320 research outputs found
Voice control of the space shuttle video system
A pilot voice control system developed at the Jet Propulsion Laboratory (JPL) to test and evaluate the feasibility of controlling the shuttle TV cameras and monitors by voice commands utilizes a commercially available discrete word speech recognizer which can be trained to the individual utterances of each operator. Successful ground tests were conducted using a simulated full-scale space shuttle manipulator. The test configuration involved the berthing, maneuvering and deploying a simulated science payload in the shuttle bay. The handling task typically required 15 to 20 minutes and 60 to 80 commands to 4 TV cameras and 2 TV monitors. The best test runs show 96 to 100 percent voice recognition accuracy
Tracking and imaging gamma ray experiment (TIGRE) for 1 to 100 MEV gamma ray astronomy
A large international collaboration from the high energy astrophysics community has proposed the Tracking and Imaging Gamma Ray Experiment (TIGRE) for future space observations. TIGRE will image and perform energy spectroscopy measurements on celestial sources of gamma rays in the energy range from 1 to 100 MeV. This has been a difficult energy range experimentally for gamma ray astronomy but is vital for the future considering the recent exciting measurements below 1 and above 100 MeV. TIGRE is both a double scatter Compton and gamma ray pair telescope with direct imaging of individual gamma ray events.
Multi‐layers of Si strip detectors are used as Compton and pair converters CsI(Tl) scintillation detectors are used as a position sensitive calorimeter. Alternatively, thick GE strip detectors may be used for the calorimeter. The Si detectors are able to track electrons and positrons through successive Si layers and measure their directions and energy losses. Compton and pair events are completely reconstructed allowing each event to be imaged on the sky. TIGRE will provide an order‐of‐magnitude improvement in discrete source sensitivity in the 1 to 100 MeV energy range and determine spectra with excellent energy and excellent angular resolutions. It’s wide field‐of‐view of π sr permits observations of the entire sky for extended periods of time over the life of the mission
Overview of a New NASA Activity Focused on Planetary Defense
The National Aeronautics and Space Administration (NASA) has initiated a new Planetary Defense research activity, led by the NASA Ames Research Center. The objective of the effort is to provide tools for reliably assessing the impact damage that Potentially Hazardous Asteroids (PHAs) could inflict on the Earth. This research will support decisions regarding appropriate mitigation action in the event that an impact threat is discovered. The activity includes four interrelated tasks: PHA characterization, physics-based simulations of atmospheric entry breakup, simulations of surface damage due to airbursts, land impacts, or tsunamis, and an integrated assessment of the overall risks posed by potential PHA strikes. This paper outlines the objectives, research approaches, products, and interrelations of the activity's four tasks, and presents an overview of their current progress and preliminary results. Companion papers in this conference provide additional details of the work in the four task areas
Discovery and Rossiter-McLaughlin Effect of Exoplanet Kepler-8b
We report the discovery and the Rossiter-McLaughlin effect of Kepler-8b, a
transiting planet identified by the NASA Kepler Mission. Kepler photometry and
Keck-HIRES radial velocities yield the radius and mass of the planet around
this F8IV subgiant host star. The planet has a radius RP = 1.419 RJ and a mass,
MP = 0.60 MJ, yielding a density of 0.26 g cm^-3, among the lowest density
planets known. The orbital period is P = 3.523 days and orbital semima jor axis
is 0.0483+0.0006/-0.0012 AU. The star has a large rotational v sin i of 10.5
+/- 0.7 km s^-1 and is relatively faint (V = 13.89 mag), both properties
deleterious to precise Doppler measurements. The velocities are indeed noisy,
with scatter of 30 m s^-1, but exhibit a period and phase consistent with the
planet implied by the photometry. We securely detect the Rossiter-McLaughlin
effect, confirming the planet's existence and establishing its orbit as
prograde. We measure an inclination between the projected planetary orbital
axis and the projected stellar rotation axis of lambda = -26.9 +/- 4.6 deg,
indicating a moderate inclination of the planetary orbit. Rossiter-McLaughlin
measurements of a large sample of transiting planets from Kepler will provide a
statistically robust measure of the true distribution of spin-orbit
orientations for hot jupiters in general.Comment: 26 pages, 8 figures, 2 tables; In preparation for submission to the
Astrophysical Journa
A Millimeter-Wave Galactic Plane Survey With The BICEP Polarimeter
In addition to its potential to probe the Inflationary cosmological paradigm,
millimeter-wave polarimetry is a powerful tool for studying the Milky Way
galaxy's composition and magnetic field structure. Towards this end, presented
here are Stokes I, Q, and U maps of the Galactic plane from the millimeter-wave
polarimeter BICEP covering the Galactic longitude range 260 - 340 degrees in
three atmospheric transmission windows centered on 100, 150, and 220 GHz. The
maps sample an optical depth 1 < AV < 30, and are consistent with previous
characterizations of the Galactic millimeter-wave frequency spectrum and the
large-scale magnetic field structure permeating the interstellar medium.
