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Abstract

We find the exact non-perturbative expression for a simple Wilson loop

of arbitrary shape for U(N) and SU(N) Euclidean or Minkowskian two-

dimensional Yang-Mills theory (YM2) regulated by the Wu-Mandelstam-

Leibbrandt gauge prescription. The result differs from the standard pure

exponential area-law of YM2, but still exhibits confinement as well as in-

variance under area-preserving diffeomorphisms and generalized axial gauge

transformations. We show that the large N limit is not a good approximation

to the model at finite N and conclude that Wu’s N =∞ Bethe-Salpeter equa-

tion for QCD2 should have no bound state solutions. The main significance

of our results derives from the importance of the Wu-Mandelstam-Leibbrandt

prescription in higher-dimensional perturbative gauge theory.

PACS numbers: 11.10.Kk, 11.10.St, 11.15.Pg, 11.15.-q, 12.38.Cy

CERN-TH/97-245

September 1997

Typeset using REVTEX

∗matthias@nxth04.cern.ch; Address after September 1, 1997: Max-Planck Institut für Gravita-

tionsforschung, Schlaatzweg 1, D-14473 Potsdam, Germany.

†krauth@physique.ens.fr

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25218094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


QCD2, the dynamical theory of quarks and gluons in two dimensions, has been a fasci-
nating testing-ground for some of the important concepts of high energy physics. A profound
analysis of the theory was given by ’t Hooft [1] in the limit N → ∞ corresponding to an
infinite number of colors. ’t Hooft’s study has culminated in the explicit demonstration of
quark confinement and in the numerical determination of the bound state meson spectrum.

Technically, ’t Hooft has worked in a generalized axial gauge, which means that the gauge
potential is set to zero along a fixed direction. This direction is most conveniently chosen
as light-like. Within this so-called light-cone gauge (A− = 0), one of the two quark spinor
components decouples. ’t Hooft has treated the remaining infra-red singularity of the gauge
field propagator in a way equivalent (cf [2]) to a principal part prescription:

1

k2
−
→
P

k2
−

=
1

2

[
1

(k− + iε)2
+

1

(k− − iε)2

]
. (1)

The highly consistent ’t Hooft theory has been extended in many studies. In particular,
the invariance of the meson spectrum with respect to a different choice of gauge, the space-
like axial gauge, has been checked explicitly by a combination of analytical and numerical
calculations [3]. In this more complicated gauge one has to deal with both quark spinor
components, and the integral equation for the meson bound states becomes two-dimensional.
Nevertheless, an identical bound state meson spectrum was obtained [3].

QCD2 would appear to be completely satisfactory were it not for two potential prob-
lems, which turn out to be closely related. The first is, that using the principal part pre-
scription (1), Wick rotation to Euclidean space is impossible [4]. This was remarked early
on by Wu [5], who suggested to formulate QCD2 in Euclidean space. He considered the
Wick-rotated kernel (k− = k1 − k0 → k1 + ik2)

1

k2
−
→

1

(k1 + ik2)2
, (2)

and proposed to use symmetric integration. This means that the integrals with the kernel
eq. (2) should exclude a small spherical hole of radius ε around the origin of the (k1, k2)
plane.

Secondly, the principal part prescription for generalized axial gauges appears to be ir-
reparably inconsistent above two dimensions since manifest perturbative renormalizability is
lost. For light-cone gauges above two dimension, the regularization suggested by Mandel-
stam [6] and by Leibbrandt [7] appears to solve this problem (cf also [8]). In two dimensions,
this prescription gives

1

k2
−
→

1

(k− − iε sgnk+)2
=
P

k2
−
− iπ δ′(k−) sgnk+. (3)

Bassetto et al. [9] noted that the Wu kernel (2) and the Mandelstam-Leibbrandt kernel (3)
are related to each other by a Wick rotation.

