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Abstract In this paper, we analyze the first known provably secure RFID authentication schemes that are

designed to provide forward untraceability and backward untraceability: the L-K and S-M schemes. We show how

to trace tags in the L-K scheme without needing to corrupt tags. We also show that if a standard cryptographic

pseudorandom bit generator (PRBG) is used in the S-M scheme, then the scheme may fail to provide forward

untraceability and backward untraceability. To achieve the desired untraceability features, we show that the S-M

scheme can use a robust PRBG which provides forward security and backward security. We also note that the

backward security is stronger than necessary for the backward untraceability of the S-M scheme.

1 Introduction

Radio Frequency Identification (RFID) is an automated object identification technology. An RFID system consists

of RFID tags, RFID readers and a back-end server. A tag is a tiny microchip containing identification information.

A reader queries a tag, receives responses from the tag via radio signal, and queries the back-end server which

maintains a database of tags. The server retrieves and returns to the reader the detailed information of the

tag. RFID tags are being deployed in many consumer, financial and governmental applications, for instance

respectively in supply chain [7, 23, 33], in contactless credit cards [13], and in e-passports [16, 14, 18].

RFID technology raises significant privacy issues. For example, since a tag automatically responds to queries

via radio signal, sensitive data may be leaked to unauthorized readers. Even when the data is encrypted, the

location of the tag may still be traced. There has been considerable research on these privacy issues and numerous

privacy-preserving RFID authentication schemes have been proposed. For a survey, see [15].

In view of the pervasiveness and inconspicuous nature of these tiny RFIDs, privacy for RFID tag users is a

major concern that could potentially impede the public’s long-term adoption of RFID-enabled applications. To

the best of our knowledge, formal treatments of strong privacy for RFID protocols include the work of Avoine [2],

Juels and Weis [17], Damg̊ard and Østergaard [11], Le, Burmester and de Medeiros [19]; Vaudenay [34, 35, 27] and

Lim and Kwon [20]. The difference in these models lie basically in the power of the adversary’s tag-corruption

ability with respect to the strong privacy notion; here strong refers to the adversarial ability to corrupt tags

thereby revealing the internal state. Such adversarial capability is standard consideration in security protocols

like those for authentication and key establishment [5]. In the context of the RFID schemes, corruption also
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captures tag ownership transfer, e.g. when a merchandise item with an embedded RFID tag is purchased from a

store, ownership of that tag needs to be transferred from store to the buyer in order to maintain the privacy of

both parties: privacy of the store’s dealings with that tag before the purchase should not be leaked to the buyer,

and equally, privacy of the buyer’s dealings with the tag after purchase should not be leaked to the store.

To capture these privacy requirements, two strong privacy notions, termed backward untraceability and forward

untraceability, were proposed in [24] and [20] (here we use the terminology from [20]). Backward untraceability

means that, if the adversary reveals the internal state of a tag at time τ , the adversary is not able to tell whether

a transaction before time τ involves the tag. Forward untraceability is probably the strongest notion of privacy

that can be achieved. It deals with adversaries who, even knowing the internal state of a tag at time τ , cannot

assert whether the same tag was involved in a transaction that occured at time τ + δ (for some δ > 0). It is

worth to note that in some privacy models, this notion has been proven to be impossible to achieve [35]. So,

in order to make achieving forward untraceability possible, it was proposed in [20] to weaken the notion and

add the condition that the adversary does not eavesdrop on the tag continuously after time τ . Summarizing

here, backward untraceability assures that the privacy of the store’s transactions with the tag before purchase,

is maintained even against the new owner (in this case, the buyer); while forward untraceability assures that the

privacy of the buyer’s transactions with the tag after purchase is maintained even against the previous owner (in

this case, the store).