Polarized emission is detected over the entire region within two degrees of the
Galactic plane and indicates that the large-scale magnetic field is oriented
parallel to the plane of the Galaxy. An observed trend of decreasing
polarization fraction with increasing total intensity rules out the simplest
model of a constant Galactic magnetic field throughout the Galaxy. Including
WMAP data in the analysis, the degree-scale frequency spectrum of Galactic
polarization fraction is plotted between 23 and 220 GHz for the first time. A
generally increasing trend of polarization fraction with electromagnetic
frequency is found, which varies from 0.5%-1.5%at frequencies below 50 GHz to
2.5%-3.5%above 90 GHz. The BICEP and WMAP data are fit to a two-component
(synchrotron and dust) model showing that the higher frequency BICEP data are
necessary to tightly constrain the amplitude and spectral index of Galactic
dust. Furthermore, the dust amplitude predicted by this two-component fit is
consistent with model predictions of dust emission in the BICEP bands
The Origin of the Universe as Revealed Through the Polarization of the Cosmic Microwave Background
Modern cosmology has sharpened questions posed for millennia about the origin
of our cosmic habitat. The age-old questions have been transformed into two
pressing issues primed for attack in the coming decade: How did the Universe
begin? and What physical laws govern the Universe at the highest energies? The
clearest window onto these questions is the pattern of polarization in the
Cosmic Microwave Background (CMB), which is uniquely sensitive to primordial
gravity waves. A detection of the special pattern produced by gravity waves
would be not only an unprecedented discovery, but also a direct probe of
physics at the earliest observable instants of our Universe. Experiments which
map CMB polarization over the coming decade will lead us on our first steps
towards answering these age-old questions.Comment: Science White Paper submitted to the US Astro2010 Decadal Survey.
Full list of 212 author available at http://cmbpol.uchicago.ed
Characteristics of Kepler Planetary Candidates Based on the First Data Set: The Majority are Found to be Neptune-Size and Smaller
In the spring of 2009, the Kepler Mission commenced high-precision photometry
on nearly 156,000 stars to determine the frequency and characteristics of small
exoplanets, conduct a guest observer program, and obtain asteroseismic data on
a wide variety of stars. On 15 June 2010 the Kepler Mission released data from
the first quarter of observations. At the time of this publication, 706 stars
from this first data set have exoplanet candidates with sizes from as small as
that of the Earth to larger than that of Jupiter. Here we give the identity and
characteristics of 306 released stars with planetary candidates. Data for the
remaining 400 stars with planetary candidates will be released in February
2011. Over half the candidates on the released list have radii less than half
that of Jupiter. The released stars include five possible multi-planet systems.
One of these has two Neptune-size (2.3 and 2.5 Earth-radius) candidates with
near-resonant periods.Comment: Paper to accompany Kepler's June 15, 2010 data release; submitted to
Astrophysical Journal Figures 1,2,& 3 revised. Improved labeling on all
figures. Slight changes to planet frequencies in result
The K2 & TESS Synergy II: Revisiting 26 systems in the TESS Primary Mission
The legacy of NASA's K2 mission has provided hundreds of transiting
exoplanets that can be revisited by new and future facilities for further
characterization, with a particular focus on studying the atmospheres of these
systems. However, the majority of K2-discovered exoplanets have typical
uncertainties on future times of transit within the next decade of greater than
four hours, making observations less practical for many upcoming facilities.
Fortunately, NASA's Transiting exoplanet Survey Satellite (TESS) mission is
reobserving most of the sky, providing the opportunity to update the
ephemerides for 300 K2 systems. In the second paper of this series, we
reanalyze 26 single-planet, K2-discovered systems that were observed in the
TESS primary mission by globally fitting their K2 and TESS lightcurves
(including extended mission data where available), along with any archival
radial velocity measurements. As a result of the faintness of the K2 sample, 13
systems studied here do not have transits detectable by TESS. In those cases,
we re-fit the K2 lightcurve and provide updated system parameters. For the 23
systems with , we determine the host star parameters
using a combination of Gaia parallaxes, Spectral Energy Distribution (SED)
fits, and MESA Isochrones and Stellar Tracks (MIST) stellar evolution models.
Given the expectation of future TESS extended missions, efforts like the K2 &
TESS Synergy project will ensure the accessibility of transiting planets for
future characterization while leading to a self-consistent catalog of stellar
and planetary parameters for future population efforts.Comment: Accepted for publication in ApJ. 29 pages, 9 figures, 12 table
Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog With Measured Completeness and Reliability Based on Data Release 25
We present the Kepler Object of Interest (KOI) catalog of transiting
exoplanets based on searching four years of Kepler time series photometry (Data
Release 25, Q1-Q17). The catalog contains 8054 KOIs of which 4034 are planet
candidates with periods between 0.25 and 632 days. Of these candidates, 219 are
new and include two in multi-planet systems (KOI-82.06 and KOI-2926.05), and
ten high-reliability, terrestrial-size, habitable zone candidates. This catalog
was created using a tool called the Robovetter which automatically vets the
DR25 Threshold Crossing Events (TCEs, Twicken et al. 2016). The Robovetter also
vetted simulated data sets and measured how well it was able to separate TCEs
caused by noise from those caused by low signal-to-noise transits. We discusses
the Robovetter and the metrics it uses to sort TCEs. For orbital periods less
than 100 days the Robovetter completeness (the fraction of simulated transits
that are determined to be planet candidates) across all observed stars is
greater than 85%. For the same period range, the catalog reliability (the
fraction of candidates that are not due to instrumental or stellar noise) is
greater than 98%. However, for low signal-to-noise candidates between 200 and
500 days around FGK dwarf stars, the Robovetter is 76.7% complete and the
catalog is 50.5% reliable. The KOI catalog, the transit fits and all of the
simulated data used to characterize this catalog are available at the NASA
Exoplanet Archive.Comment: 61 pages, 23 Figures, 9 Tables, Accepted to The Astrophysical Journal
Supplement Serie
- …