556 research outputs found

    Far-infrared polarimetry from the Stratospheric Observatory for Infrared Astronomy

    Get PDF
    Multi-wavelength imaging polarimetry at far-infrared wavelengths has proven to be an excellent tool for studying the physical properties of dust, molecular clouds, and magnetic fields in the interstellar medium. Although these wavelengths are only observable from airborne or space-based platforms, no first-generation instrument for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is presently designed with polarimetric capabilities. We study several options for upgrading the High-resolution Airborne Wideband Camera (HAWC) to a sensitive FIR polarimeter. HAWC is a 12 x 32 pixel bolometer camera designed to cover the 53 - 215 micron spectral range in 4 colors, all at diffraction-limited resolution (5 - 21 arcsec). Upgrade options include: (1) an external set of optics which modulates the polarization state of the incoming radiation before entering the cryostat window; (2) internal polarizing optics; and (3) a replacement of the current detector array with two state-of-the-art superconducting bolometer arrays, an upgrade of the HAWC camera as well as polarimeter. We discuss a range of science studies which will be possible with these upgrades including magnetic fields in star-forming regions and galaxies and the wavelength-dependence of polarization.Comment: 12 pages, 5 figure

    Choice of resident costimulatory molecule can influence cell fate in human naïve CD4+ T cell differentiation

    Get PDF
    With antigen stimulation, naïve CD4+ T cells differentiate to several effector or memory cell populations, and cytokines contribute to differentiation outcome. Several proteins on these cells receive costimulatory signals, but a systematic comparison of their differential effects on naïve T cell differentiation has not been conducted. Two costimulatory proteins, CD28 and ICAM-1, resident on human naïve CD4+ T cells were compared for participation in differentiation. Under controlled conditions, and with no added cytokines, costimulation through either CD3+CD28 or CD3+ICAM-1 induced differentiation to T effector and T memory cells. In contrast, costimulation through CD3+ICAM-1 induced differentiation to Treg cells whereas costimulation through CD3+CD28 did not

    Initial Characteristics of Kepler Short Cadence Data

    Full text link
    The Kepler Mission offers two options for observations -- either Long Cadence (LC) used for the bulk of core mission science, or Short Cadence (SC) which is used for applications such as asteroseismology of solar-like stars and transit timing measurements of exoplanets where the 1-minute sampling is critical. We discuss the characteristics of SC data obtained in the 33.5-day long Quarter 1 (Q1) observations with Kepler which completed on 15 June 2009. The truly excellent time series precisions are nearly Poisson limited at 11th magnitude providing per-point measurement errors of 200 parts-per-million per minute. For extremely saturated stars near 7th magnitude precisions of 40 ppm are reached, while for background limited measurements at 17th magnitude precisions of 7 mmag are maintained. We note the presence of two additive artifacts, one that generates regularly spaced peaks in frequency, and one that involves additive offsets in the time domain inversely proportional to stellar brightness. The difference between LC and SC sampling is illustrated for transit observations of TrES-2.Comment: 5 pages, 4 figures, ApJ Letters in pres

    A survey of anisotropic energetic particle flows observed by STEREO

    Get PDF
    The Low Energy Telescopes (LETs) onboard the twin STEREO spacecraft have been measuring the anisotropies of energetic particles since before the beginning of solar cycle 24. Large unidirectional anisotropies often appear at the onset of magnetically well-connected solar energetic particle (SEP) events, suggesting beamed particles with relatively little scattering. Also, long-lasting bidirectional flows are seen during the decay phase of several SEP events. Some of these instances appear to be within interplanetary coronal mass ejections (ICMEs), as indicated by characteristics such as magnetic field rotations or bidirectional suprathermal electrons. We present preliminary findings from a survey of LET proton anisotropy observations, which illustrate that bidirectional flows appear more likely to come from directions far from the nominal Parker spiral direction than do unidirectional beams, consistent with previous studies. Individual cases that show unusual intensity depletions perpendicular to the magnetic field or pitch angle distributions otherwise indicative of magnetic mirroring are presented in more detail

    The Primordial Inflation Explorer (PIXIE): A Nulling Polarimeter for Cosmic Microwave Background Observations

    Get PDF
    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission to measure the gravity-wave signature of primordial inflation through its distinctive imprint on the linear polarization of the cosmic microwave background. The instrument consists of a polarizing Michelson interferometer configured as a nulling polarimeter to measure the difference spectrum between orthogonal linear polarizations from two co-aligned beams. Either input can view the sky or a temperature-controlled absolute reference blackbody calibrator. PIXIE will map the absolute intensity and linear polarization (Stokes I, Q, and U parameters) over the full sky in 400 spectral channels spanning 2.5 decades in frequency from 30 GHz to 6 THz (1 cm to 50 um wavelength). Multi-moded optics provide background-limited sensitivity using only 4 detectors, while the highly symmetric design and multiple signal modulations provide robust rejection of potential systematic errors. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r < 10^{-3} at 5 standard deviations. The rich PIXIE data set will also constrain physical processes ranging from Big Bang cosmology to the nature of the first stars to physical conditions within the interstellar medium of the Galaxy.Comment: 37 pages including 17 figures. Submitted to the Journal of Cosmology and Astroparticle Physic

