37 research outputs found

    Open k-monopolies in graphs: complexity and related concepts

    Get PDF
    Closed monopolies in graphs have a quite long range of applications in several problems related to overcoming failures, since they frequently have some common approaches around the notion of majorities, for instance to consensus problems, diagnosis problems or voting systems. We introduce here open kk-monopolies in graphs which are closely related to different parameters in graphs. Given a graph G=(V,E)G=(V,E) and X⊆VX\subseteq V, if δX(v)\delta_X(v) is the number of neighbors vv has in XX, kk is an integer and tt is a positive integer, then we establish in this article a connection between the following three concepts: - Given a nonempty set M⊆VM\subseteq V a vertex vv of GG is said to be kk-controlled by MM if δM(v)≥δV(v)2+k\delta_M(v)\ge \frac{\delta_V(v)}{2}+k. The set MM is called an open kk-monopoly for GG if it kk-controls every vertex vv of GG. - A function f:V→{−1,1}f: V\rightarrow \{-1,1\} is called a signed total tt-dominating function for GG if f(N(v))=∑v∈N(v)f(v)≥tf(N(v))=\sum_{v\in N(v)}f(v)\geq t for all v∈Vv\in V. - A nonempty set S⊆VS\subseteq V is a global (defensive and offensive) kk-alliance in GG if δS(v)≥δV−S(v)+k\delta_S(v)\ge \delta_{V-S}(v)+k holds for every v∈Vv\in V. In this article we prove that the problem of computing the minimum cardinality of an open 00-monopoly in a graph is NP-complete even restricted to bipartite or chordal graphs. In addition we present some general bounds for the minimum cardinality of open kk-monopolies and we derive some exact values.Comment: 18 pages, Discrete Mathematics & Theoretical Computer Science (2016

    Nonlocal metric dimension of graphs

    Get PDF
    Nonlocal metric dimension dimnℓ(G){\rm dim}_{\rm n\ell}(G) of a graph GG is introduced as the cardinality of a smallest nonlocal resolving set, that is, a set of vertices which resolves each pair of non-adjacent vertices of GG. Graphs GG with dimnℓ(G)=1{\rm dim}_{\rm n\ell}(G) = 1 or with dimnℓ(G)=n(G)−2{\rm dim}_{\rm n\ell}(G) = n(G)-2 are characterized. The nonlocal metric dimension is determined for block graphs, for corona products, and for wheels. Two upper bounds on the nonlocal metric dimension are proved. An embedding of an arbitrary graph into a supergraph with a small nonlocal metric dimension and small diameter is presented

    Further new results on strong resolving partitions for graphs

    Get PDF
    A set W of vertices of a connected graph G strongly resolves two different vertices x, y is not an element of W if either d(G) (x, W) = d(G) (x, y) + d(G) (y, W) or d(G) (y, W) = d(G )(y, x) + d(G) (x, W), where d(G) (x, W) = min{d(x,w): w is an element of W} and d (x,w) represents the length of a shortest x - w path. An ordered vertex partition Pi = {U-1, U-2,...,U-k} of a graph G is a strong resolving partition for G, if every two different vertices of G belonging to the same set of the partition are strongly resolved by some other set of Pi. The minimum cardinality of any strong resolving partition for G is the strong partition dimension of G. In this article, we obtain several bounds and closed formulae for the strong partition dimension of some families of graphs and give some realization results relating the strong partition dimension, the strong metric dimension and the order of graphs

    Strong resolvability in product graphs.

