15 research outputs found

    Acceleration of Radiative Decay of Photon Counts With Increasing Numbers of Measurement Units: A Potential Large Scale Negative Zeno Effect That Matches With Lorentz Contraction and Photon Acceleration Durations

    Get PDF
    The reverse Zeno effect whereby an unstable quantum state associated with radiative decay is accelerated by frequent measurements was demonstrated experimentally for numbers of spontaneous photons in a 3 m3 hyperdark chamber during the 60 s following a burst of applied photons. Numbers of photon counts were measured from one digital photomultiplier unit when either 1 (the reference) or 2, 3, or 4 units were measuring simultaneously. There was a median decrease of 50 photons per s with the addition of each additional simultaneous measurement by another unit. The energy was ~ 10-17 J per s and is equivalent to a wavelength of 10 nm. This quantity is equivalent to the energy of one neuron in the human brain displaying its upper limit (~1 kHz).  The results suggest that this increment of energy may be a standard quantity that reflects the numbers of measurements by similar photoelectric currents to the decay of a single photon burst. The approximately 30 to 40 s required for the decay of photons per unit to inflect towards asymptote is consistent with the solution for the Lorentz contraction for the shift in electron mass-energy (10-17 J) with a wavelength of ~10 nm. The 30 to 40 s value is a solution for several applications to novel calculations involving fundamental parameters within the structure of space-time

    Electromagnetic Fields as Structure-Function Zeitgebers in Biological Systems: Environmental Orchestrations of Morphogenesis and Consciousness

    Get PDF
    Within a cell system structure dictates function. Any interaction between cells, or a cell and its environment, has the potential to have long term implications on the function of a given cell and emerging cell aggregates. The structure and function of cells are continuously subjected to modification by electrical and chemical stimuli. However biological systems are also subjected to an ever-present influence: the electromagnetic environment. Biological systems have the potential to be influenced by subtle energies which are exchanged at atomic and subatomic scales as electromagnetic phenomena. These energy exchanges have the potential to manifest at higher orders of discourse and affect the output (behaviour) of a biological system. Here we describe theoretical and experimental evidence of electromagnetic influence on cells and the integration of whole systems. Even weak interactions between electromagnetic energies and biological systems display the potential to affect a developing system. We suggest the growing literature of electromagnetic effects on biological systems has significant implications to the cell and its functional aggregates

    The Influence of Burst-Firing EMF on Forskolin-Induced Pheochromocytoma (PC12) Plasma Membrane Extensions

    No full text
    Previous research has demonstrated that pheochromocytoma (PC12) cells treated with forskolin provides a model for the in vitro examination of neuritogenesis. Exposure to electromagnetic fields (EMFs), especially those which have been designed to mimic biological function, can influence the functions of various biological systems. We aimed to assess whether exposure of PC12 cells treated with forskolin to patterned EMF would produce more plasma membrane extensions (PME) as compared to PC12 cells treated with forskolin alone (i.e., no EMF exposure). In addition, we aimed to determine whether the differences observed between the proportion of PME of PC12 cells treated with forskolin and exposed to EMF were specific to the intensity, pattern, or timing of the applied EMF. Our results showed an overall increase in PME for PC12 cells treated with forskolin and exposed to Burst-firing EMF as compared to PC12 cells receiving forskolin alone. No other patterned EMF investigated were deemed to be effective. Furthermore, intensity and timing of the Burst-firing pattern did not significantly alter the proportion of PME of PC12 cells treated with forskolin and exposed to patterned EMF

    The Influence of Burst-Firing EMF on Forskolin-Induced Pheochromocytoma (PC12) Plasma Membrane Extensions

    No full text
    Previous research has demonstrated that pheochromocytoma (PC12) cells treated with forskolin provides a model for the in vitro examination of neuritogenesis. Exposure to electromagnetic fields (EMFs), especially those which have been designed to mimic biological function, can influence the functions of various biological systems. We aimed to assess whether exposure of PC12 cells treated with forskolin to patterned EMF would produce more plasma membrane extensions (PME) as compared to PC12 cells treated with forskolin alone (i.e., no EMF exposure). In addition, we aimed to determine whether the differences observed between the proportion of PME of PC12 cells treated with forskolin and exposed to EMF were specific to the intensity, pattern, or timing of the applied EMF. Our results showed an overall increase in PME for PC12 cells treated with forskolin and exposed to Burst-firing EMF as compared to PC12 cells receiving forskolin alone. No other patterned EMF investigated were deemed to be effective. Furthermore, intensity and timing of the Burst-firing pattern did not significantly alter the proportion of PME of PC12 cells treated with forskolin and exposed to patterned EMF

    TESSARO_NONLOCAL_BACTERIA

    No full text
    SPSS datafile of the extracted raw spectral frequencies and computed bins that were used for subsequent analyses

