589 research outputs found

    Habitat specialization, distribution range size and body size drive extinction risk in carabid beetles

    Get PDF
    The worldwide biodiversity crisis is ongoing. To slow down, or even halt future species loss it is important to identify potential drivers of extinction risk. Species traits can help to understand the underlying process of extinction risk. In a comprehensive study on 464 carabid beetle species, we used ordinal logistic regression to analyze the relationship of species traits to extinction risk in Central Europe, taking phylogenetic relatedness into account. To consider varying trait responses in different habitat types, we also tested models for species groups associated with different habitat types (forest, open, riparian and wetland). Our results identified three traits of particular importance as predictors for high extinction risk: (1) high habitat specialization, (2) small distribution range size (which is not considered in the categorization of the German Red List), and (3) large body size. Furthermore, large macropterous species showed high extinction risk. Overall, species associated with mountainous, coastal and open habitats generally revealed a high risk of extinction, while most forest species showed a low extinction risk. However, forest species with predatory feeding behavior were threatened, as were wetland species that reproduce in autumn. Phylogenetic relatedness had no influence on how species traits predict carabid beetle extinction risk. In the light of these results, management and recovery plans for species which exhibit characteristic traits strongly associated with extinction risks, as well as the conservation and restoration of mountain, coastal and open habitats, have to be prioritized.Peer reviewe

    Stimulation of commercial coal seam methane production aimed at improving mining technology

    Get PDF
    The relevance of the current research is due to the urgent need to revise the existing normative bases and procedures involved in intensive development of coal-methane deposits and commercial production of coal seam methane. The article presents the analysis of data on coal production volume and amount of methane emitted into the atmosphere in Kuzbass. There is a need to develop the exploration techniques that would allow implementing pre-mining gas drainage of coal seams and provide the companies with the guidance on coal seam methane drainage in very gassy coal mines. Commercial production of methane should become an integral part of economy and energy balance of the Russian Federation, which, in its turn, would enhance environmental protection due to reducing methane emissions, the largest source of greenhouse effect

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Measurement of the 244^{244}Cm and 246^{246}Cm Neutron-Induced Cross Sections at the n_TOF Facility

    Get PDF
    The neutron capture reactions of the 244^{244}Cm and 246^{246}Cm isotopes open the path for the formation of heavier Cm isotopes and of heavier elements such as Bk and Cf in a nuclear reactor. In addition, both isotopes belong to the minor actinides with a large contribution to the decay heat and to the neutron emission in irradiated fuels proposed for the transmutation of nuclear waste and fast critical reactors. The available experimental data for both isotopes are very scarce. We measured the neutron capture cross section with isotopically enriched samples of 244^{244}Cm and 246^{246}Cm provided by JAEA. The measurement covers the range from 1 eV to 250 eV in the n_TOF Experimental Area 2 (EAR-2). In addition, a normalization measurement with the 244^{244}Cm sample was performed at Experimental Area 1 (EAR-1) with the Total Absorption Calorimeter (TAC)

    Life-history traits matter for dispersal into semi-open habitat corridors:

    No full text
    Biodiversity face ever-increasing threats from the consequences of various human activities Conservation corridors have long been considered a viable solution to help counteract biodiversity loss. However, corridors simultaneously increase fragmentation for non-target habitats. To overcome this challenge, semi-open habitats, which are a mixture of open and woodland habitats, have been proposed as they may enable simultaneous dispersal of both stenotopic open and woodland species. Despite the fact that they could be used by a great range of species, strong interspecific variability exists with regards to the number of individuals effectively recorded in such environment. Consequently, generalisation about their effectiveness remains difficult. Life-history traits such as body size, hibernation stage, trophic guild, and habitat specialisation could be successfully used to enhance prediction with regards to dispersal success. We used generalized linear modelling to study the relationship of ground beetles species traits and dispersal success into semi-open habitat in two regions of Germany. Our preliminary results indicate that larger species, as well as species overwintering as larvae, tend to be more successful when dispersing into semi-open habitat than smaller species or species overwintering as adult. In addition, species locally abundant are also recorded in higher number. In the light of these results, semi-open corridors do not appear to be the best strategy to increase connectivity for species with small body size or overwintering as adult. For such species, priority should be given to traditional corridors whenever possible. Source habitats need also attention as population size will strongly determine the usefulness of such corridors

    Long-term trends in carabids over 25 years – community and population level analyses

    No full text
    In times of insect decline, long-term data become more and more important. Such data allow insights into long-term trends and an analysis of possible drivers underlying temporal changes of community and population structure. Using data from 25 years of continuous ground beetle trapping in an ancient woodland located in a large nature reserve in Northern Germany, we analysed temporal changes at both community and population level and identified potential underlying drivers. Ground beetle species significantly declined over time but biomass and number of trapped individuals remained constant. As the habitat was kept stable und unchanged in the last 25 years we also study the influence of external drivers such as climatic variables on phenology and population trends of the most-abundant species. We discuss our results in light of the ongoing insect decline and climate change
    • 

    corecore