1,595 research outputs found

    Extension Facts Leaflet on the 1956 Acreage Reserve Phase of the Soil Bank

    Get PDF

    Do the constants of nature couple to strong gravitational fields?

    Get PDF
    Recently, white dwarf stars have found a new use in the fundamental physics community. Many prospective theories of the fundamental interactions of Nature allow traditional constants, like the fine structure constant α\alpha, to vary in some way. A study by Berengut et al. (2013) used the Fe/Ni V line measurements made by Preval et al. (2013) from the hot DA white dwarf G191-B2B, in an attempt to detect any variation in α\alpha. It was found that the Fe V lines indicated an increasing alpha, whereas the Ni V lines indicated a decreasing alpha. Possible explanations for this could be misidentification of the lines, inaccurate atomic data, or wavelength dependent distortion in the spectrum. We examine the first two cases by using a high S/N reference spectrum from the hot sdO BD+28^{\circ}4211 to calibrate the Fe/Ni V atomic data. With this new data, we re-evaluate the work of Berengut et al. (2013) to derive a new constraint on the variation of alpha in a gravitational field.Comment: 4 pages, 2 figures: To appear in the proceedings of the "19th European White Dwarf Workshop" in Montreal, Canada, 201

    Draft Genome Sequence of Highly Nematicidal Bacillus thuringiensis DB27

    Get PDF
    Here, we report the genome sequence of nematicidal Bacillus thuringiensis DB27, which provides first insights into the genetic determinants of its pathogenicity to nematodes. The genome consists of a 5.7-Mb chromosome and seven plasmids, three of which contain genes encoding nematicidal proteins

    Let's Agree on Terms Used in Making Agricultural Policy

    Get PDF

    The Role of Whey Acidic Protein Four-Disulfide-Core Proteins in Respiratory Health and Disease

    Get PDF
    Abstract Members of the whey acidic protein (WAP) or WAP four-disulfide-core (WFDC) family of proteins are a relatively under-explored family of low molecular weight proteins. The two most prominent WFDC proteins, secretory leukocyte protease inhibitor (SLPI) and elafin (or the precursor, trappin-2), have been shown to possess multiple functions including anti-protease, anti-bacterial, anti-viral and anti-inflammatory properties. It is therefore of no surprise that both SLPI and elafin/trappin-2 have been developed as potential therapeutics. Given the abundance of SLPI and elafin/trappin-2 in the human lung, most work in the area of WFDC research has focused on the role of WFDC proteins in protecting the lung from proteolytic attack. In this review, we will outline the current evidence regarding the expanding role of WFDC protein function with a focus on WFDC activity in lung disease as well as emerging data regarding the function of some of the more recently described WFDC proteins.</jats:p

    Hierarchical biomechanics: an introductory teaching framework

    Get PDF
    Biological organisms function as the result of a multitude of complex physical systems all interacting with one another at different length scales and over different time scales. At stages of education below university undergraduate level, this complexity often prevents the discussion of physics within a biological context, subtly implying that the two fields are completely distinct from one another. With science becoming steadily more interdisciplinary at the level of research, this distinction can therefore be quite counterproductive, and potentially even misleading for students with regard to the nature of the scientific method. To explore the interplay between biology and physics with prospective STEM students, we present a series of formal teaching activities utilising a novel piece of experimental equipment we have designed called BioNetGrid. We are able to use BioNetGrid to cover a range of physical concepts at an introductory level, such as Hooke’s law, springs in series and parallel, Poisson’s ratio, elastic modulus and energy distribution. These can be presented together with specific biological systems as examples, such as biopolymer networks, enabling a discussion of the importance of biophysics in research at an earlier stage in a student’s academic career

    Antimicrobial Actions of the Nadph Phagocyte Oxidase and Inducible Nitric Oxide Synthase in Experimental Salmonellosis. II. Effects on Microbial Proliferation and Host Survival in Vivo