    A Millimeter-Wave Galactic Plane Survey With The BICEP Polarimeter

    Get PDF
    In addition to its potential to probe the Inflationary cosmological paradigm, millimeter-wave polarimetry is a powerful tool for studying the Milky Way galaxy's composition and magnetic field structure. Towards this end, presented here are Stokes I, Q, and U maps of the Galactic plane from the millimeter-wave polarimeter BICEP covering the Galactic longitude range 260 - 340 degrees in three atmospheric transmission windows centered on 100, 150, and 220 GHz. The maps sample an optical depth 1 < AV < 30, and are consistent with previous characterizations of the Galactic millimeter-wave frequency spectrum and the large-scale magnetic field structure permeating the interstellar medium. Polarized emission is detected over the entire region within two degrees of the Galactic plane and indicates that the large-scale magnetic field is oriented parallel to the plane of the Galaxy. An observed trend of decreasing polarization fraction with increasing total intensity rules out the simplest model of a constant Galactic magnetic field throughout the Galaxy. Including WMAP data in the analysis, the degree-scale frequency spectrum of Galactic polarization fraction is plotted between 23 and 220 GHz for the first time. A generally increasing trend of polarization fraction with electromagnetic frequency is found, which varies from 0.5%-1.5%at frequencies below 50 GHz to 2.5%-3.5%above 90 GHz. The BICEP and WMAP data are fit to a two-component (synchrotron and dust) model showing that the higher frequency BICEP data are necessary to tightly constrain the amplitude and spectral index of Galactic dust. Furthermore, the dust amplitude predicted by this two-component fit is consistent with model predictions of dust emission in the BICEP bands

    CMBPol Mission Concept Study: Prospects for polarized foreground removal

    Get PDF
    In this report we discuss the impact of polarized foregrounds on a future CMBPol satellite mission. We review our current knowledge of Galactic polarized emission at microwave frequencies, including synchrotron and thermal dust emission. We use existing data and our understanding of the physical behavior of the sources of foreground emission to generate sky templates, and start to assess how well primordial gravitational wave signals can be separated from foreground contaminants for a CMBPol mission. At the estimated foreground minimum of ~100 GHz, the polarized foregrounds are expected to be lower than a primordial polarization signal with tensor-to-scalar ratio r=0.01, in a small patch (~1%) of the sky known to have low Galactic emission. Over 75% of the sky we expect the foreground amplitude to exceed the primordial signal by about a factor of eight at the foreground minimum and on scales of two degrees. Only on the largest scales does the polarized foreground amplitude exceed the primordial signal by a larger factor of about 20. The prospects for detecting an r=0.01 signal including degree-scale measurements appear promising, with 5 sigma_r ~0.003 forecast from multiple methods. A mission that observes a range of scales offers better prospects from the foregrounds perspective than one targeting only the lowest few multipoles. We begin to explore how optimizing the composition of frequency channels in the focal plane can maximize our ability to perform component separation, with a range of typically 40 < nu < 300 GHz preferred for ten channels. Foreground cleaning methods are already in place to tackle a CMBPol mission data set, and further investigation of the optimization and detectability of the primordial signal will be useful for mission design.Comment: 42 pages, 14 figures, Foreground Removal Working Group contribution to the CMBPol Mission Concept Study, v2, matches AIP versio

    The Primordial Inflation Polarization Explorer (PIPER)

    Get PDF
    The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne cosmic microwave background (CMB) polarimeter designed to search for evidence of inflation by measuring the large-angular scale CMB polarization signal. BICEP2 recently reported a detection of B-mode power corresponding to the tensor-to-scalar ratio r = 0.2 on ~2 degree scales. If the BICEP2 signal is caused by inflationary gravitational waves (IGWs), then there should be a corresponding increase in B-mode power on angular scales larger than 18 degrees. PIPER is currently the only suborbital instrument capable of fully testing and extending the BICEP2 results by measuring the B-mode power spectrum on angular scales θ\theta = ~0.6 deg to 90 deg, covering both the reionization bump and recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007, and four frequency bands to distinguish foregrounds. PIPER will accomplish this by mapping 85% of the sky in four frequency bands (200, 270, 350, 600 GHz) over a series of 8 conventional balloon flights from the northern and southern hemispheres. The instrument has background-limited sensitivity provided by fully cryogenic (1.5 K) optics focusing the sky signal onto four 32x40-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 140 mK. Polarization sensitivity and systematic control are provided by front-end Variable-delay Polarization Modulators (VPMs), which rapidly modulate only the polarized sky signal at 3 Hz and allow PIPER to instantaneously measure the full Stokes vector (I, Q, U, V) for each pointing. We describe the PIPER instrument and progress towards its first flight.Comment: 11 pages, 7 figures. To be published in Proceedings of SPIE Volume 9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014, conference 915
    corecore