36 research outputs found

    Evolution of the Greater Caucasus Basement and Formation of the Main Caucasus Thrust, Georgia

    Full text link
    Along the northern margin of the Arabia‐Eurasia collision zone in the western Greater Caucasus, the Main Caucasus Thrust (MCT) juxtaposes Paleozoic crystalline basement to the north against Mesozoic metasedimentary and volcaniclastic rocks to the south. The MCT is commonly assumed to be the trace of an active plate‐boundary scale structure that accommodates Arabia‐Eurasia convergence, but field data supporting this interpretation are equivocal. Here we investigate the deformation history of the rocks juxtaposed across the MCT in Georgia using field observations, microstructural analysis, U‐Pb and 40Ar/39Ar geochronology, and 40Ar/39Ar and (U‐Th)/He thermochronology. Zircon U‐Pb analyses show that Greater Caucasus crystalline rocks formed in the Early Paleozoic on the margin of Gondwana. Low‐pressure/temperature amphibolite‐facies metamorphism of these metasedimentary rocks and associated plutonism likely took place during Carboniferous accretion onto the Laurussian margin, as indicated by igneous and metamorphic zircon U‐Pb ages of ~330–310 Ma. 40Ar/39Ar ages of ~190–135 Ma from muscovite in a greenschist‐facies shear zone indicate that the MCT likely developed during Mesozoic inversion and/or rifting of the Caucasus Basin. A Mesozoic 40Ar/39Ar biotite age with release spectra indicating partial resetting and Cenozoic (<40 Ma) apatite and zircon (U‐Th)/He ages imply at least ~5–8 km of Greater Caucasus basement exhumation since ~10 Ma in response to Arabia‐Eurasia collision. Cenozoic reactivation of the MCT may have accommodated a fraction of this exhumation. However, Cenozoic zircon (U‐Th)/He ages in both the hanging wall and footwall of the MCT require partitioning a substantial component of this deformation onto structures to the south.Plain Language SummaryCollisions between continents cause deformation of the Earth’s crust and the uplift of large mountain ranges like the Himalayas. Large faults often form to accommodate this deformation and may help bring rocks once buried at great depths up to the surface of the Earth. The Greater Caucasus Mountains form the northernmost part of a zone of deformation due to the ongoing collision between the Arabian and Eurasian continents. The Main Caucasus Thrust (MCT) is a fault juxtaposing old igneous and metamorphic (crystalline) rocks against younger rocks that has often been assumed to be a major means of accommodating Arabia‐Eurasia collision. This study examines the history of rocks along the MCT with a combination of field work, study of microscopic deformation in rocks, and dating of rock formation and cooling. The crystalline rocks were added to the margins of present‐day Eurasia about 330–310 million years ago, and the MCT first formed about 190–135 million years ago. The MCT is likely at most one of many structures accommodating present‐day Arabia‐Eurasia collision.Key PointsAmphibolite‐facies metamorphism and plutonism in the Greater Caucasus basement took place ~330–310 MaThe Main Caucasus Thrust formed as a greenschist‐facies shear zone during Caucasus Basin inversion and/or rifting (~190–135 Ma)The Main Caucasus Thrust may have helped facilitate a portion of at least 5–8 km of basement exhumation during Arabia‐Eurasia collisionPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154626/1/tect21292-sup-0002-2019TC005828-ts01.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154626/2/tect21292-sup-0006-2019TC005828-ts05.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154626/3/tect21292_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154626/4/tect21292-sup-0003-2019TC005828-ts02.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154626/5/tect21292-sup-0005-2019TC005828-ts04.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154626/6/tect21292.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154626/7/tect21292-sup-0004-2019TC005828-ts03.pd

    Grid search modeling of receiver functions: Implications for crustal structure in the Middle East and North Africa