Wu [5] derived an effective integral equation for the bound state mesons in QCD2 at
N =∞ with the regularization of eqs. (2), (3). Physical observables should not depend on
the regularization scheme, and it was widely suspected that the Wu-Mandelstam-Leibbrandt
(WML) kernels should lead to the same results as the ’t Hooft prescription. Past efforts to
solve the Wu equation have however failed.
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The apparent impossibility to resolve the meson bound state equation in the Wu for-
malism is not a true impediment to study QCD2 in the WML prescription. Complementary
insight can be obtained by probing the Yang-Mills field by static flux lines instead of dy-
namical quarks: the Wilson loops. This has already been the basic motivation of work by
Bassetto et al. [9].

The present paper consists in a study of Wilson loops for QCD2. We first investigate
perturbatively various contours in Euclidean and Minkowski space, up to O(g6), using nu-
merical and analytic calculations. We then derive the exact non-perturbative result. Our
study confirms explicitly the finding [9] that the WML regularization gives a result different
from ’t Hooft’s. However, contrary to what was claimed before in the literature [9], the result
fulfills the same consistency conditions as ’t Hooft’s Wilson loop: (i) it does not depend on
the shape of the closed contour, but only on its area, (ii) the leading behavior at finite N
is an area law behavior, indicating confinement, and (iii) the result is gauge invariant in a
(restricted) way which will be detailed later on. In our opinion, these tests put the WML
regularization on an equal footing with the ’t Hooft prescription.

Before endeavoring on the detailed calculations in the WML regularization, we briefly
present the precise definitions and review the main results of the analogous calculation using
’t Hooft’s prescription. Wilson loops are defined as

WC = 〈
1

N
PTr exp (ig

∮
C
d~x · ~A)〉. (4)

Here P denotes path ordering of the gauge field ~A along the contour C. In two Euclidean
dimensions the standard, exact result can be obtained in a gauge invariant way for any num-
ber of colors and by a variety of methods; e.g. using a manifest gauge invariant formulation
like lattice gauge theory. For the case of a simple (i. e. not self-intersecting) U(N) or SU(N)
Wilson loop WC along a contour C one obtains

WU(N)
C = e−

1
2
Ng2AC , WSU(N)

C = e−
1
2

(N− 1
N

)g2AC , (5)

where AC is the area enclosed by C. Apart from the trivial factor N , the U(N) result does not
distinguish between the Abelian and the non-Abelian case. Furthermore, the form of eq. (5)
agrees with the idea of a linear confining potential between sources. WC depends on the
contour C solely through the dimensionless combination g2AC. The general reasons for this
fact were first emphasized in [10]: YM2 is invariant under area preserving diffeomorphisms
[11]. Even in Minkowski space, the ’t Hooft prescription (1) (or any other generalized axial
gauge with principal part prescription) reproduces the exponential law (5) with AC → iÃC
where ÃC is the Minkowski “area” enclosed by the contour.

Let us first work in Euclidean space and use the prescription (2). The path-ordered
exponential in eq. (4) is defined as

WC =
1

N

∞∑
n=0

(−g2)n
∫ 1

0
ds1ẋ−(s1) . . .

∫ s2n−1

0
ds2nẋ−(s2n)Tr〈A+(~x(s1)) . . . A+(~x(s2n))〉, (6)

where ~x(s), s ∈ [0, 1] parametrizes the closed contour C. The expectation value in eq. (6) is
to be evaluated by the Wick rule, and the basic correlator, obtained from eq. (2) by simple
Fourier transform to configuration space, is (x± = x1 ∓ ix2)
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〈(A+)i,j(~x)(A+)k,l(~x′)〉 =
1

4π
δi,lδj,k

x+ − x′+
x− − x′−

. (7)

Here we have also written out the matrix indices of the gauge field A+.
It is simplest to consider a circular contour. Then the weighted basic correlator is inde-

pendent of the variables s, s′: ẋ−(s) ẋ−(s′) (x+(s)−x+(s′))/(x−(s)−x−(s′)) = (2πr)2. Now
the integration over the path parameters s1, . . . , s2n becomes trivial, and the computation
can be very simply performed, say up to three loops. One finds for U(N)

