101 research outputs found
Silencing of the Hsf gene, the transcriptional regulator of A. gambiae male accessory glands, inhibits the formation of the mating plug in mated females and disrupts their monogamous behaviour
Discovering the molecular factors that shape the mating behaviour and the fertility of the mosquito Anopheles gambiae, the principal vector of human malaria, is regarded as critical to better understand its reproductive success as well as for identifying new leads for malaria control measures. In A. gambiae mating induces complex behavioural and physiological changes in the females, including refractoriness to subsequent mating and induction of egg-laying. In other insects including Drosophila a group of proteins named Accessory gland proteins (Acps), produced by males and transferred with sperm to the female reproductive tract, have been implicated in this post-mating response. Although Acps represent a set of promising candidates for unravelling the mating physiology, their role in inducing behavioural changes in mated A. gambiae females remains largely unknown. In this work, we demonstrate that a down-regulation of a large fraction of Acp genes via silencing of the Acp regulating transcription factor Hsf, abolishes the formation of mating plug in mated females and fails to induce refractoriness of mated female to subsequent inseminations. A significant fraction of females mated to Hsf silenced males (66%) failed to receive the mating plug though seminal fluid had been transferred as documented by the presence of spermatozoa in the female sperm storage organ. Furthermore, nearly all females (95%) mated to HSF-silenced males were re-inseminated when exposed to males carrying EGPF marked sperm. Our findings provide evidence showing that Acp genes regulated by the transcription factor HSF play a key role in the function of the male accessory glands
The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito anopheles gambiae
Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria
Second primary malignancies in thyroid cancer patients
The late health effects associated with radioiodine ((131)I) given as treatment for thyroid cancer are difficult to assess since the number of thyroid cancer patients treated at each centre is limited. The risk of second primary malignancies (SPMs) was evaluated in a European cohort of thyroid cancer patients. A common database was obtained by pooling the 2-year survivors of the three major Swedish, Italian, and French cohorts of papillary and follicular thyroid cancer patients. A time-dependent analysis using external comparison was performed. The study concerned 6841 thyroid cancer patients, diagnosed during the period 1934-1995, at a mean age of 44 years. In all, 17% were treated with external radiotherapy and 62% received (131)I. In total, 576 patients were diagnosed with a SPM. Compared to the general population of each of the three countries, an overall significantly increased risk of SPM of 27% (95% CI: 15-40) was seen in the European cohort. An increased risk of both solid tumours and leukaemias was found with increasing cumulative activity of (131)I administered, with an excess absolute risk of 14.4 solid cancers and of 0.8 leukaemias per GBq of (131)I and 10(5) person-years of follow-up. A relationship was found between (131)I administration and occurrence of bone and soft tissue, colorectal, and salivary gland cancers. These results strongly highlight the necessity to delineate the indications of (131)I treatment in thyroid cancer patients in order to restrict its use to patients in whom clinical benefits are expected
Transcription Regulation of Sex-Biased Genes during Ontogeny in the Malaria Vector Anopheles gambiae
In Anopheles gambiae, sex-regulated genes are responsible for controlling gender dimorphism and are therefore crucial in determining the ability of female mosquitoes to transmit human malaria. The identification and functional characterization of these genes will shed light on the sexual development and maturation of mosquitoes and provide useful targets for genetic control measures aimed at reducing mosquito fertility and/or distorting the sex ratio
Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes
open28openHall A.B.; Papathanos P.-A.; Sharma A.; Cheng C.; Akbari O.S.; Assour L.; Bergman N.H.; Cagnetti A.; Crisanti A.; Dottorini T.; Fiorentini E.; Galizi R.; Hnath J.; Jiang X.; Koren S.; Nolan T.; Radune D.; Sharakhova M.V.; Steele A.; Timoshevskiy V.A.; Windbichler N.; Zhang S.; Hahn M.W.; Phillippy A.M.; Emrich S.J.; Sharakhov I.V.; Tu Z.J.; Besansky N.J.Hall, A. B.; Papathanos, P. -A.; SHARMA DHAKAL, Apsara; Cheng, C.; Akbari, O. S.; Assour, L.; Bergman, N. H.; Cagnetti, A.; Crisanti, A.; Dottorini, T.; Fiorentini, E.; Galizi, R.; Hnath, J.; Jiang, X.; Koren, S.; Nolan, T.; Radune, D.; Sharakhova, M. V.; Steele, A.; Timoshevskiy, V. A.; Windbichler, N.; Zhang, Shangu; Hahn, M. W.; Phillippy, A. M.; Emrich, S. J.; Sharakhov, I. V.; Tu, Z. J.; Besansky, N. J
Serum IgE Reactivity Profiling in an Asthma Affected Cohort