    Get PDF
    The roles of the NADPH phagocyte oxidase (phox) and inducible nitric oxide synthase (iNOS) in host resistance to virulent Salmonella typhimurium were investigated in gp91phox−/−, iNOS−/−, and congenic wild-type mice. Although both gp91phox−/− and iNOS−/− mice demonstrated increased susceptibility to infection with S. typhimurium compared with wild-type mice, the kinetics of bacterial replication were dramatically different in the gp91phox−/− and iNOS−/− mouse strains. Greater bacterial numbers were present in the spleens and livers of gp91phox−/− mice compared with C57BL/6 controls as early as day 1 of infection, and all of the gp91phox−/− mice succumbed to infection within 5 d. In contrast, an increased bacterial burden was detected within reticuloendothelial organs of iNOS−/− mice only beyond the first week of infection. Influx of inflammatory CD11b+ cells, granuloma formation, and serum interferon γ levels were unimpaired in iNOS−/− mice, but the iNOS-deficient granulomas were unable to limit bacterial replication. The NADPH phagocye oxidase and iNOS are both required for host resistance to wild-type Salmonella, but appear to operate principally at different stages of infection

    Controlling local order of athermal self-propelled particles

    Get PDF
    We consider a model of self-propelled dynamics for athermal active particles, where the non-equilibrium active forces are modelled by a Ornstein-Uhlenbeck process. In the limit of no-driving force, the model reduces to the passive, Brownian dynamics of an atomistic glass forming fluid, the Wahnstr\"om binary mixture. The Wahnstr\"om mixture is known to show strong correlations between the emergence of slow dynamics and the formation of locally favoured structures based on icosahedra. Here, we study how the non-equilibrium forces affect the local structure of the system, and find that these strongly promote icosahedral order. The phases rich in local icosahedral order correspond to configurations of very low potential energy, suggesting that the non-equilibrium dynamics in the self propelled model can be effectively exploited to explore the potential energy surface of the binary mixture and have access to states that are difficult to attain using passive dynamics

    The burden and characteristics of enteric fever at a healthcare facility in a densely populated area of Kathmandu

    Get PDF
    Enteric fever, caused by Salmonella enterica serovars Typhi and Paratyphi A (S. Typhi and S. Paratyphi A) remains a major public health problem in many settings. The disease is limited to locations with poor sanitation which facilitates the transmission of the infecting organisms. Efficacious and inexpensive vaccines are available for S. Typhi, yet are not commonly deployed to control the disease. Lack of vaccination is due partly to uncertainty of the disease burden arising from a paucity of epidemiological information in key locations. We have collected and analyzed data from 3,898 cases of blood culture-confirmed enteric fever from Patan Hospital in Lalitpur Sub-Metropolitan City (LSMC), between June 2005 and May 2009. Demographic data was available for a subset of these patients (n = 527) that were resident in LSMC and who were enrolled in trials. We show a considerable burden of enteric fever caused by S. Typhi (2,672; 68.5%) and S. Paratyphi A (1,226; 31.5%) at this Hospital over a four year period, which correlate with seasonal fluctuations in rainfall. We found that local population density was not related to incidence and we identified a focus of infections in the east of LSMC. With data from patients resident in LSMC we found that the median age of those with S. Typhi (16 years) was significantly less than S. Paratyphi A (20 years) and that males aged 15 to 25 were disproportionately infected. Our findings provide a snapshot into the epidemiological patterns of enteric fever in Kathmandu. The uneven distribution of enteric fever patients within the population suggests local variation in risk factors, such as contaminated drinking water. These findings are important for initiating a vaccination scheme and improvements in sanitation. We suggest any such intervention should be implemented throughout the LSMC area.This work was supported by The Wellcome Trust, Euston Road, London, United Kingdom. MFB is supported by the Medical Research Council (grant G0600718). SB is supported by an OAK foundation fellowship through Oxford University
    corecore