WU(N)
C = 1−

1

2
Ng2AC +

1

8
(
2

3
N2 +

1

3
) g4A2

C −
1

48
(

5

15
N3 +

10

15
N) g6A3

C +O(g8), (8)

where AC = πr2 is the area of the circle. Evidently this three-loop result is incompatible
with the standard law eq. (5) unless N = 1. The technical reason is that the Abelian result
is reproduced in the WML prescription by non-planar gluon exchange; as soon as N > 1,
crossing gluon lines acquire a special weight, as is evident from eq. (8): At O(g4), e. g.,
there are two planar and one crossed diagram, whereas at O(g6) five planar and ten crossed
diagrams are present.

Is the result eq. (8), derived for a circular contour, generally true for all simple loops of
the same area? Does eq. (8) remain valid for contours in Minkowski space, if we perform
the analytic continuation AC → iÃC? The answer to both questions is yes. The argument
for the first affirmation is the invariance under area preserving diffeomorphisms [11], which
should not depend on the regularization scheme. The second statement should be true since
the kernels (2) and (3) are related by analytic continuation, and since the Wu kernel (2)
possesses a commutativity property already emphasized in the original work [5].

Since the two above assertions are crucial for the following, we have convinced ourselves of
their validity for a variety of simple contours such as ellipses, triangles, rectangles of various
orientations both in Euclidean and in Minkowski space. Careful numerical evaluation of
eq. (6) up to O(g4) and in some case up to O(g6) yielded in all cases perfect agreement with
eq. (8) to a level of precision of 10−4 . . . 10−3. Our numerical computations thus lend strong
support to the formal general arguments mentioned above.

Our findings are seemingly in disagreement with the analytical two-loop (i.e. O(g4))
calculations of Bassetto et al. [9] for rectangular contours in Minkowski space [12]. They
consider two orientations of the loop. In the first case, the rectangle is oriented along the
light-cone space and light-cone time axes. Agreement with eq. (8) can be established [13].
In the second case, the rectangle is oriented along the space and time axes. Here they
concluded that the WML regularization violated the area law. However, the authors failed
to realize that the complicated dependence of their final result on the aspect ratio of their
rectangle exactly cancels, as is easily verified. If this cancellation is taken into account, the
Bassetto et al. result is in perfect agreement with ours.

We also investigated the invariance of WC under transformations to generalized axial
gauges (cf [5])

1

(k1 + ik2)2
→

1

(k1 cos θ + ik2 sin θ)2
(9)

for 0 < θ ≤ π/4. In that case, symmetric integration amounts to cutting out a spherical
hole in the (k̃1, k̃2) plane with k̃1 = k1 cos θ and k̃2 = k2 sin θ. The propagator becomes
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x+/x− → x̃+/x̃−, with x̃± = x1/ cos θ ∓ ix2/ sin θ. As before, the gauge invariance was
checked numerically to a relative precision of about 10−3 for several values of θ.

Having established that the choice of contour is arbitrary, we may restrict ourselves
to the especially simple Euclidean circular contour. There we can find all further terms
in eq. (8), since the integrand in eq. (6) is constant. The problem of determining the
Wilson loop reduces to the purely combinatorial problem of finding the group-theoretic
factors corresponding to the Wick contractions. Fortunately, these factors are generated by
a simple matrix integral:

WC =
1

Z

∫
DF exp (−

1

2
TrF 2)

1

N
Tr exp (ig

√
ACF ). (10)

For U(N), DF denotes the flat integration measure on the space of hermitian N × N

matrices: DF =
∏N
i=1 dFii

∏N
i<j d(ReFij)d(ImFij). Z is a normalization factor: Z =∫

DF exp ( − 1
2
TrF 2). This matrix integral has been evaluated with a variety of meth-

ods [14]. The final result constitutes the exact expression for the Wilson loop at any N :