1.1 Our Work

We analyze in this paper the privacy issues of the first known provably secure RFID authentication protocols that

have been designed to provide the strong privacy notions of backward and forward untraceability, namely the

scheme by Lim and Kwon [20] at ICICS ’06, and the scheme by Song and Mitchell [31] at WISEC ’08. The L-K

scheme is a nice unconventional design in the sense that it achieves both forward and backward untraceability in

the face of tag corruption, while typical protocols only provide backward untraceability. That paper also defined

a provable security model for backward and forward untraceability. The S-M scheme is designed to provide the

same features as the L-K scheme, but with improved performance in memory space, computation time and

communication overhead.

We present the only known privacy analysis of the L-K scheme with respect to a general untraceable privacy

model detailed in Section 4, yet without needing a corrupt query. As proposing a new privacy model is not the

aim of this work, the model we describe can be seen as an adaptation of security models for authenticated key

exchange protocols [5]. Concretely, we describe how to trace a tag within the L-K scheme even without requiring

state corruption [17, 34, 20, 19, 35], and further discuss why the S-M scheme is resistant to this problem.

In both the L-K scheme and the S-M scheme, a tag needs to generate random numbers. When a pseudorandom

bit generator (PRBG) is used in a security protocol to generate random numbers, it is important to know whether

a standard cryptographic PRBG suffices for the protocol or a robust PRBG is necessary. In some cases, a protocol

designer may overlook the fact that a standard PRBG may not provide forward and backward security, which

is necessary for certain properties of the protocol that it underlies. In the same work [31] proposing the S-M

scheme, the definition for a PRBG refers to the standard PRBG. In Section 6, we show that if a standard PRBG

is used in the schemes, then the schemes may fail to provide forward untraceability and backward untraceability.

We also construct an example of a robust PRBG for the S-M scheme to ensure its desired backward and forward

untraceability features. This is the only known backward and forward traceability analysis of the S-M scheme.

Since RFID tags are ubiquitously deployed, privacy in the sense of untraceability is a serious issue. This

contrasts with recent security attacks shown on RFID schemes in literature [6, 28, 36] that attempt to impersonate

readers or tags which are essentially just denial of service attacks in the sense they permanently desynchronize a

tag from a reader causing the tag to no longer be able to interact with the reader in future. Such latter attacks

do not pose problems to privacy.

2 Pseudo-Random Bit Generators

Random bit generation is very important process in cryptography. Therefore, cryptographic devices and parties

often implement pseudorandom bit generators (PRBG). Although not as perfect as true number generators,

PRBG provide an amount of security that can be used to build many cryptographic primitives. A standard

(cryptographic) PRBG is a deterministic algorithm which, when given a truly random binary input of length n,

outputs a binary sequence of length polynomial in n, say p(n), which “appears” to be random. The input to the

PRBG is called the seed, the output of the PRBG is called a pseudorandom bit sequence. A standard PRBG is
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secure, if when given the first l < p(n) bits of the PRBG’s output, it is infeasible in polynomial time (in n) to

predict the next bit of the output ([21], [32]).

Formally, given a polynomial funtion p, a secure pseudo-random bit generator is a function PRBG : {0, 1}n →
{0, 1}p(n) such that for any polynomialy bounded (in n) adverary A who outputs a bit after receiving the sequence

seql−1 of the l − 1 first bits from the output of PRBG (l <= p(n)) and either the l-th bit x from the output of

PRBG or a random x̄ ∈ {0, 1}p(n), the advantage:˛̨
Pr[A(seql−1, x)→ 1]− Pr[A(seql−1, x̄)→ 1]

˛̨
is negligible in n1.

Several instantiations of PRBG were proposed. One example is to use a block cipher with a secret key

working in counter mode: given Ek(), a block cipher with secret key k, the output is computed by outputing the

encryptions si = Ek(i), i = 1, 2, · · · . Such a PRBG is a secure PRBG if the underlying block cipher is secure.

