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The quantitative relationship between local changes in magnetic fields and photon emissions within
�2 mm of aggregates of 105–106 cells was explored experimentally. The vertical component of the
earth’s magnetic field as measured by different magnetometers was �15 nT higher when plates of
cells removed from incubation were measured compared to plates containing only medium.
Additional experiments indicated an inverse relationship over the first �45 min between changes
in photon counts (�10�12 W�m�2) following removal from incubation and similar changes in mag-
netic field intensity. Calculations indicated that the energy within the aqueous volume containing
the cells was equivalent for that associated with the flux densities of the magnetic fields and the
photon emissions. For every approximately 1 nT increase in magnetic field intensity value there
was a decrease of �2 photons (equivalent of 10�18 J). These results complement correlation studies
and suggest there may be a conservation of energy between expression as magnetic fields that are
subtracted or added to the adjacent geomagnetic field and reciprocal changes in photon emissions
when aggregates of cells within a specific volume of medium (water) adapt to new environments.
� 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
A biophysical approach to the dynamics of aggregates of cells
predicts that the magnitude of potential differences of the plasma
membranes within the aqueous volume, the magnetic fields asso-
ciated with these aggregated potentials and the bulk emissions of
photons should be quantitatively related. Contemporary proce-
dures in biomolecular science often involve 105–106 cells within
a volume of �5 cc. Over the decades, several groups of researchers
have measured ultralow intensities of photons from cell or tissue
preparations whose flux densities are in the order of 10�12

–10�11 W�m�2 [1–4].
Mouse melanoma cells, in particular, when removed from incu-

bation and placed at room temperature exhibit marked increases
in photon emissions as measured by photomultiplier tubes
(PMTs) during the first hour [5]. The enhanced photon emissions
continue for several hours with discrete shifts in the wavelengths
as demonstrated by optical filters [6]. The calculated equivalent
power (Watts) per cell was about 10�20 J�s�1 which is the energy
associated with the force over the distance between the potassium
ions that contribute to the membrane potential, the energy associ-
ated with base-stacking in RNA ribbons, and even the action poten-
tial of neurons [7]. We hypothesized that with such power
densities the equivalent energies should be discernable by shifts
in the proximal background of the geomagnetic magnetic field
around these aggregate of cells as measured by magnetometers.
Here we present evidence of quantitative convergence of the
energy associated with changes in magnetic flux density and
photon emissions from aggregates of mouse melanoma cells.

We reasoned that if the value for the bulk ‘‘energy’’ of aggre-
gates of cells were known from photon counts, we should be able
to calculate the associated magnetic field strength which should be
reflected in direct measurements as additions or subtractions from
the vertical component of the geomagnetic field that passes
through the cross-sectional area of the dish. According to the
classic association between magnetic field strength and energy:

B2 ¼ E � 2l �m�3; ð1Þ

where B is the magnetic field strength, E is the energy, l is the mag-
netic permeability constant (4p�10�7 N�A�2) and m is the volume.
Assuming the typical photon radiant flux density as measured by
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Fig. 1. Means and standard deviations for the changes in the surrounding magnetic
field as measured by a fast frequency magnetometer for 60 min when either plates
with medium only or plates with about 1 million cells were placed over the sensor.
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analogue and digital PMTs measured for these cells by Dotta et al.
[6,8], i.e., 10�11 W�m�2, there should be �5�10�16 J�s�1 from a plate
of 105–106 melanoma cells within 5 cc (5�10�6 m3). For this calcula-
tion we appreciate that the aperture for the digital PMT is 1 cm2

compared to the area of the plate (28 cm2) and hence only that
portion of those cells would be directly measured. However the
equivalent energy in magnetic field strength as measured by the
relatively wider functional width of the magnetometer sensor when
all of the cells within the volume are considered should be in the
order of 15 nT. This is well within the range that can be reliably
detected by flux-gate magnetometers which are sensitive to
changes of 1 nT.