    Full text link
    An edited version of this paper was published by the American Geophysical Union (AGU). Copyright 1998, AGU. See also: http://www.agu.org/pubs/crossref/1996/95JB03112.shtml; http://atlas.geo.cornell.edu/MiddleEastNorthAfrica/publications/Sandvol1998.htmA grid search is used to estimate average crustal thickness and shear wave velocity structure beneath 12 three-component broadband seismic stations in the Middle East, North Africa, and nearby regions. The crustal thickness in these regions is found to vary from a minimum of 8.0 +/- 1.5 km in East Africa (Afar) region to possibly a maximum of 64 +/- 4.8 km in the lesser Caucasus. Stations located within the stable African platform indicate a crustal thickness of about 40 km. Teleseismic three-component waveform data produced by 165 earthquakes are used to create receiver function stacks for each station. Using a grid search, we have solved for the optimal and most simple shear velocity models beneath all 12 stations. Unlike other techniques (linearized least squares or forward modeling), the grid search methodology guarantees that we solve for the global minimum within our defined model parameter space. Using the grid search, we also qualitatively estimate the least number of layers required to model the observed receiver functions' major seismic phases (e.g., PSMoho). A jackknife error estimation method is used to test the stability of our receiver function inversions for all 12 stations in the region that had recorded a sufficient number of high-quality broadband teleseismic waveforms. Five of the 12 estimates of crustal thickness are consistent with what is known of crustal structure from prior geophysical work. Furthermore, the remaining seven estimates of crustal structure are in regions for which previously there were few or no data about crustal thickness

    A Preliminary Framework for Magmatism in Modern Continental Back‐Arc Basins and Its Application to the Triassic‐Jurassic Tectonic Evolution of the Caucasus

    No full text
    Abstract Extension within a continental back‐arc basin initiates within continental rather than oceanic lithosphere, and the geochemical characteristics of magmatic rocks within continental back‐arcs are poorly understood relative to their intraoceanic counterparts. Here, we compile published geochemical data from five exemplar modern continental back‐arc basins—the Okinawa Trough, Bransfield Strait, Tyrrhenian Sea, Patagonia plateau, and Aegean Sea/Western Anatolia—to establish a geochemical framework for continental back‐arc magmatism. This analysis shows that continental back‐arcs yield geochemical signatures more similar to arc magmatism than intraoceanic back‐arcs do. We apply this framework to published data for Triassic‐Jurassic magmatic rocks from the Caucasus arc system, which includes a relict continental back‐arc, the Caucasus Basin, that opened during the Jurassic and for which the causal mechanism of formation remains debated. Our analysis of 40Ar/39Ar and U‐Pb ages indicates Permian‐Triassic arc magmatism from ∼260 to 220 Ma due to subduction beneath the Greater Caucasus and Scythian Platform. Late Triassic (∼220–210 Ma) collision of the Iranian block with Laurasia likely induced trench retreat in the Caucasus region and led to migration of the Caucasus arc and opening of the Caucasus Basin. This activity was followed by Jurassic arc magmatism in the Lesser Caucasus from ∼180 to 140 Ma and back‐arc spreading in the Caucasus Basin from ∼180 to 160 Ma. Trace element and Sr‐Nd isotopic data for magmatic rocks indicate that Caucasus Basin magmatism is comparable to modern continental back‐arcs and that the source to the Lesser Caucasus arc became more enriched at ∼160 Ma, likely from the cessation of back‐arc spreading

    Jurassic to Cenozoic Magmatic and Geodynamic Evolution of the Eastern Pontides and Caucasus Belts, and Their Relationship With the Eastern Black Sea Basin Opening

    No full text
    The magmatic arcs of the Eastern Pontides and Lesser Caucasus lie in continuation from one another. A comparison of the subduction related magmatic rocks outcropping throughout this segment of the Northern Tethyan belt exhibits chronological disparities, questioning the common subduction history of the Eastern Pontides and the Lesser Caucasus regions. New data and observations including geochronological and geochemical data, relative to subduction to collision related magmatic rocks argues a novel paleogeographic reconstruction illustrating Mesozoic and Cenozoic evolution of this region. Jurassic to Early Cretaceous arc magmatism runs mainly from the Sochi-Ritsa/Bechasyn regions (Greater Caucasus) towards the south-east to the Alaverdi region and further into the Lesser Caucasus. Late Cretaceous and Cenozoic arc magmatism is evidenced throughout the Eastern Pontides extending through the Bolnisi region to the Lesser Caucasus arc. East to west, Jurassic to Early Cretaceous and Late Cretaceous to Cenozoic portions of arc split to the north and south of the Eastern Black Sea, respectively. Throughout Cretaceous subduction, this segment of the magmatic arc of the Southern Eurasian margin was torn in two due to the oblique opening of the Eastern Black Sea as a back- to intra-arc basin, from west to east. This reconstitution implies that the Jurassic-Early Cretaceous subduction related magmatic rocks of the Greater Caucasus are remnant potions of the Eastern Pontides and Lesser Caucasus arcs. This infers the emplacement of subduction to collision related magmatic rocks throughout the Mesozoic and Cenozoic along the entire Southern Eurasian margin is solely due to a single long-lasting north-dipping subduction
    corecore