Another example of standard PRBG is a keyed hash function with a secret key in output-feedback mode. If hk()

denotes a keyed hash function with secret key k and an initial input s0, the output is the concatenation of the

successive digests si+1 = hk(si), i = 0, 1, · · · .
PRBGs are essential to the privacy of an RFID system. Ma et al. [22] prove that an RFID system achieves

privacy if and only if the tags can compute pseudorandom functions (PRFs). Because PRFs and PRBGs can be

constructed from each other [12], [1], it holds that an RFID system can achieve privacy if and only if the tags

have PRBGs.

The security model for standard PRBGs assumes that a PRBG is a black box. When PRBGs are used in

applications where the adversary has access to the internal information of a PRBG, stronger security properties

for PRBGs are required.

In order to deal with key exposure, a stronger security notion was proposed for PRBG by Barak and Halevi

[3] called robust PRBG. Robust PRBG provide additional security beyond a standard PRBG. In [3], Barak and

Halevi propose a formal model and an architecture for robust PRBG, which satisfy the following properties of

forward security and backward security2.

In these contexts, a standard PRBG is given a state. As its output is computed using this state and the n-bit

seed, each output bit of such a PRBG is a function over {0, 1}n × {0, 1}n → {0, 1} × {0, 1}n that computes the

output bit and the new state of the PRBG. We denote sti the state after outputing the i-th bit. Note that the

state can be updated using additional data.

In the context of backward security, the past output of the PRBG looks random to an adversary, even if the

adversary learns the internal state at a later time.Using the same notation as for standard PRBG, this formally

translates into saying that for any polynomial time algorithm A the advantage˛̨
Pr[A(seql−1, x, stl)→ 1]− Pr[A(seql−1, x̄, stl)→ 1]

˛̨
is negligible.

Conversely, forward security deals with the unpredictability of the future output of the PRBG to an adversary

with knowledge of the current state, provided that the PRBG is later refreshed with data of sufficient entropy.

More formally, for any polynomial time algorithm A, we require that:˛̨
Pr[A(seql−1, x, st)→ 1]− Pr[A(seql−1, x̄, sti,i<l)→ 1]

˛̨
is negligible.

Similar properties and constructions can be found in [4] from NIST.

3 The Forward and Backward Untraceable RFID Schemes

3.1 The L-K Scheme

At ICICS ’06, Lim and Kwon [20] proposed an RFID protocol that offers untraceable privacy (UPriv) both before

and after tag corruption. This is a major feat, since other existing RFID schemes are only able to treat backward

untraceability, i.e. a corrupted tag cannot be linked to any past completed sessions.

The initialization phase is as follows:

1 A function f(s) is said to be negligible if there exists a constant c such that f(s) is O(s−c).
2 In [3], forward security means that past output is secure, while backward security means that future output is secure.

Here we switch the two names to be consistent with the terminology we use in this paper and those in [20, 24].
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1. The reader chooses a random secret Ki for each tag Ti; it evaluates m − 1 evolutions of K0
i = Ki, i.e.

Kj
i = g(Kj−1

i ) for 1 ≤ j ≤ m − 1; where g is a pseudorandom function. It computes tji = extl2(Kj
i ) for

0 ≤ j ≤ m− 1, where l2 is some bit length, extl(x) is an extraction function returning l bits of x.

2. The reader also chooses a random ui for each tag Ti and computes a key chain {wj
i }

n−1
j=0 of length n, such

that wn
i = ui and wj

i = h(wj+1
i ) for 0 ≤ j ≤ n− 1, where h is a pseudorandom function.

3. The tag stores 〈wi,T ,Ki〉 where wi,T = w0
i and initializes a failure counter ci = 0.

4. The reader creates two tables L1, L2 for Ti in its database, where L2 is empty and L1 has entries of the form

〈si, {tji}
m−1
j=0 , ui, ni, wi,T , wi,S〉 where ni = n and wi,S = w1

i thus wi,T = h(wi,S).