    Get PDF
    En aquesta tesi s'estudia la dimensió mètrica forta de grafs producte. Els resultats més importants de la tesi se centren en la recerca de relacions entre la dimensió mètrica forta de grafs producte i la dels seus factors, juntament amb altres invariants d'aquests factors. Així, s'han estudiat els següents productes de grafs: producte cartesià, producte directe, producte fort, producte lexicogràfic, producte corona, grafs unió, suma cartesiana, i producte arrel, d'ara endavant "grafs producte". Hem obtingut fórmules tancades per la dimensió mètrica forta de diverses famílies no trivials de grafs producte que inclouen, per exemple, grafs bipartits, grafs vèrtexs transitius, grafs hamiltonians, arbres, cicles, grafs complets, etc, i hem donat fites inferiors i superiors generals, expressades en termes d'invariants dels grafs factors, com ara, l'ordre, el nombre d'independència, el nombre de cobriment de vèrtexs, el nombre d'aparellament, la connectivitat algebraica, el nombre de cliqué, i el nombre de cliqué lliure de bessons. També hem descrit algunes classes de grafs producte, on s'assoleixen aquestes fites. És conegut que el problema de trobar la dimensió mètrica forta d'un graf connex es pot transformar en el problema de trobar el nombre de cobriment de vèrtexs de la seva corresponent graf de resolubilitat forta. En aquesta tesi hem aprofitat aquesta eina i hem trobat diverses relacions entre el graf de resolubilitat forta de grafs producte i els grafs de resolubilitat forta dels seus factors. Per exemple, és notable destacar que el graf de resolubilitat forta del producte cartesià de dos grafs és isomorf al producte directe dels grafs de resolubilitat forta dels seus factors.En esta tesis se estudia la dimensión métrica fuerte de grafos producto. Los resultados más importantes de la tesis se centran en la búsqueda de relaciones entre la dimensión métrica fuerte de grafos producto y la de sus factores, junto con otros invariantes de estos factores. Así, se han estudiado los siguientes productos de grafos: producto cartesiano, producto directo, producto fuerte, producto lexicográfico, producto corona, grafos unión, suma cartesiana, y producto raíz, de ahora en adelante "grafos producto". Hemos obtenido fórmulas cerradas para la dimensión métrica fuerte de varias familias no triviales de grafos producto que incluyen, por ejemplo, grafos bipartitos, grafos vértices transitivos, grafos hamiltonianos, árboles, ciclos, grafos completos, etc, y hemos dado cotas inferiores y superiores generales, expresándolas en términos de invariantes de los grafos factores, como por ejemplo, el orden, el número de independencia, el número de cubrimiento de vértices, el número de emparejamiento, la conectividad algebraica, el número de cliqué, y el número de cliqué libre de gemelos. También hemos descrito algunas clases de grafos producto, donde se alcanzan estas cotas. Es conocido que el problema de encontrar la dimensión métrica fuerte de un grafo conexo se puede transformar en el problema de encontrar el número de cubrimiento de vértices de su correspondiente grafo de resolubilidad fuerte. En esta tesis hemos aprovechado esta herramienta y hemos encontrado varias relaciones entre el grafo de resolubilidad fuerte de grafos producto y los grafos de resolubilidad fuerte de sus factores. Por ejemplo, es notable destacar que el grafo de resolubilidad fuerte del producto cartesiano de dos grafos es isomorfo al producto directo de los grafos de resolubilidad fuerte de sus factores.In this thesis we study the strong metric dimension of product graphs. The central results of the thesis are focused on finding relationships between the strong metric dimension of product graphs and that of its factors together with other invariants of these factors. We have studied the following products: Cartesian product graphs, direct product graphs, strong product graphs, lexicographic product graphs, corona product graphs, join graphs, Cartesian sum graphs, and rooted product graphs, from now on ``product graphs''. We have obtained closed formulaes for the strong metric dimension of several nontrivial families of product graphs involving, for instance, bipartite graphs, vertex-transitive graphs, Hamiltonian graphs, trees, cycles, complete graphs, etc., or we have given general lower and upper bounds, and have expressed these in terms of invariants of the factor graphs like, for example, order, independence number, vertex cover number, matching number, algebraic connectivity, clique number, and twin-free clique number. We have also described some classes of product graphs where these bounds are achieved. It is known that the problem of finding the strong metric dimension of a connected graph can be transformed to the problem of finding the vertex cover number of its strong resolving graph. In the thesis we have strongly exploited this tool. We have found several relationships between the strong resolving graph of product graphs and that of its factor graphs. For instance, it is remarkable that the strong resolving graph of the Cartesian product of two graphs is isomorphic to the direct product of the strong resolving graphs of its factors

    Total mutual-visibility in graphs with emphasis on lexicographic and Cartesian products

    Full text link
    Given a connected graph GG, the total mutual-visibility number of GG, denoted μt(G)\mu_t(G), is the cardinality of a largest set S⊆V(G)S\subseteq V(G) such that for every pair of vertices x,y∈V(G)x,y\in V(G) there is a shortest x,yx,y-path whose interior vertices are not contained in SS. Several combinatorial properties, including bounds and closed formulae, for μt(G)\mu_t(G) are given in this article. Specifically, we give several bounds for μt(G)\mu_t(G) in terms of the diameter, order and/or connected domination number of GG and show characterizations of the graphs achieving the limit values of some of these bounds. We also consider those vertices of a graph GG that either belong to every total mutual-visibility set of GG or does not belong to any of such sets, and deduce some consequences of these results. We determine the exact value of the total mutual-visibility number of lexicographic products in terms of the orders of the factors, and the total mutual-visibility number of the first factor in the product. Finally, we give some bounds and closed formulae for the total mutual-visibility number of Cartesian product graphs
    corecore