To test the validity of these calculations the changes in the
ambient magnetic field strength within 1–2 mm from the bottom
of standard plastic plates (60 � 15 mm) of melanoma cells that
had achieved 90% confluence were measured at room temperature
(21 �C) for one hour starting about 15 min after removal from incu-
bation (37 �C) as described previously [5,6]. The passage number
for the cells was between 15 and 20. The growth media was
Dulbecco’s Modified Essential Medium (DMEM, Hyclone, Logan
UT) containing 10% fetal bovine serum, 100 lg per ml of strepto-
mycin and 100 U of penicillin per ml (Invitrogen, Burlington,
Ont). There were four replicates, each on separate days. A single
plate of �106 cells in 5 cc of medium was placed over the sensor
marker of a SENSYS GmbH (FGM3D) fast frequency magnetometer
(Germany, +49 (33631) 59650; www.sensy.de). For comparison
single plates containing only the medium (no cells) were measured
for the same duration (1 h). The sensor and the plates were placed
in an acoustic chamber that was also a Faraday chamber (13 m3)
within which the intensity of the resultant geomagnetic field was
reduced from 45,000 nT to about 20,000 nT.

The computer operating the measurement software and other
components of the system were placed outside of the closed cham-
ber. To ensure any effect was not related to sampling anomalies,
the resultant magnetic field was measured at 450 and 3200
samples per second (2 of each for the cell and the medium only
conditions; there was no difference in the results). After about
10 min when the field measurements had stabilized inside the
chamber values were set automatically from the computer to zero
so that only relative changes over time would be measured during
the experiment. The results were very conspicuous as indicated by
the means and standard deviations (Fig. 1) of the shifts that
occurred in the total field during the subsequent 1 h when either
the plates containing medium only or plates containing cells were
measured. On average the magnetic field strength above the plate
containing the cells was about 16 nT higher than the plates con-
taining no cells [F(1,6) = 15.86, p < .01]. The presence or absence
of the cells explained over 70% of the variance in the change in
magnetic field strengths. This value is consistent with the predic-
tions from the calculations.

We have shown over multiple experiments [5,6,8,9] that during
the first hour after removal from incubation melanoma cells (and
all cells, particularly cancer cells in general) display conspicuous
increases in photon flux density (10�12 W�m�2) compared to
warmed, media only dishes. To ensure there was a temporally-
coupled and dynamic relationship between the strength of the
magnetic field and photon flux density directly associated with
aggregates of these cells, plates were placed over the aperture of
a Sens Tech LTD DM0090C photomultiplier unit (PMT). The spec-
tral sensitivity was between 280 and 850 nm (peak around
400 nm). The dark counts for this PMT was �10 per s. There were
four replicates. The sensor for a second type of vector magnetome-
ter (MEDA-FVM 400, still accurate to 1 nT variations) was then
placed over the top (of the cover) of the plate of cells. Both sensors
were maintained in a wooden black box covered with several lay-
ers of black thick terry cloth towels that was housed in a dull light
environment within a basement laboratory (not the chamber used
in the first part of the experiment) that was at least 20 m distance
from any human movement in order to minimize variability in the
magnetometer measurements.

Once the plate of cells had been placed (within 5–10 min of
removal) from the incubator on the aperture of the PMT and the
sensor for the magnetometer was placed upon the top of the dish
containing the cells the software that controlled the magnetometer
and PMT were activated. The mean numbers of photon counts per
second for the dishes containing no cells (medium only) from other
experiments using this PMT and the same procedure during this
period and the dishes containing cells for the present analyses
are shown in Fig. 2. The plates containing the cells displayed signif-
icantly [F(1,7) = 41.60, p < .001; g2 = 87%] more photon counts than
the plates containing no cells. The data were sampled from both
the PMT and magnetometer at 1 s intervals for about 3 h.
Increases in photon counts were relative to reference conditions
(empty dishes or dishes with only media). The major increase
occurred during the first hour particularly during the first few min-
utes which comparable to our previous experiments that employed
older, non-digital PMTs.

The data from the X, Y, and Z magnetic field components and the
numbers of photon counts per s from the PMT were loaded into
SPSS PC (16) for analyses. Because of the movement artifacts of
the experimenters the data were analyzed starting 10 min after
the experiments began (to allow time for the experimenters to
leave) and emphasized the subsequent 30 min. Hence the
real-time end of this component of the experiments was about
1 h after removal from the incubators. Graphic data indicate this
was the duration of the largest change in photon counts and mag-
netic field strength. Both the magnetometer and the PMT had been
operating continually for several weeks (for other experiments).
Consequently potential drifts due to stabilization latencies for the
equipment were unlikely.