After initialization, a normal protocol session is illustrated in Fig. 1, where f is a pseudorandom function. Refer

to [20] for further details.

Reader R Tag Ti
Database: {. . . , (Ki, tables L1, L2), . . . } Secret: wi,T , ci,Ki

pick r1
r1−−−−−→

calculate ti = extl2 (Ki);
pick r2;

ti,r2,σ1←−−−−− compute σ1 = extl1 (f(Ki, r1||r2)).

check ∃tji : (tji = ti) ∧ (tji ∈ {t
k
i }
m−1
k=0 )∧

〈Ki, {tki }
m−1
k=0 , ui, ni, wi,T , wi,S〉 ∈ (L1 ∪ L2).

calculate K′i = g(Ki)
j , σ′1 = extl2 (f(K′i, r1||r2))

and check that σ′1 = σ1.

calculate σ2 = f(K′i, r2||r1)⊕ wi,S .
σ2−−−−−→ wi,S = f(Ki, r2||r1)⊕ σ2.

for k = 0 . . .m− j − 1 calculate: t̂ki = tj+k+1
i ; check h(wi,S) = wi,T .

for k = m− j . . .m− 1 calculate: If yes:

K̂i = g(K′i), t̂
k
i = extl2 (g(K̂i)

k−m+j); ci = 0;wi,T = wi,S ;

update K̂i, {tki }
m−1
k=0 in L2; Ki = g(Ki ⊕ (wi,T ||r1||r2)).

calculate Ki = g(Ki ⊕ (wi,S ||r1||r2)); else

tji = extl2 (g(Ki)
j) for j = 0 . . .m− 1; ci = ci + 1;

ni = ni − 1, wi,T = wi,S , wi,S = h(ui)
ni ; if ci < m

update 〈Ki, {tki }
m−1
k=0 , ni, wi,T , wi,S〉 in L1. update Ki = g(Ki).

Fig. 1 The L-K Scheme

3.2 The S-M Scheme

We briefly recall the S-M scheme proposed at WISEC ’08 [31]. fk() is a keyed hash function with key k. h() is a

hash function. x� y denotes the operation that right rotate-shifts x by y bits and x� y denotes the operation

that left rotate-shifts x by y bits. l is the length of the parameters in the scheme.

For each tag Ti, the reader R stores its identifier (ui, ti). ui is a unique secret for Ti and ti = h(ui). The

value ti is stored in Ti. An authentication session takes place as follows.

1. The R sends a random challenge r1 to Ti.
2. Ti generates a random r2, computes M1 = ti ⊕ r2,M2 = fti(r1 ⊕ r2), and sends (M1,M2) to R.

3. R searches for a tag Ti such that ti satisfies M2 = fti(r1⊕r2) where r2 = M1⊕ti, computes M3 = ui⊕(r2 �
l/2). R also updates ui and ti as follows: ui(new) = (ui � l/4)⊕ (ti � l/4)⊕ r1 ⊕ r2, ti(new) = h(ui(new)).

4. R forwards M3 to Ti.
5. Ti computes ui = M3 ⊕ (r2 � l/2). If h(ui) = ti, then Ti updates ti as follows: ti = h((ui � l/4) ⊕ (ti �
l/4)⊕ r1 ⊕ r2).

To perform the above protocol, a tag needs to generate random numbers. [31] cites a definition for pseudo-

random bit generators (PRBGs) which is just a standard PRBG; see Section 6 for details of why this definition

is an issue.

4 Modelling RFID Untraceable Privacy

We now describe our general untraceable privacy (UPriv) model that will be the setting in which we use in later

sections to demonstrate how to trace tags and thus show that the schemes do not achieve the notion of untraceable
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privacy. In fact, the model defined herein can be seen as an alternative definition of the Juels-Weis model [17]

in a style more in line with the Bellare et al. [5] models for authenticated key exchange (AKE) protocols, for

which RFID protocols can be seen to have close relationship with. With this model as a reference, our emphasis

throughout this paper is on the analysis of the privacy issues of RFID protocols.

