301 research outputs found
Rapid method of obtaining area under curve for any compartment of any linear pharmacokinetic model in terms of rate constants
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45066/1/10928_2005_Article_BF01063618.pd
Impact damage resistance of composite fuselage structure, part 1
The impact damage resistance of laminated composite transport aircraft fuselage structures was studied experimentally. A statistically based designed experiment was used to examine numerous material, laminate, structural, and extrinsic (e.g., impactor type) variables. The relative importance and quantitative measure of the effect of each variable and variable interactions on responses including impactor dynamic response, visibility, and internal damage state were determined. The study utilized 32 three-stiffener panels, each with a unique combination of material type, material forms, and structural geometry. Two manufacturing techniques, tow placement and tape lamination, were used to build panels representative of potential fuselage crown, keel, and lower side-panel designs. Various combinations of impactor variables representing various foreign-object-impact threats to the aircraft were examined. Impacts performed at different structural locations within each panel (e.g., skin midbay, stiffener attaching flange, etc.) were considered separate parallel experiments. The relationship between input variables, measured damage states, and structural response to this damage are presented including recommendations for materials and impact test methods for fuselage structure
A development cooperation Erasmus Mundus partnership for capacity building in earthquake mitigation science and higher education
Successful practices have shown that a community’s capacity to manage and reduce its seismic risk relies on
capitalization on policies, on technology and research results. An important role is played by education, than contribute to
strengthening technical curricula of future practitioners and researchers through university and higher education programs. EUNICE
is a European Commission funded higher education partnership for international development cooperation with the
objective to build capacity of individuals who will operate at institutions located in seismic prone Asian Countries. The project
involves five European Universities, eight Asian universities and four associations and NGOs active in advanced research on
seismic mitigation, disaster risk management and international development. The project consists of a comprehensive mobility
scheme open to nationals from Afghanistan, Bangladesh, China, Nepal, Pakistan, Thailand, Bhutan, India, Indonesia, Malaysia,
Maldives, North Korea, Philippines, and Sri Lanka who plan to enroll in school or conduct research at one of five European
partner universities in Italy, Greece and Portugal. During the 2010-14 time span a total number of 104 mobilities are being
involved in scientific activities at the undergraduate, masters, PhD, postdoctoral and academic-staff exchange levels.
Researchers, future policymakers and practitioners build up their curricula over a range of disciplines in the fields of earthquake
engineering, seismology, disaster risk management and urban planning
EU-NICE, Eurasian University Network for International Cooperation in Earthquakes
Despite the remarkable scientific advancements of earthquake engineering and seismology in many countries,
seismic risk is still growing at a high rate in the world’s most vulnerable communities. Successful practices have shown that a community’s capacity to manage and reduce its seismic risk relies on capitalization on policies, on
technology and research results. An important role is played by education, than contribute to strengthening
technical curricula of future practitioners and researchers through university and higher education programmes.
In recent years an increasing number of initiatives have been launched in this field at the international and global
cooperation level. Cooperative international academic research and training is key to reducing the gap between
advanced and more vulnerable regions. EU-NICE is a European Commission funded higher education
partnership for international development cooperation with the objective to build capacity of individuals who
will operate at institutions located in seismic prone Asian Countries. The project involves five European
Universities, eight Asian universities and four associations and NGOs active in advanced research on seismic
mitigation, disaster risk management and international development.
The project consists of a comprehensive mobility scheme open to nationals from Afghanistan, Bangladesh,
China, Nepal, Pakistan, Thailand, Bhutan, India, Indonesia, Malaysia, Maldives, North Korea, Philippines, and
Sri Lanka who plan to enrol in school or conduct research at one of five European partner universities in Italy,
Greece and Portugal. During the 2010-14 time span a total number of 104 mobilities are being involved in
scientific activities at the undergraduate, masters, PhD, postdoctoral and academic-staff exchange levels.
This high number of mobilities and activities is selected and designed so as to produce an overall increase of
knowledge that can result in an impact on earthquake mitigation. Researchers, future policymakers and
practitioners build up their curricula over a range of disciplines in the fields of engineering, seismology, disaster
risk management and urban planning. Specific educational and research activities focus on earthquake risk
mitigation related topics such as: anti-seismic structural design, structural engineering, advanced computer
structural collapse analysis, seismology, experimental laboratory studies, international and development issues in
disaster risk management, social-economical impact studies, international relations and conflict resolution
Broadband conversion of microwaves into propagating spin waves in patterned magnetic structures
We have used time-resolved scanning Kerr microscopy and micromagnetic simulations to demonstrate that, when driven by the spatially uniform microwave field, the edges of patterned magnetic samples represent both efficient and highly tunable sources of propagating spin waves. The excitation is due to the local enhancement of the resonance frequency induced by the non-uniform dynamic demagnetizing field generated by precessing magnetization aligned with the edges. Our findings represent a crucial step forward in the design of nanoscale spin-wave sources for magnonic architectures and are also highly relevant to the understanding and interpretation of magnetization dynamics driven by spatially uniform magnetic fields in patterned magnetic samples
Advanced Technology Composite Fuselage - Materials and Processes
The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied
Dysregulated protocadherin-pathway activity as an intrinsic defect in induced pluripotent stem cell-derived cortical interneurons from subjects with schizophrenia.
We generated cortical interneurons (cINs) from induced pluripotent stem cells derived from 14 healthy controls and 14 subjects with schizophrenia. Both healthy control cINs and schizophrenia cINs were authentic, fired spontaneously, received functional excitatory inputs from host neurons, and induced GABA-mediated inhibition in host neurons in vivo. However, schizophrenia cINs had dysregulated expression of protocadherin genes, which lie within documented schizophrenia loci. Mice lacking protocadherin-α showed defective arborization and synaptic density of prefrontal cortex cINs and behavioral abnormalities. Schizophrenia cINs similarly showed defects in synaptic density and arborization that were reversed by inhibitors of protein kinase C, a downstream kinase in the protocadherin pathway. These findings reveal an intrinsic abnormality in schizophrenia cINs in the absence of any circuit-driven pathology. They also demonstrate the utility of homogenous and functional populations of a relevant neuronal subtype for probing pathogenesis mechanisms during development
Implications for prediction and hazard assessment from the 2004 Parkfield earthquake
Obtaining high-quality measurements close to a large earthquake is not easy: one has to be in the right place at the right time with the right instruments. Such a convergence happened, for the first time, when the 28 September 2004 Parkfield, California, earthquake occurred on the San Andreas fault in the middle of a dense network of instruments designed to record it. The resulting data reveal aspects of the earthquake process never before seen. Here we show what these data, when combined with data from earlier Parkfield earthquakes, tell us about earthquake physics and earthquake prediction. The 2004 Parkfield earthquake, with its lack of obvious precursors, demonstrates that reliable short-term earthquake prediction still is not achievable. To reduce the societal impact of earthquakes now, we should focus on developing the next generation of models that can provide better predictions of the strength and location of damaging ground shaking
- …