The average increase in magnetic field (vertical) intensity over
the plates of cells for the four experiments from the beginning to
the end of the 30 min period was 15 nT (range = 9–23 nT) which
is within 1 nT and not significantly different (considering the
range) from that recorded by a different (fast frequency magne-
tometer) when cells were measured in the acoustic chamber in a
different room during the first block of experiments. The range in
mean photon counts s�1 for the four runs was 25 (SD = 6) for the
experiment with lowest counts and 54 (SD = 25) for the experi-
ment with the highest counts. This approximately factor 2
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Fig. 2. Photon counts per second from all dishes containing either no cells (medium
only) or cells. Vertical lines indicate standard deviations.
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difference is not unusual for different batches of melanoma cells.
Assuming the peak sensitivity of the PMT, 400 nm, and hence each
photon displaying an energy of �5�10�19 J, the mean values would
have ranged from 1.3 to 2.7�10�17 J�s�1. Considering the area of the
plate containing the plate relative to the area of the aperture of
the digital PMT, the energy for all of the 105–106 cells would be
between 3.8 and 7.6�10�16 J�s�1. This is within the same order of
magnitude calculated from Eq. (1). The power density would be in
the order of 10�12 W�m�2 which is similar (when the total surface
area and distance are considered) to that measured at aperture-cell
plate by analogue [5] and digital [6] PMTs for these cells.

Regression analyses for the magnitudes of the photon counts
per s and the magnetometer measurements per s consistently
demonstrated an inverse relationship between the increased mag-
netic field intensity, particular within the vertical component (the
strongest component, i.e., ranged between 58,450 and 58,939 nT
for the different experiments) and the diminishment of photon flux
densities. An example of this relationship is shown in Figs. 3 and 4.
The rapid attenuation of photon flux density is typical of we have
found when these cells were measured by analogue and digital
PMTs.
Fig. 3. Example of diminishment of photon counts for 3
The average correlation for the 30 min interval between mag-
netic field intensity for the vertical component and photon counts
was r = �0.45 (range = �0.12 to �0.62). Because the degrees of
freedom (11,799) all of the correlations were strongly significant
statistically. The average slope was �2.1 (range �1.6 to �5.1)
which means that for every 1 nT increase in the strength of the
field near the cells there was a decrease of 2.1 photon counts.
Additional regression analysis where time (s) was the predictor
indicated that between 33 and 200 s were required for the
decrease of 1 photon and between 250 and 300 s were required
for an increase of 1 nT.

To ensure there were no obvious artifacts of the measurement
procedure correlations between the second-to-second magnetic
field strength and photon counts were completed for the subse-
quent �2 h when photon emissions have usually entered the
asymptote stage. The absolute value (because there were both pos-
itive and negative values) of the average correlation was r = 0.08
(range 0.02–.22). The average slope was 0.17 (�0.04 to 0.66).
Consequently there was no consistent or strong association
between the photon counts and the changes in magnetic field
strength during this period. This effect when combined with the
early rapid decline in photon flux density but increased magnetic
field intensities over about 2.7 h are shown in Figs. 5 and 6.

If the inverse correlation between the change in photon counts
and change in local magnetic field intensities attributed to the
presence of the cells were sharing the same source of variance,
then standardized scores for each would be expected to exhibit
similar vectors but in opposite direction. This was confirmed for
each of the four trials and was most conspicuous in one of them.
As seen in Fig. 7 the within measurement z-scores for photon
and magnetic field changes over time were comparable and the
time courses are mirror images of the other. The mutual inflections
of the flux density curves in Fig. 7 would have occurred about
15 min after removal from incubation. In each of the other exper-
iments similar shifts involving similar magnitudes occurred rela-
tively quickly. In one experiment the sudden reciprocal shift
occurred within about 2 min.
0 min about 15 min after removal from incubation.
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The inverse relationship between the power or flux density for
proximal changes in the earth’s magnetic field and photon
emissions from living tissue has been measured several times by
our research group [10,11]. Simultaneous measurements of photon
emissions and the local magnetic field near the right hemisphere of
people sitting in hyperdark conditions have shown an inverse cor-
relation between the two energies quite reliably, even for special
cases [12]. In those studies for every 1 nT increase in the measured
magnetic field there was �1�10�12 W�m�2 decrease in photon
Fig. 4. Example of the increased intensity for the vertical component of the earth

Fig. 5. Example of the numbers of photons per second measured over an aggrega
emissions. Direct measurements of the power of the photon flux
density and the geomagnetic change as a function of distance from
the head indicate a conservation of energy.