A protocol party is a T ∈ Tags or R ∈ Readers interacting in protocol sessions as per the protocol specifica-

tions until the end of the session upon which each party outputs Accept if it feels the protocol has been normally

executed with the correct parties. Adversary A controls the communications between all protocol parties (tag

and reader) by interacting with them as defined by the protocol, formally captured by A’s ability to issue queries

of the following form:

• Execute(R, T , i) query. This models passive attacks, where adversary A gets access to an honest execution of

the protocol session i between R and T by eavesdropping.

• Send(U1, U2, i,m) query. This query models active attacks by allowing the adversary A to impersonate some

reader U1 ∈ Readers (resp. tag U1 ∈ Tags) in protocol session i and send a message m of its choice to an

instance of some tag U2 ∈ Tags (resp. reader U2 ∈ Readers). This query subsumes the TagInit and ReaderInit

queries as well as challenge and response messages in the Juels-Weis model.

• Corrupt(T ,K) query. This query allows the adversary A to learn the stored secret K′ of the tag T ∈ Tags, and

which further sets the stored secret to K. It captures the strong privacy notions of backward untraceability

(a.k.a. forward privacy) or forward untraceability depending on the time at which this query is allowed. Both

notions measure the extent of the damage caused by the compromise of the tag’s stored secret. This query is

the equivalent of the SetKey query of the Juels-Weis model.

• TestUPriv(U, i) query. This query is the only query that does not correspond to any of A’s abilities or any real-

world event. This query allows to define the indistinguishability-based notion of untraceable privacy (UPriv).

If the party has accepted and is being asked a Test query, then depending on a randomly chosen bit b ∈ {0, 1},
A is given Tb from the set {T0, T1}. Informally, A succeeds if it can guess the bit b. In order for the notion to

be meaningful, a Test session must be fresh in the sense of Definition 2.

Definition 1 (Session Completion) We say that a reader instance Rj and a tag instance Ti are partners if,

and only if, both have output Accept(Ti) and Accept(Rj) respectively, signifying the completion of the protocol

session.

Definition 2 (Freshness) A party instance is fresh at the end of execution if, and only if,

1. it has output Accept with or without a partner instance,

2. both the instance and its partner instance (if such a partner exists) have not been sent a Corrupt query.

Definition 3 (Untraceable Privacy (UPriv)) UPriv is defined using the game G played between a malicious

adversary A and a collection of reader and tag instances. A runs the game G whose setting is as follows.

Phase 1 (Learning): A can send any Execute, Send, and Corrupt queries.

Phase 2 (Challenge):

1. At some point during G, A will choose a fresh session on which to be tested and send a Test query

corresponding to the test session. Note that the test session chosen must be fresh in the sense of Definition

2. Depending on a randomly chosen bit b ∈ {0, 1}, A is given a tag Tb from the set {T0, T1}.
2. A continues making any Execute, Send, and Corrupt queries at will, subjected to the restrictions that the

definition of freshness described in Definition 2 is not violated.

Phase 3 (Guessing): Eventually, A terminates the game simulation and outputs a bit b′, as its guess of the

value of b.

The success of A in winning G and thus breaking the notion of UPriv is quantified in terms of A’s advantage in

distinguishing whether A receives T0 or T1, i.e. it correctly guessing b. This is denoted by AdvUPriv
A (k) where k is

the security parameter.