    Data from: Bacterial biophotons as non-local information carriers: species-specific spectral characteristics of a stress response

    No full text
    Studies by Alexander Gurwitsch in the 1920’s with onion root cells revealed the phenomenon of mitogenetic radiation. Subsequent works by Popp, Van Wijk, Quickenden, Tillbury and Trushin have demonstrated a link between Gurwitsch’s mitogenetic radiation and the biophoton, emissions of light correlated with biological processes. The present study seeks to expand upon these works and explore whether biophoton emissions of bacterial cultures is used as an information carrier of environmental stress. Bacterial cultures (Escherichia coli and Serratia marcescens) were incubated for 24 h in 5 mL of Nutrient Broth to stationary phase and cell densities of ~107 cells/mL. Cultures of E. coli were placed upon a photomultiplier tube housed within a dark box. A second bacterial culture, either E. coli or S. marcescens, was placed in an identical dark box at a distance of 5 m and received injections of hydrogen peroxide. Spectral analyses revealed significant differences in peak frequencies of 7.2, 10.1, and 24.9 Hz in the amplitude modulation of the emitted biophoton signal with respect to whether a peroxide injection occurred or not, and whether the species receiving the injection was E. coli or S. marcescens. These and the subsequent results of discriminant functions suggest that bacteria may release biophotons as a non-local communication system in response to stress, and that these biophotons are species specific

    Inverse relationship between photon flux densities and nanotesla magnetic fields over cell aggregates: Quantitative evidence for energetic conservation

    Get PDF
    The quantitative relationship between local changes in magnetic fields and photon emissions within ∼2 mm of aggregates of 105–106 cells was explored experimentally. The vertical component of the earth's magnetic field as measured by different magnetometers was ∼15 nT higher when plates of cells removed from incubation were measured compared to plates containing only medium. Additional experiments indicated an inverse relationship over the first ∼45 min between changes in photon counts (∼10−12W·m−2) following removal from incubation and similar changes in magnetic field intensity. Calculations indicated that the energy within the aqueous volume containing the cells was equivalent for that associated with the flux densities of the magnetic fields and the photon emissions. For every approximately 1 nT increase in magnetic field intensity value there was a decrease of ∼2 photons (equivalent of 10−18J). These results complement correlation studies and suggest there may be a conservation of energy between expression as magnetic fields that are subtracted or added to the adjacent geomagnetic field and reciprocal changes in photon emissions when aggregates of cells within a specific volume of medium (water) adapt to new environments

    Ultraweak Photon Emissions as a Non-Invasive, Early-Malignancy Detection Tool: An In Vitro and In Vivo Study

    No full text
    Early detection of cancer improves treatment options and increases survival. Building upon previous demonstrations that ultraweak photon emissions (UPE) could be measured to detect cancers, we designed an early detection protocol to test malignancy in both in vitro and in vivo systems. Photons were measured for 100 s from plates containing ~1 million malignant or non-malignant cells from 13 different types of human and mouse cell lines. Tumor cells displayed increased photon emissions compared to non-malignant cells. Examining the standardized Spectral Power Density (SPD) configurations for flux densities between 0.1 and 25 Hz (Δf = 0.01 Hz) yielded 90% discriminant accuracy. The emission profiles of mice that had been injected with melanoma cells could be differentiated from a non-malignant reference groups as early as 24 h post-injection. The peak SPD associated with photon emissions was ~20 Hz for both malignant cell cultures and mice with growing tumors. These results extend the original suggestion by Takeda and his colleagues (2004) published in this journal concerning the potential diagnostic value of UPEs for assessing proliferations of carcinoma cells. The specificity of the spectral profile in the 20 Hz range may be relevant to the consistent efficacy reported by several authors that weak magnetic field pulsations within this frequency range can diminish the growth of malignant cells in culture and tumor weights in mice

    Induction of apoptosis in B16‐BL6 melanoma cells following exposure to electromagnetic fields modeled after intercellular calcium waves

    No full text
    Exposure to time‐varying electromagnetic fields (EMF) has the capacity to influence biological systems. Our results demonstrate that exposure to time‐varying EMF modeled after the physiological firing frequency of intercellular calcium waves can inhibit proliferation and induce apoptosis in malignant cells. Single exposure of B16‐BL6 cells to a Ca2+ EMF for 40 min reduced the number of viable cells by 50.3%. Cell imaging with acridine orange and ethidium bromide dye revealed substantial cellular apoptosis, preapoptotic cells, nuclear fragmentation, and large spacing between cells in the Ca2+ EMF condition when compared to the control condition. The ability of Ca2+ EMF to influence the proliferation and survival of malignant cells suggests that exposure to specific EMF may function as a potential anticancer therapy
    corecore