13 research outputs found

    First direct measurements of hydraulic jumps in an active submarine density current

    Get PDF
    For almost half a century, it has been suspected that hydraulic jumps, which consist of a sudden decrease in downstream velocity and increase in flow thickness, are an important feature of submarine density currents such as turbidity currents and debris flows. Hydraulic jumps are implicated in major seafloor processes, including changes from channel erosion to fan deposition, flow transformations from debris flow to turbidity current, and large-scale seafloor scouring. We provide the first direct evidence of hydraulic jumps in a submarine density current and show that the observed hydraulic jumps are in phase with seafloor scours. Our measurements reveal strong vertical velocities across the jumps and smaller than predicted decreases in downstream velocity. Thus, we demonstrate that hydraulic jumps need not cause instantaneous and catastrophic deposition from the flow as previously suspected. Furthermore, our unique data set highlights problems in using depth-averaged velocities to calculate densimetric Froude numbers for gravity currents

    Flow dynamics and mixing processes in hydraulic jump arrays: Implications for channel-lobe transition zones

    Get PDF
    A detailed field investigation of a saline gravity current in the southwest Black Sea has enabled the first complete analysis of three-dimensional flow structure and dynamics of a series of linked hydraulic jumps in stratified, density-driven, flows. These field observations were collected using an acoustic Doppler current profiler mounted on an autonomous underwater vehicle, and reveal that internal mixing processes in hydraulic jumps, including flow expansion and recirculation, provide a previously unrecognised mechanism for grain-size sorting and segregation in stratified density-driven flows. Field observations suggest a newly identified type of hydraulic jump, that is a stratified low Froude number (< 1.5ā€“2) subaqueous hydraulic jump, with an enhanced ability to transport sediment downstream of the jump, in comparison to hydraulic jumps in other subaerial and submarine flows. These novel field data underpin a new process-based conceptual model of channel lobe transition zones (CLTZs) that explains the scattered offset nature of scours within such settings, the temporal variations in infill and erosion between adjacent scours, how bed shear stresses are maintained across the CLTZ, and why the locus of deposition is so far downstream of the scour zone

    Optimised mixing and flow resistance during shear flow over a rib roughened boundary

    Get PDF
    A series of numerical investigations has been performed to study the effect of lower boundary roughness on turbulent flow in a two-dimensional channel. The roughness spacing to height ratio, w/k, has been investigated over the range 0.12 to 402 by varying the horizontal rib spacing. The square roughness elements each have a cross-sectional area of (0.05 H)2, where H is the full channel height. The Reynolds number, ReĻ„ is fixed based on the value of the imposed pressure gradient, dp/dx, and is in the range 6.3 Ɨ 103 āˆ’ 4.5 Ɨ 104. A Reynolds Averaged Navierā€“Stokes (RANS) based turbulence modelling approach is adopted using a commercial CFD code, ANSYS-CFX 14.0. Measurements of eddy viscosity and friction factor have been made over this range to establish the optimum spacings to produce maximum turbulence enhancement, mixing and resistance to flow. These occur when w/k is approximately 7. It is found that this value is only weakly dependent on Reynolds number, and the decay rate of turbulence enhancement as a function of w/k ratio beyond this optimum spacing is slow. The implications for heat transfer design optimisation and particle transport are considered

    The structure of the deposit produced by sedimentation of polydisperse suspensions

    No full text
    To interpret the deposits from particle-laden flows it is necessary to understand particle settling at their base. In this paper a quantitative model is developed that not only captures how particles settle out of suspension but also the composition of the final deposit in terms of its vertical distribution of grain sizes. The theoretical model is validated by comparison to published experimental data that has been used to interpret the field deposits of submarine sediment-laden flows (Amy et al., 2006). The model explains two intriguing features of the experimental deposits that are also observed in natural deposits. First, deposits commonly have an ungraded, or poorly normally graded, region overlain by a strongly normally graded region. Second, the normalized thickness of the ungraded region increases as the initial concentration of the suspension is increased. In the theoretical model, the poorly normally graded region results from a constant mass flux into the bed that persists until the largest grain size present within the flow has been completely deposited. The effect of increasing the concentration of the initial suspension is to increase the thickness of the poorly graded part of the deposit and to decrease its average grain size. This work suggests that deposits with relatively thick, poorly graded bases can form from relatively high-concentration polydisperse suspensions, when the initial volume fraction of sediment is greater than approximately 20% and indicates that it is important to include these hindered settling effects in models of depositing flows

