDF
    BACKGROUND: Low-power ultrashort pulsed (USP) lasers operating at wavelengths of 425 nm and near infrared region have been shown to effectively inactivate viruses such as human immunodeficiency virus (HIV), M13 bacteriophage, and murine cytomegalovirus (MCMV). It was shown previously that non-enveloped, helical viruses such as M13 bacteriophage, were inactivated by a USP laser through an impulsive stimulated Raman scattering (ISRS) process. Recently, enveloped virus like MCMV has been shown to be inactivated by a USP laser via protein aggregation induced by an ISRS process. However, the inactivation mechanism for a clinically important class of viruses – non-enveloped, icosahedral viruses remains unknown. RESULTS AND DISCUSSIONS: We have ruled out the following four possible inactivation mechanisms for non-enveloped, icosahedral viruses, namely, (1) inactivation due to ultraviolet C (UVC) photons produced by non-linear optical process of the intense, fundamental laser beam at 425 nm; (2) inactivation caused by thermal heating generated by the direct laser absorption/heating of the virion; (3) inactivation resulting from a one-photon absorption process via chromophores such as porphyrin molecules, or indicator dyes, potentially producing reactive oxygen or other species; (4) inactivation by the USP lasers in which the extremely intense laser pulse produces shock wave-like vibrations upon impact with the viral particle. We present data which support that the inactivation mechanism for non-enveloped, icosahedral viruses is the impulsive stimulated Raman scattering process. Real-time PCR experiments show that, within the amplicon size of 273 bp tested, there is no damage on the genome of MNV-1 caused by the USP laser irradiation. CONCLUSION: We conclude that our model non-enveloped virus, MNV-1, is inactivated by the ISRS process. These studies provide fundamental knowledge on photon-virus interactions on femtosecond time scales. From the analysis of the transmission electron microscope (TEM) images of viral particles before and after USP laser irradiation, the locations of weak structural links on the capsid of MNV-1 were revealed. This important information will greatly aid our understanding of the structure of non-enveloped, icosahedral viruses. We envision that this non-invasive, efficient viral eradication method will find applications in the disinfection of pharmaceuticals, biologicals and blood products in the near future

    Embedding Flipped SU(5) into SO(10)

    Get PDF
    We embed the flipped SU(5) models into the SO(10) models. After the SO(10) gauge symmetry is broken down to the flipped SU(5) \times U(1)_X gauge symmetry, we can split the five/one-plets and ten-plets in the spinor \mathbf{16} and \mathbf{\bar{16}} Higgs fields via the stable sliding singlet mechanism. As in the flipped SU(5) models, these ten-plet Higgs fields can break the flipped SU(5) gauge symmetry down to the Standard Model gauge symmetry. The doublet-triplet splitting problem can be solved naturally by the missing partner mechanism, and the Higgsino-exchange mediated proton decay can be suppressed elegantly. Moreover, we show that there exists one pair of the light Higgs doublets for the electroweak gauge symmetry breaking. Because there exist two pairs of additional vector-like particles with similar intermediate-scale masses, the SU(5) and U(1)_X gauge couplings can be unified at the GUT scale which is reasonably (about one or two orders) higher than the SU(2)_L \times SU(3)_C unification scale. Furthermore, we briefly discuss the simplest SO(10) model with flipped SU(5) embedding, and point out that it can not work without fine-tuning.Comment: RevTex4, 28 pages, 3 figures, typos correcte
    • 

    corecore