In relation to other models, note that the Le-Burmester-de Medeiros model [19] similarly allows the corruption

of tags. The Vaudenay model [34, 35] is stronger than both the Juels-Weis and Le-Burmester-de Medeiros models

in terms of the adversary’s corruption ability. In more detail, it is stronger than the Juels-Weis model in the

sense that it allows corruption even of the two tags used in the Challenge phase. It is stronger than the Le-

Burmester-de Medeiros model in the sense that it considers all its privacy notions even for corrupted tags, in

contrast to the Le-Burmester-de Medeiros model that only considers corruption for its forward privacy notion.
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5 Privacy Analysis of the L-K Scheme

The gist of the L-K scheme is this: the tag updates its stored secret Ki in two possible ways. If the reader

is successfully authenticated, it would update as Ki = g(Ki ⊕ (wi,T ||r1||r2)). Else, the tag would update as

Ki = g(Ki), up to m times of unsuccessful authentications, after which the tag stops updating its Ki. This

eventual non-updating allows the reader to catch up.

Our attack works in spite of the explicit design gist above, by using the basic principle where we intentionally

desynchronize the tag from the reader by sending the tag into the future [20].

1. Learning: An adversary sends m number of queries rj
1 for 1 ≤ j ≤ m to the tag T0, and records the tag’s

response tj for 1 ≤ j ≤ m. Since the adversary is impersonating the reader, thus each time it will not pass

the check by the tag, and so each time the tag would update its stored secret as Ki = g(Ki), from which ti
will be derived in the next session.

2. Challenge: Query rm
1 to the tag Tb ∈ {T0, T1}, and obtain its response t∗.

3. Guess: Check if t∗ = tm. If so, then the adversary knows this was the tag it queried during the Learning

phase i.e. Tb = T0. Else, it knows that Tb = T1.

[20] remarked that once a tag is successfully authenticated by a reader, then the tag’s stored secret Ki would be

freshly randomized so that tracing of any kind is prevented. Yet, even after that point, our adversary can repeat

the above attack step of the Learning phase by sending m arbitrary queries rj
1 for 1 ≤ j ≤ m to the tag again

to desynchronize it and the same tracing attack applies. This attack can be performed after every successful

tag-to-reader authentication. To solve the DoS problem, the designers included into the design a feature that

unfortunately allowed our attack causing the tag to be traceable even without corruption, although the goal for

their protocol was much stronger i.e. backward and forward untraceability even with corruption.

Unlike the L-K scheme, we note that the S-M scheme does not exhibit this problem because the transmitted

messages M1,M2,M3 are randomized by the ephemeral random value r2 which is itself not publicly transmitted.

This versus the L-K scheme where the transmitted ti is a deterministic function of the stored secret Ki, the latter

of which is no longer updated after m unsuccessful authentication attempts.

6 Strong Privacy Analysis of the S-M Scheme

6.1 Forward Untraceability

We review forward untraceability as defined in [20] and [31]: at time τ during the Learning phase, the adversary

reveals the internal state of the tag Ti via the Corrupt query. At time τ ′ > τ , the tag performs a transaction

with the server and the adversary does not eavesdrop on this transaction. Forward untraceability means that the

adversary cannot tell if a transaction at time τ ′′ > τ ′ involves the tag Ti.

We show that, if the PRBG used by the tag is not a robust PRBG, then the scheme does not achieve forward

untraceability. To be concrete, we assume the block cipher based PRBG described in Section ??. Suppose at time

τ , the adversary reveals the internal state of a tag, including its value ti and the internal state of its PRBG.

At some time τ ′ > τ during the Challenge phase, the tag has a transaction without being eavesdropped by

the adversary. After time τ ′ and still during the Challenge phase, the adversary observes multiple transaction

messages via Execute queries.

Given the internal state (k and i) of the PRBG that the adversary obtained at time τ , the adversary can

compute a sequence of n future outputs of the PRBG, where n is an upper bound on the maximum number

of times that the tag could have invoked its PRBG since time τ . If any value r in this sequence and any

observed message (r1,M1,M2,M3) after τ ′ satisfies fM1⊕r(r1 ⊕ r) = M2, then the adversary can deduce that

the message involves the tag Ti. In addition to identifying the tag, the adversary can further compute the

ti (note that this is not possible with permanent desynchronization attacks [6, 28, 36]) used in the observed

transaction as well as the updated ti after this transaction: ui = M3⊕ (r � l/2), current ti = h(ui), and updated

ti = h((ui � l/4)⊕ (ti � l/4)⊕ r1 ⊕ r). Therefore, the adversary can launch more attacks, e.g., to impersonate

the tag or clone the tag.