BACKGROUND: Epidemiological evidence indicates that atopic asthma correlates with high serum IgE levels though the contribution of allergen specific IgE to the pathogenesis and the severity of the disease is still unclear. METHODS: We developed a microarray immunoassay containing 103 allergens to study the IgE reactivity profiles of 485 asthmatic and 342 non-asthmatic individuals belonging to families whose members have a documented history of asthma and atopy. We employed k-means clustering, to investigate whether a particular IgE reactivity profile correlated with asthma and other atopic conditions such as rhinitis, conjunctivitis and eczema. RESULTS: Both case-control and parent-to-siblings analyses demonstrated that while the presence of specific IgE against individual allergens correlated poorly with pathological conditions, particular reactivity profiles were significantly associated with asthma (p<10E-09). An artificial neural network (ANN)-based algorithm, calibrated with the profile reactivity data, correctly classified as asthmatic or non-asthmatic 78% of the individual examined. Multivariate statistical analysis demonstrated that the familiar relationships of the study population did not affect the observed correlations. CONCLUSIONS: These findings indicate that asthma is a higher-order phenomenon related to patterns of IgE reactivity rather than to single antibody reactions. This notion sheds new light on the pathogenesis of the disease and can be readily employed to distinguish asthmatic and non-asthmatic individuals on the basis of their serum reactivity profile
Transglutaminase-Mediated Semen Coagulation Controls Sperm Storage in the Malaria Mosquito
The mating plug is a key regulator of mosquito fertility
Laboratory selection for an accelerated mosquito sexual development rate
<p>Abstract</p> <p>Background</p> <p>Separating males and females at the early adult stage did not ensure the virginity of females of <it>Anopheles arabiensis </it>(Dongola laboratory strain), whereas two years earlier this method had been successful. In most mosquito species, newly emerged males and females are not able to mate successfully. For anopheline species, a period of 24 h post-emergence is generally required for the completion of sexual maturation, which in males includes a 180° rotation of the genitalia. In this study, the possibility of an unusually shortened sexual maturity period in the laboratory-reared colony was investigated.</p> <p>Methods</p> <p>The effect of two different sex-separation methods on the virginity of females was tested: females separated as pupae or less than 16 h post-emergence were mated with males subjected to various doses of radiation. T-tests were performed to compare the two sex-separation methods. The rate of genitalia rotation was compared for laboratory-reared and wild males collected as pupae in Dongola, Sudan, and analysed by Z-tests. Spermatheca dissections were performed on females mated with laboratory-reared males to determine their insemination status.</p> <p>Results</p> <p>When the sex-separation was performed when adults were less than 16 h post-emergence, expected sterility was never reached for females mated with radio-sterilized males. Expected sterility was accomplished only when sexes were separated at the pupal stage. Observation of genitalia rotation showed that some males from the laboratory strain Dongola were able to successfully mate only 11 h after emergence and 42% of the males had already completed rotation. A small proportion of the same age females were inseminated. Wild males showed a much slower genitalia rotation rate. At 17 h post-emergence, 96% of the laboratory-reared males had completed genitalia rotation whereas none of the wild males had.</p> <p>Conclusion</p> <p>This colony has been cultured in the laboratory for over one hundred generations, and now has accelerated sexual maturation when compared with the wild strain. This outcome demonstrates the kinds of selection that can be expected during insect colonization and maintenance, particularly when generations are non-overlapping and similar-age males must compete for mates.</p
Wolbachia Infections in Anopheles gambiae Cells: Transcriptomic Characterization of a Novel Host-Symbiont Interaction
The endosymbiotic bacterium Wolbachia is being investigated as a potential control agent in several important vector insect species. Recent studies have shown that Wolbachia can protect the insect host against a wide variety of pathogens, resulting in reduced transmission of parasites and viruses. It has been proposed that compromised vector competence of Wolbachia-infected insects is due to up-regulation of the host innate immune system or metabolic competition. Anopheles mosquitoes, which transmit human malaria parasites, have never been found to harbor Wolbachia in nature. While transient somatic infections can be established in Anopheles, no stable artificially-transinfected Anopheles line has been developed despite numerous attempts. However, cultured Anopheles cells can be stably infected with multiple Wolbachia strains such as wAlbB from Aedes albopictus, wRi from Drosophila simulans and wMelPop from Drosophila melanogaster. Infected cell lines provide an amenable system to investigate Wolbachia-Anopheles interactions in the absence of an infected mosquito strain. We used Affymetrix GeneChip microarrays to investigate the effect of wAlbB and wRi infection on the transcriptome of cultured Anopheles Sua5B cells, and for a subset of genes used quantitative PCR to validate results in somatically-infected Anopheles mosquitoes. Wolbachia infection had a dramatic strain-specific effect on gene expression in this cell line, with almost 700 genes in total regulated representing a diverse array of functional classes. Very strikingly, infection resulted in a significant down-regulation of many immune, stress and detoxification-related transcripts. This is in stark contrast to the induction of immune genes observed in other insect hosts. We also identified genes that may be potentially involved in Wolbachia-induced reproductive and pathogenic phenotypes. Somatically-infected mosquitoes had similar responses to cultured cells. The data show that Wolbachia has a profound and unique effect on Anopheles gene expression in cultured cells, and has important implications for mechanistic understanding of Wolbachia-induced phenotypes and potential novel strategies to control malaria
- …