The significance of the 1 nT increase in the geomagnetic field
adjacent to the cells (and presumably produced by the aggre-
gate) for every decrease in �2 photons (or �10�18 J) could be
revealing for the boundaries within which the convergence of
energies was occurring. According to Eq. (1), a change of 1 nT
within a single melanoma cell with a volume of �10�15 m3
’s magnetic field within 2 mm of the cells during the same period as Fig. 2.

te of melanoma cells (about 1 million) over a period of 10,000 s (about 3 h).
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would be associated with 0.4�10�27 J and for 105–106 cells in the
aggregate, 0.4�10�22–10�21 J. Even if energy were summated over
time required for the increase in 1 nT, which the slopes indicated
to be about 200 s, the ‘‘magnetic energy’’ within each cell would
only be about 10�26–10�25 J and the aggregate would be
�10�20–10�19 J.
Fig. 6. Example of the change in intensity of the vertical component of the earth’s magne
photons counts were being measured.

Fig. 7. Z-scores of distributions for a single experiment (run) over the 30 min interva
measurements) for photon emissions (green) and the vertical magnetic field strength (bl
To obtain the equivalent relationship between the magnetic
energy associated with an increase in 1 nT and a decrease of pho-
ton energy of �10�18 J, according to Eq. (1), the volume would be
about 2 cc. This is the volume of media within which the cells were
contained. This suggests an interesting possibility that has been
developed by Pollack and his colleagues [13,14] and by Del
tic field over the same aggregate of cells noted in Fig. 4 during the same duration the

l (about 15–20 min after removal from incubator and 10 min after activation of
ue) measured simultaneously near an aggregate of about 1 million melanoma cells.
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Giudice and Preparata [15] that interfacial water near surfaces,
such as cell membranes, have the capacity to display coherent
domains within which magnetic fields and photons can interface.
The calculation of the energy associated with a magnetic field does
not involve a temporal component. If the temporal slope (200 s) is
relevant then the ‘‘cumulative’’ energy would be �2�10�16 J. If
‘‘stored’’ within the intricate structure of water the release of this
power per s over the 10�4 m2 aperture of the PMT would be about
10�12 W�m�2.

Most cancer cells display membrane potentials that are
hypopolarized compared to normal cells. Persinger and Lafrenie
[16], who averaged the data collected by Levin [17], showed that
malignant cells as a population display resting membrane poten-
tials that approach �26 mV, the constant within the Nernst equa-
tion independent of intracellular–extracellular ratios of ions. We
did not measure the plasma membrane potentials in the present
experiments. However if one assumes the estimated average rest-
ing membrane potential for a melanoma cells to be about �35 mV,
the equivalent energy by multiplying by the unit charge
(1.6�10�19 A�s) would be 5.6�10�21 J per cell or �5.6�10�16 J for an
aggregate of 105 cells. This value is within the order of magnitude
for photon energy measured directly from aggregates of these cells.
The equivalent magnetic field strength for this energy within 1 cc
would be �15 nT.

There have been several correlational studies involving bacteria
that indicated associations between photon emissions and geo-
magnetic activity. However they involved relatively wide temporal
intervals [18]. Recently we [9] found that injections of morphine, a
compound that produces analgesia but can also encourage metas-
tases, into plates of melanoma cells was associated with a conspic-
uous increase in bursts of photons for several hours. If photons
emissions are correlated with inter-cell communication such large
bursts could be significant and should be associated with compen-
satory diminishments of proximal magnetic field intensities. As
aptly reiterated by Cifra [19], traditional applications of ‘‘kT bound-
ary’’ arguments for cell systems may not be completely applicable
and distant interactions between mammalian cells can occur
through intrinsic electromagnetic coupling.

Although there is an accumulating scientific literature indicat-
ing the persistent display of ultraweak photons or biophotons from
cell preparations, bacteria, and entire organisms, the transforma-
tion of these energies from and to other forms has not been exam-
ined experimentally. Helmholtz’ principle states that energy is
neither created nor destroyed but only changes form. If it is appli-
cable here then the significance of a local equilibrium of energy as
either photon flux density or magnetic fields, such that as one
increases the other decreases, may reveal additional processes by
which cells interact with each other and the environment. They
could be potential mechanisms to help explain results that suggest
non-local effects in populations of cells that can be induced with
specifically patterned, shared magnetic fields [20].
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