    Benthic biology influences sedimentation in submarine channel bends: Coupling of biology, sedimentation and flow

    Get PDF
    Submarine channels are key features for the transport of flow and nutrients into deep water. Previous studies of their morphology and channel evolution have treated these systems as abiotic, and therefore assume that physical processes are solely responsible for morphological development. Here, a unique dataset is utilised that includes spatial measurements around a channel bend that hosts active sediment gravity flows. The data include flow velocity and density, alongside bed grain size and channelā€floor benthic macrofauna. Analysis of these parameters demonstrate that while physical processes control the broadest scale variations in sedimentation around and across the channel, benthic biology plays a critical role in stabilising sediment and trapping fines. This leads to much broader mixed grain sizes than would be expected from purely abiotic sedimentation, and the maintenance of sediment beds in positions where all the sediment should be actively migrating. Given that previous work has also shown that submarine channels can be biological hotspots, then the present study suggests that benthic biology probably plays a key role in channel morphology and evolution, and that these need to be considered both in the modern and when considering examples preserved in the rock record

    Benthic biology influences sedimentation in submarine channel bends: coupling of biology, sedimentation, and flow

    No full text
    Submarine channels are key features for the transport of flow and nutrients into deep water. Previous studies of their morphology and channel evolution have treated these systems as abiotic, and therefore assume that physical processes are solely responsible for morphological development. Here, a unique dataset is uti-lised that includes spatial measurements around a channel bend that hosts active sediment gravity flows. The data include flow velocity and density, alongside bed grain size and channel- floor benthic macrofauna. Analysis of these parameters demonstrate that while physical processes control the broadest scale variations in sedimentation around and across the channel, benthic biology plays a criti-cal role in stabilising sediment and trapping fines. This leads to much broader mixed grain sizes than would be expected from purely abiotic sedimentation, and the maintenance of sediment beds in positions where all the sediment should be actively migrating. Given that previous work has also shown that submarine channels can be biological hotspots, then the present study suggests that benthic biology probably plays a key role in channel morphology and evolution, and that these need to be considered both in the modern and when considering examples preserved in the rock record

    Knickpoints and crescentic bedform interactions in submarine channels

    No full text
    Submarine channels deliver globally important volumes of sediments, nutrients, contaminants and organic carbon into the deep sea. Knickpoints are significant topographic features found within numerous submarine channels, which most likely play an important role in channel evolution and the behaviour of the submarine sediment-laden flows (turbidity currents) that traverse them. Although prior research has linked supercritical turbidity currents to the formation of both knickpoints and smaller crescentic bedforms, the relationship between flows and the dynamics of these seafloor features remains poorly constrained at field-scale. This study investigates the distribution, variation and interaction of knickpoints and crescentic bedforms along the 44km long submarine channel system in Bute Inlet, British Columbia. Wavelet analyses on a series of repeated bathymetric surveys reveal that the floor of the submarine channel is composed of a series of knickpoints that have superimposed, higher-frequency, crescentic bedforms. Individual knickpoints are separated by hundreds to thousands of metres, with the smaller superimposed crescentic bedforms varying in wavelengths from ca 16m to ca 128m through the channel system. Knickpoint migration is driven by the passage of frequent turbidity currents, and acts to redistribute and reorganize the crescentic bedforms. Direct measurements of turbidity currents indicate the seafloor reorganization caused by knickpoint migration can modify the flow field and, in turn, control the location and morphometry of crescentic bedforms. A transect of sediment cores obtained across one of the knickpoints show sandā€“mud laminations of deposits with higher aggradation rates in regions just downstream of the knickpoint. The interactions between flows, knickpoints and bedforms that are documented here are important because they likely dominate the character of preserved submarine channel-bed deposits
    corecore