6.2 Backward Untraceability

We review backward untraceability as defined in [20] and [31]: at time τ , the adversary reveals the internal state

of the tag Ti. Backward untraceability means that the adversary cannot tell if a transaction at time τ ′ < τ

involves the tag Ti.
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Given the internal state (k and i) of the PRBG that the adversary obtained at time τ , the adversary can

compute a sequence of i previous outputs of the PRBG. The adversary has also observed multiple transactions

before time τ . If any r value in the computed output sequence and any observed message (r1, (M1,M2),M3)

satisfies fM1⊕r(r1 ⊕ r) = M2, then it can deduce that the message involves the tag Ti.

6.3 Using Robust PRBG in the S-M Scheme

It is clear that, for the S-M scheme to achieve forward untraceability and backward untraceability, the PRBG used

in the tags needs to be a robust PRBG, i.e. forward secure and backward secure. We can follow the construction

in [3] or [4] to build a robust PRBG for the tags. An example of a robust PRBG is based on a block cipher

working in counter mode. Let k be the secret key. Each time the PRBG is invoked, s = Ek(i) is outputted as the

random bits, the key is updated as k = Ek(i+ 1), and the counter i increases. The PRBG also refreshes its key

as k = k ⊕ r1 each time a random challenge r1 is received from the reader.

Now we briefly analyze the case when k and i are revealed at time τ . First we consider backward untraceability.

If E is a secure block cipher, then it is infeasible to find the previous keys it used; without the previous keys, it

is infeasible to distinguish its previous output from a random number. Therefore backward untraceability of the

schemes is preserved.

Next we consider forward untraceability. Suppose in a certain transaction after τ , the adversary does not

observe the messages, including r1. Then the adversary does not know the updated key and thus he cannot

predict the future outputs of E. Therefore, forward untraceability of the schemes is preserved.

Remark. We note that the backward security of the robust PRBG is sufficient but not necessary for the backward

untraceability of the S-M scheme. Suppose the standard PRBG based on keyed hash function given in Section

2 is used in the S-M scheme. Given si and k at time τ , the adversary can tell if a given value x was generated

by the PRBG by computing x1 = hk(x), x2 = hk(x2), · · · and checking if si appears in the sequence. Therefore,

this PRBG does not provide backward security. But given si and k at time τ , the adversary cannot compute

any previous output of the PRBG; thus the backward traceable attack described above for a block cipher based

PRBG does not work for the keyed hash based PRBG. However, we note that that the L-K scheme in [20] does

need a robust PRBG to ensure its backward untraceability because the output of the PRBG is sent in plaintext.

7 Conclusion

We analyzed the only known provably secure RFID authentication schemes that were designed to provide forward

untraceability and backward untraceability. To this end, we described in an alternative manner the privacy models

that capture untraceable privacy (UPriv) notion. Against this background, we showed how to trace tags in the

L-K scheme, without requiring to corrupt tags.

Further, we showed that if a standard PRBG is used in the S-M scheme, then the scheme may fail to provide

forward untraceability and backward untraceability. To achieve these untraceability features, the scheme can use

a robust PRBG which provides forward security and backward security.

In some sense, these results support the case [8, 9, 10, 26] that while provable security is the right approach to

design and analysis of protocols, more careful analysis and interpretation of provable security models and proofs

are needed to ensure the right definitions [29] and underlying assumptions are put in place. As a commonly

accepted model addressing privacy and security in RFID has to be established and many RFID protocols are

proposed without providing any formal security proof, these results strengthen the need for such a model to

facilitate better design of RFID protocols that offer both privacy and security.
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