WU(N)
C = exp (−

1

2
g2AC)

1

N

∮
dz

2πi
exp (− g2ACz)

(
z + 1

z

)N
. (11)

The contour integral, which encloses the multiple pole at z = 0, gives a Laguerre polynomial
in g2AC of order N − 1: L1

N−1(g2AC). The first few examples are:

WU(1)
C = e−

1
2
g2AC , WU(2)

C =
(
1−

1

2
g2AC

)
e−

1
2
g2AC , WU(3)

C =
(
1− g2AC +

1

6
(g2AC)

2
)
e−

1
2
g2AC .

(12)

For SU(N), the integration measure in eq. (10) has to be modified to enforce tracelessness:
DF → DF δ(TrF ). The U(1) part decouples from the U(N) Wilson loop and we find

WSU(N)
C = exp (

1

2N
g2AC) W

U(N)
C . (13)

Our result coincides with the usual expression (5) only in the Abelian U(1) case. Incidentally,
this explains why Wu and Stamatescu [15] were able to reproduce the standard solution of
the Schwinger model (i.e. two-dimensional QED) with the WML regularization.

We now study the exact formulas (11), (13) in ’t Hooft’s large N limit: N →∞, g → 0,
with fixed g̃2 = Ng2. Eqs. (11), (13) become the integral representation of a Bessel function:

WU(∞)
C =WSU(∞)

C =
1

g̃
√
AC

J1(2g̃
√
AC). (14)

Curiously, the factors exp(−1
2
g2AC) present at all finite N (cf eqs. (11), (12)) disappear in

the N → ∞ limit. But it is precisely these factors which lead to confinement at finite N .
Very much unlike the usual theory, where from eq. (5) we have WU(∞)

C = exp(−1
2
g̃2AC), in

the present model the behavior changes qualitatively at N =∞, as AC →∞

WU(∞)
C ∼

1
√
π

(g̃2AC)
− 3

4 cos(2g̃
√
AC −

3

4
π) (15)
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This fall-off at large areas AC is far too slow to ensure confinement! We therefore conclude
that Wu’s model of mesons has to be studied at finite N ; the Bethe-Salpeter equation written
down in [5] is not expected to lead to a discrete meson spectrum.

What have we achieved so far? We have presented evidence that, besides the ’t Hooft
principal value prescription, the WML symmetric integration yields a consistent yet different
theory. We have found this theory to be qualitatively different in the N → ∞ limit. This
allows us to solve the old riddle of why bound states for the Wu equation have never been
found. It also allows us to expose a case in which the N →∞ limit is invalid.

At finite N , we are lead to conclude that two physically different, consistent, gauge
theory formulations in D = 2 exist, unless inconsistencies of the WML prescription end up
being found on a subtler level. It is indeed known that QCD2 is special in that it can be
considerably generalized by adding higher powers (products of traces) of the field strength to
the action; such terms are irrelevant in D > 2 but begin to scale at exactly D = 2 [10], [16].
Therefore, as already pointed out in [16], continuing a D-dimensional formulation of QCD
down to D = 2 might not give the usual TrF 2 theory, but one of the generalized theories
(gQCD2) [17]. However, this does not explain why there are coexisting theories with the
same Lagrangian L = −1

4
TrF 2. It is easily seen that the WML prescription in Euclidean

space cannot be described by a standard (even generalized) lattice gauge theory. It would
be very interesting to find a lattice discretization for this theory.

We emphasize that the two prescriptions naturally result from different points of view:
the standard prescription is obtained from a number of strictly two-dimensional quantization
methods (Euclidean lattice gauge theory, light-cone quantization) while the WML prescrip-
tion seems compelling from the viewpoint of higher dimensional Minkowski perturbative
QCD. It appears that “theory space” is big enough in D = 2 to allow coexistence of these
theories.
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